rust/src/libsyntax/parse/parser.rs
2012-09-10 17:08:36 -07:00

3681 lines
132 KiB
Rust

use print::pprust::expr_to_str;
use result::Result;
use either::{Either, Left, Right};
use std::map::{HashMap, str_hash};
use token::{can_begin_expr, is_ident, is_ident_or_path, is_plain_ident,
INTERPOLATED};
use codemap::{span,fss_none};
use util::interner::interner;
use ast_util::{spanned, respan, mk_sp, ident_to_path, operator_prec};
use lexer::reader;
use prec::{as_prec, token_to_binop};
use attr::parser_attr;
use common::{seq_sep_trailing_disallowed, seq_sep_trailing_allowed,
seq_sep_none, token_to_str};
use dvec::DVec;
use vec::{push};
use obsolete::{
ObsoleteReporter, ObsoleteSyntax,
ObsoleteLowerCaseKindBounds, ObsoleteLet,
ObsoleteFieldTerminator, ObsoleteStructCtor,
ObsoleteWith
};
use ast::{_mod, add, alt_check, alt_exhaustive, arg, arm, attribute,
bind_by_ref, bind_by_implicit_ref, bind_by_value, bind_by_move,
bitand, bitor, bitxor, blk, blk_check_mode, bound_const,
bound_copy, bound_send, bound_trait, bound_owned, box, by_copy,
by_move, by_mutbl_ref, by_ref, by_val, capture_clause,
capture_item, cdir_dir_mod, cdir_src_mod, cdir_view_item,
class_immutable, class_mutable,
crate, crate_cfg, crate_directive, decl, decl_item, decl_local,
default_blk, deref, div, enum_def, enum_variant_kind, expl, expr,
expr_, expr_addr_of, expr_match, expr_again, expr_assert,
expr_assign, expr_assign_op, expr_binary, expr_block, expr_break,
expr_call, expr_cast, expr_copy, expr_do_body, expr_fail,
expr_field, expr_fn, expr_fn_block, expr_if, expr_index,
expr_lit, expr_log, expr_loop, expr_loop_body, expr_mac,
expr_move, expr_path, expr_rec, expr_repeat, expr_ret, expr_swap,
expr_struct, expr_tup, expr_unary, expr_unary_move, expr_vec,
expr_vstore, expr_while, extern_fn, field, fn_decl, foreign_item,
foreign_item_const, foreign_item_fn, foreign_mod, ident,
impure_fn, infer, inherited, init_assign, init_move, initializer,
item, item_, item_class, item_const, item_enum, item_fn,
item_foreign_mod, item_impl, item_mac, item_mod, item_trait,
item_ty, lit, lit_, lit_bool, lit_float, lit_int,
lit_int_unsuffixed, lit_nil, lit_str, lit_uint, local, m_const,
m_imm, m_mutbl, mac_, mac_aq, mac_ellipsis, mac_invoc,
mac_invoc_tt, mac_var, matcher, match_nonterminal, match_seq,
match_tok, method, mode, module_ns, mt, mul, mutability,
named_field, neg, noreturn, not, pat, pat_box, pat_enum,
pat_ident, pat_lit, pat_range, pat_rec, pat_region, pat_struct,
pat_tup, pat_uniq, pat_wild, path, private, proto, proto_bare,
proto_block, proto_box, proto_uniq, provided, public, pure_fn,
purity, re_anon, re_named, region, rem, required, ret_style,
return_val, self_ty, shl, shr, stmt, stmt_decl, stmt_expr,
stmt_semi, struct_def, struct_field, struct_variant_kind,
subtract, sty_box, sty_by_ref, sty_region, sty_static, sty_uniq,
sty_value, token_tree, trait_method, trait_ref, tt_delim, tt_seq,
tt_tok, tt_nonterminal, tuple_variant_kind, ty, ty_, ty_bot,
ty_box, ty_field, ty_fn, ty_infer, ty_mac, ty_method, ty_nil,
ty_param, ty_param_bound, ty_path, ty_ptr, ty_rec, ty_rptr,
ty_tup, ty_u32, ty_uniq, ty_vec, ty_fixed_length, type_value_ns,
unchecked_blk, uniq, unnamed_field, unsafe_blk, unsafe_fn,
variant, view_item, view_item_, view_item_export,
view_item_import, view_item_use, view_path, view_path_glob,
view_path_list, view_path_simple, visibility, vstore, vstore_box,
vstore_fixed, vstore_slice, vstore_uniq};
export file_type;
export parser;
export CRATE_FILE;
export SOURCE_FILE;
// FIXME (#1893): #ast expects to find this here but it's actually
// defined in `parse` Fixing this will be easier when we have export
// decls on individual items -- then parse can export this publicly, and
// everything else crate-visibly.
use parse::parse_from_source_str;
export parse_from_source_str;
export item_or_view_item, iovi_none, iovi_view_item, iovi_item;
enum restriction {
UNRESTRICTED,
RESTRICT_STMT_EXPR,
RESTRICT_NO_CALL_EXPRS,
RESTRICT_NO_BAR_OP,
RESTRICT_NO_BAR_OR_DOUBLEBAR_OP,
}
enum file_type { CRATE_FILE, SOURCE_FILE, }
// We don't allow single-entry tuples in the true AST; that indicates a
// parenthesized expression. However, we preserve them temporarily while
// parsing because `(while{...})+3` parses differently from `while{...}+3`.
//
// To reflect the fact that the @expr is not a true expr that should be
// part of the AST, we wrap such expressions in the pexpr enum. They
// can then be converted to true expressions by a call to `to_expr()`.
enum pexpr {
pexpr(@expr),
}
enum class_member {
field_member(@struct_field),
method_member(@method)
}
/*
So that we can distinguish a class ctor or dtor
from other class members
*/
enum class_contents { ctor_decl(fn_decl, ~[attribute], blk, codemap::span),
dtor_decl(blk, ~[attribute], codemap::span),
members(~[@class_member]) }
type arg_or_capture_item = Either<arg, capture_item>;
type item_info = (ident, item_, Option<~[attribute]>);
enum item_or_view_item {
iovi_none,
iovi_item(@item),
iovi_view_item(@view_item)
}
enum view_item_parse_mode {
VIEW_ITEMS_AND_ITEMS_ALLOWED,
VIEW_ITEMS_ALLOWED,
IMPORTS_AND_ITEMS_ALLOWED
}
/* The expr situation is not as complex as I thought it would be.
The important thing is to make sure that lookahead doesn't balk
at INTERPOLATED tokens */
macro_rules! maybe_whole_expr (
($p:expr) => { match copy $p.token {
INTERPOLATED(token::nt_expr(e)) => {
$p.bump();
return pexpr(e);
}
INTERPOLATED(token::nt_path(pt)) => {
$p.bump();
return $p.mk_pexpr($p.span.lo, $p.span.lo,
expr_path(pt));
}
_ => ()
}}
)
macro_rules! maybe_whole (
($p:expr, $constructor:ident) => { match copy $p.token {
INTERPOLATED(token::$constructor(x)) => { $p.bump(); return x; }
_ => ()
}} ;
(deref $p:expr, $constructor:ident) => { match copy $p.token {
INTERPOLATED(token::$constructor(x)) => { $p.bump(); return *x; }
_ => ()
}} ;
(Some $p:expr, $constructor:ident) => { match copy $p.token {
INTERPOLATED(token::$constructor(x)) => { $p.bump(); return Some(x); }
_ => ()
}} ;
(iovi $p:expr, $constructor:ident) => { match copy $p.token {
INTERPOLATED(token::$constructor(x)) => {
$p.bump();
return iovi_item(x);
}
_ => ()
}} ;
(pair_empty $p:expr, $constructor:ident) => { match copy $p.token {
INTERPOLATED(token::$constructor(x)) => { $p.bump(); return (~[], x); }
_ => ()
}}
)
pure fn maybe_append(+lhs: ~[attribute], rhs: Option<~[attribute]>)
-> ~[attribute] {
match rhs {
None => lhs,
Some(attrs) => vec::append(lhs, attrs)
}
}
/* ident is handled by common.rs */
fn parser(sess: parse_sess, cfg: ast::crate_cfg,
+rdr: reader, ftype: file_type) -> parser {
let tok0 = rdr.next_token();
let span0 = tok0.sp;
let interner = rdr.interner();
parser {
reader: move rdr,
interner: move interner,
sess: sess,
cfg: cfg,
file_type: ftype,
token: tok0.tok,
span: span0,
last_span: span0,
buffer: [mut
{tok: tok0.tok, sp: span0},
{tok: tok0.tok, sp: span0},
{tok: tok0.tok, sp: span0},
{tok: tok0.tok, sp: span0}
]/4,
buffer_start: 0,
buffer_end: 0,
restriction: UNRESTRICTED,
quote_depth: 0u,
keywords: token::keyword_table(),
restricted_keywords: token::restricted_keyword_table(),
strict_keywords: token::strict_keyword_table(),
obsolete_set: std::map::HashMap(),
}
}
struct parser {
sess: parse_sess,
cfg: crate_cfg,
file_type: file_type,
mut token: token::token,
mut span: span,
mut last_span: span,
mut buffer: [mut {tok: token::token, sp: span}]/4,
mut buffer_start: int,
mut buffer_end: int,
mut restriction: restriction,
mut quote_depth: uint, // not (yet) related to the quasiquoter
reader: reader,
interner: interner<@~str>,
keywords: HashMap<~str, ()>,
restricted_keywords: HashMap<~str, ()>,
strict_keywords: HashMap<~str, ()>,
/// The set of seen errors about obsolete syntax. Used to suppress
/// extra detail when the same error is seen twice
obsolete_set: HashMap<ObsoleteSyntax, ()>,
drop {} /* do not copy the parser; its state is tied to outside state */
}
impl parser {
fn bump() {
self.last_span = self.span;
let next = if self.buffer_start == self.buffer_end {
self.reader.next_token()
} else {
let next = self.buffer[self.buffer_start];
self.buffer_start = (self.buffer_start + 1) & 3;
next
};
self.token = next.tok;
self.span = next.sp;
}
fn swap(next: token::token, lo: uint, hi: uint) {
self.token = next;
self.span = mk_sp(lo, hi);
}
fn buffer_length() -> int {
if self.buffer_start <= self.buffer_end {
return self.buffer_end - self.buffer_start;
}
return (4 - self.buffer_start) + self.buffer_end;
}
fn look_ahead(distance: uint) -> token::token {
let dist = distance as int;
while self.buffer_length() < dist {
self.buffer[self.buffer_end] = self.reader.next_token();
self.buffer_end = (self.buffer_end + 1) & 3;
}
return copy self.buffer[(self.buffer_start + dist - 1) & 3].tok;
}
fn fatal(m: ~str) -> ! {
self.sess.span_diagnostic.span_fatal(copy self.span, m)
}
fn span_fatal(sp: span, m: ~str) -> ! {
self.sess.span_diagnostic.span_fatal(sp, m)
}
fn span_note(sp: span, m: ~str) {
self.sess.span_diagnostic.span_note(sp, m)
}
fn bug(m: ~str) -> ! {
self.sess.span_diagnostic.span_bug(copy self.span, m)
}
fn warn(m: ~str) {
self.sess.span_diagnostic.span_warn(copy self.span, m)
}
fn span_err(sp: span, m: ~str) {
self.sess.span_diagnostic.span_err(sp, m)
}
fn abort_if_errors() {
self.sess.span_diagnostic.handler().abort_if_errors();
}
fn get_id() -> node_id { next_node_id(self.sess) }
pure fn id_to_str(id: ident) -> @~str { self.sess.interner.get(id) }
fn parse_ty_fn(purity: ast::purity) -> ty_ {
let proto, bounds;
if self.eat_keyword(~"extern") {
self.expect_keyword(~"fn");
proto = ast::proto_bare;
bounds = @~[];
} else {
self.expect_keyword(~"fn");
proto = self.parse_fn_ty_proto();
bounds = self.parse_optional_ty_param_bounds();
};
ty_fn(proto, purity, bounds, self.parse_ty_fn_decl())
}
fn parse_ty_fn_decl() -> fn_decl {
let inputs = do self.parse_unspanned_seq(
token::LPAREN, token::RPAREN,
seq_sep_trailing_disallowed(token::COMMA)) |p| {
p.parse_arg_general(false)
};
let (ret_style, ret_ty) = self.parse_ret_ty();
return {inputs: inputs, output: ret_ty,
cf: ret_style};
}
fn parse_trait_methods() -> ~[trait_method] {
do self.parse_unspanned_seq(token::LBRACE, token::RBRACE,
seq_sep_none()) |p| {
let attrs = p.parse_outer_attributes();
let lo = p.span.lo;
let is_static = p.parse_staticness();
let static_sty = spanned(lo, p.span.hi, sty_static);
let pur = p.parse_fn_purity();
// NB: at the moment, trait methods are public by default; this
// could change.
let vis = p.parse_visibility();
let ident = p.parse_method_name();
let tps = p.parse_ty_params();
let (self_ty, d, _) = do self.parse_fn_decl_with_self() |p| {
// This is somewhat dubious; We don't want to allow argument
// names to be left off if there is a definition...
either::Left(p.parse_arg_general(false))
};
// XXX: Wrong. Shouldn't allow both static and self_ty
let self_ty = if is_static { static_sty } else { self_ty };
let hi = p.last_span.hi;
debug!("parse_trait_methods(): trait method signature ends in \
`%s`",
token_to_str(p.reader, p.token));
match p.token {
token::SEMI => {
p.bump();
debug!("parse_trait_methods(): parsing required method");
// NB: at the moment, visibility annotations on required
// methods are ignored; this could change.
required({ident: ident, attrs: attrs,
purity: pur, decl: d, tps: tps,
self_ty: self_ty,
id: p.get_id(), span: mk_sp(lo, hi)})
}
token::LBRACE => {
debug!("parse_trait_methods(): parsing provided method");
let (inner_attrs, body) =
p.parse_inner_attrs_and_block(true);
let attrs = vec::append(attrs, inner_attrs);
provided(@{ident: ident,
attrs: attrs,
tps: tps,
self_ty: self_ty,
purity: pur,
decl: d,
body: body,
id: p.get_id(),
span: mk_sp(lo, hi),
self_id: p.get_id(),
vis: vis})
}
_ => { p.fatal(~"expected `;` or `}` but found `" +
token_to_str(p.reader, p.token) + ~"`");
}
}
}
}
fn parse_mt() -> mt {
let mutbl = self.parse_mutability();
let t = self.parse_ty(false);
return {ty: t, mutbl: mutbl};
}
fn parse_ty_field() -> ty_field {
let lo = self.span.lo;
let mutbl = self.parse_mutability();
let id = self.parse_ident();
self.expect(token::COLON);
let ty = self.parse_ty(false);
return spanned(lo, ty.span.hi, {
ident: id, mt: {ty: ty, mutbl: mutbl}
});
}
fn parse_ret_ty() -> (ret_style, @ty) {
return if self.eat(token::RARROW) {
let lo = self.span.lo;
if self.eat(token::NOT) {
(noreturn, @{id: self.get_id(),
node: ty_bot,
span: mk_sp(lo, self.last_span.hi)})
} else {
(return_val, self.parse_ty(false))
}
} else {
let pos = self.span.lo;
(return_val, @{id: self.get_id(),
node: ty_nil,
span: mk_sp(pos, pos)})
}
}
fn region_from_name(s: Option<ident>) -> @region {
let r = match s {
Some (id) => re_named(id),
None => re_anon
};
@{id: self.get_id(), node: r}
}
// Parses something like "&x"
fn parse_region() -> @region {
self.expect(token::BINOP(token::AND));
match copy self.token {
token::IDENT(sid, _) => {
self.bump();
self.region_from_name(Some(sid))
}
_ => {
self.region_from_name(None)
}
}
}
// Parses something like "&x/" (note the trailing slash)
fn parse_region_with_sep() -> @region {
let name =
match copy self.token {
token::IDENT(sid, _) => {
if self.look_ahead(1u) == token::BINOP(token::SLASH) {
self.bump(); self.bump();
Some(sid)
} else {
None
}
}
_ => { None }
};
self.region_from_name(name)
}
fn parse_ty(colons_before_params: bool) -> @ty {
maybe_whole!(self, nt_ty);
let lo = self.span.lo;
match self.maybe_parse_dollar_mac() {
Some(e) => {
return @{id: self.get_id(),
node: ty_mac(spanned(lo, self.span.hi, e)),
span: mk_sp(lo, self.span.hi)};
}
None => ()
}
let t = if self.token == token::LPAREN {
self.bump();
if self.token == token::RPAREN {
self.bump();
ty_nil
} else {
let mut ts = ~[self.parse_ty(false)];
while self.token == token::COMMA {
self.bump();
vec::push(ts, self.parse_ty(false));
}
let t = if vec::len(ts) == 1u { ts[0].node }
else { ty_tup(ts) };
self.expect(token::RPAREN);
t
}
} else if self.token == token::AT {
self.bump();
ty_box(self.parse_mt())
} else if self.token == token::TILDE {
self.bump();
ty_uniq(self.parse_mt())
} else if self.token == token::BINOP(token::STAR) {
self.bump();
ty_ptr(self.parse_mt())
} else if self.token == token::LBRACE {
let elems = self.parse_unspanned_seq(
token::LBRACE, token::RBRACE,
seq_sep_trailing_allowed(token::COMMA),
|p| p.parse_ty_field());
if vec::len(elems) == 0u {
self.unexpected_last(token::RBRACE);
}
ty_rec(elems)
} else if self.token == token::LBRACKET {
self.expect(token::LBRACKET);
let mut t = ty_vec(self.parse_mt());
// Parse the `* 3` in `[ int * 3 ]`
match self.maybe_parse_fixed_vstore_with_star() {
None => {}
Some(suffix) => {
t = ty_fixed_length(@{
id: self.get_id(),
node: t,
span: mk_sp(lo, self.last_span.hi)
}, suffix)
}
}
self.expect(token::RBRACKET);
t
} else if self.token == token::BINOP(token::AND) {
self.bump();
let region = self.parse_region_with_sep();
let mt = self.parse_mt();
ty_rptr(region, mt)
} else if self.eat_keyword(~"pure") {
self.parse_ty_fn(ast::pure_fn)
} else if self.eat_keyword(~"unsafe") {
self.parse_ty_fn(ast::unsafe_fn)
} else if self.is_keyword(~"fn") {
self.parse_ty_fn(ast::impure_fn)
} else if self.eat_keyword(~"extern") {
self.expect_keyword(~"fn");
ty_fn(proto_bare, ast::impure_fn, @~[], self.parse_ty_fn_decl())
} else if self.token == token::MOD_SEP || is_ident(self.token) {
let path = self.parse_path_with_tps(colons_before_params);
ty_path(path, self.get_id())
} else { self.fatal(~"expected type"); };
let sp = mk_sp(lo, self.last_span.hi);
return @{id: self.get_id(),
node: match self.maybe_parse_fixed_vstore() {
// Consider a fixed vstore suffix (/N or /_)
None => t,
Some(v) => {
ty_fixed_length(@{id: self.get_id(), node:t, span: sp}, v)
} },
span: sp}
}
fn parse_arg_mode() -> mode {
if self.eat(token::BINOP(token::AND)) {
expl(by_mutbl_ref)
} else if self.eat(token::BINOP(token::MINUS)) {
expl(by_move)
} else if self.eat(token::ANDAND) {
expl(by_ref)
} else if self.eat(token::BINOP(token::PLUS)) {
if self.eat(token::BINOP(token::PLUS)) {
expl(by_val)
} else {
expl(by_copy)
}
} else { infer(self.get_id()) }
}
fn parse_capture_item_or(parse_arg_fn: fn(parser) -> arg_or_capture_item)
-> arg_or_capture_item {
fn parse_capture_item(p:parser, is_move: bool) -> capture_item {
let sp = mk_sp(p.span.lo, p.span.hi);
let ident = p.parse_ident();
@{id: p.get_id(), is_move: is_move, name: ident, span: sp}
}
if self.eat_keyword(~"move") {
either::Right(parse_capture_item(self, true))
} else if self.eat_keyword(~"copy") {
either::Right(parse_capture_item(self, false))
} else {
parse_arg_fn(self)
}
}
// This version of parse arg doesn't necessarily require
// identifier names.
fn parse_arg_general(require_name: bool) -> arg {
let m = self.parse_arg_mode();
let i = if require_name {
let name = self.parse_value_ident();
self.expect(token::COLON);
name
} else {
if is_plain_ident(self.token)
&& self.look_ahead(1u) == token::COLON {
let name = self.parse_value_ident();
self.bump();
name
} else { token::special_idents::invalid }
};
let t = self.parse_ty(false);
{mode: m, ty: t, ident: i, id: self.get_id()}
}
fn parse_arg() -> arg_or_capture_item {
either::Left(self.parse_arg_general(true))
}
fn parse_arg_or_capture_item() -> arg_or_capture_item {
self.parse_capture_item_or(|p| p.parse_arg())
}
fn parse_fn_block_arg() -> arg_or_capture_item {
do self.parse_capture_item_or |p| {
let m = p.parse_arg_mode();
let i = p.parse_value_ident();
let t = if p.eat(token::COLON) {
p.parse_ty(false)
} else {
@{id: p.get_id(),
node: ty_infer,
span: mk_sp(p.span.lo, p.span.hi)}
};
either::Left({mode: m, ty: t, ident: i, id: p.get_id()})
}
}
fn maybe_parse_dollar_mac() -> Option<mac_> {
match copy self.token {
token::DOLLAR => {
let lo = self.span.lo;
self.bump();
match copy self.token {
token::LIT_INT_UNSUFFIXED(num) => {
self.bump();
Some(mac_var(num as uint))
}
token::LPAREN => {
self.bump();
let e = self.parse_expr();
self.expect(token::RPAREN);
let hi = self.last_span.hi;
Some(mac_aq(mk_sp(lo,hi), e))
}
_ => {
self.fatal(~"expected `(` or unsuffixed integer literal");
}
}
}
_ => None
}
}
fn maybe_parse_fixed_vstore() -> Option<Option<uint>> {
if self.token == token::BINOP(token::SLASH) {
self.bump();
match copy self.token {
token::UNDERSCORE => {
self.bump(); Some(None)
}
token::LIT_INT_UNSUFFIXED(i) if i >= 0i64 => {
self.bump(); Some(Some(i as uint))
}
_ => None
}
} else {
None
}
}
fn maybe_parse_fixed_vstore_with_star() -> Option<Option<uint>> {
if self.eat(token::BINOP(token::STAR)) {
match copy self.token {
token::UNDERSCORE => {
self.bump(); Some(None)
}
token::LIT_INT_UNSUFFIXED(i) if i >= 0i64 => {
self.bump(); Some(Some(i as uint))
}
_ => None
}
} else {
None
}
}
fn lit_from_token(tok: token::token) -> lit_ {
match tok {
token::LIT_INT(i, it) => lit_int(i, it),
token::LIT_UINT(u, ut) => lit_uint(u, ut),
token::LIT_INT_UNSUFFIXED(i) => lit_int_unsuffixed(i),
token::LIT_FLOAT(s, ft) => lit_float(self.id_to_str(s), ft),
token::LIT_STR(s) => lit_str(self.id_to_str(s)),
token::LPAREN => { self.expect(token::RPAREN); lit_nil },
_ => { self.unexpected_last(tok); }
}
}
fn parse_lit() -> lit {
let lo = self.span.lo;
let lit = if self.eat_keyword(~"true") {
lit_bool(true)
} else if self.eat_keyword(~"false") {
lit_bool(false)
} else {
let tok = self.token;
self.bump();
self.lit_from_token(tok)
};
return {node: lit, span: mk_sp(lo, self.last_span.hi)};
}
fn parse_path_without_tps() -> @path {
self.parse_path_without_tps_(|p| p.parse_ident(),
|p| p.parse_ident())
}
fn parse_path_without_tps_(
parse_ident: fn(parser) -> ident,
parse_last_ident: fn(parser) -> ident) -> @path {
maybe_whole!(self, nt_path);
let lo = self.span.lo;
let global = self.eat(token::MOD_SEP);
let mut ids = ~[];
loop {
let is_not_last =
self.look_ahead(2u) != token::LT
&& self.look_ahead(1u) == token::MOD_SEP;
if is_not_last {
vec::push(ids, parse_ident(self));
self.expect(token::MOD_SEP);
} else {
vec::push(ids, parse_last_ident(self));
break;
}
}
@{span: mk_sp(lo, self.last_span.hi), global: global,
idents: ids, rp: None, types: ~[]}
}
fn parse_value_path() -> @path {
self.parse_path_without_tps_(|p| p.parse_ident(),
|p| p.parse_value_ident())
}
fn parse_path_with_tps(colons: bool) -> @path {
debug!("parse_path_with_tps(colons=%b)", colons);
maybe_whole!(self, nt_path);
let lo = self.span.lo;
let path = self.parse_path_without_tps();
if colons && !self.eat(token::MOD_SEP) {
return path;
}
// Parse the region parameter, if any, which will
// be written "foo/&x"
let rp = {
// Hack: avoid parsing vstores like /@ and /~. This is painful
// because the notation for region bounds and the notation for
// vstores is... um... the same. I guess that's my fault. This
// is still not ideal as for &str we end up parsing more than we
// ought to and have to sort it out later.
if self.token == token::BINOP(token::SLASH)
&& self.look_ahead(1u) == token::BINOP(token::AND) {
self.expect(token::BINOP(token::SLASH));
Some(self.parse_region())
} else {
None
}
};
// Parse any type parameters which may appear:
let tps = {
if self.token == token::LT {
self.parse_seq_lt_gt(Some(token::COMMA),
|p| p.parse_ty(false))
} else {
{node: ~[], span: path.span}
}
};
return @{span: mk_sp(lo, tps.span.hi),
rp: rp,
types: tps.node,.. *path};
}
fn parse_mutability() -> mutability {
if self.eat_keyword(~"mut") {
m_mutbl
} else if self.eat_keyword(~"const") {
m_const
} else {
m_imm
}
}
fn parse_field(sep: token::token) -> field {
let lo = self.span.lo;
let m = self.parse_mutability();
let i = self.parse_ident();
self.expect(sep);
let e = self.parse_expr();
return spanned(lo, e.span.hi, {mutbl: m, ident: i, expr: e});
}
fn mk_expr(lo: uint, hi: uint, +node: expr_) -> @expr {
return @{id: self.get_id(), callee_id: self.get_id(),
node: node, span: mk_sp(lo, hi)};
}
fn mk_mac_expr(lo: uint, hi: uint, m: mac_) -> @expr {
return @{id: self.get_id(),
callee_id: self.get_id(),
node: expr_mac({node: m, span: mk_sp(lo, hi)}),
span: mk_sp(lo, hi)};
}
fn mk_lit_u32(i: u32) -> @expr {
let span = self.span;
let lv_lit = @{node: lit_uint(i as u64, ty_u32),
span: span};
return @{id: self.get_id(), callee_id: self.get_id(),
node: expr_lit(lv_lit), span: span};
}
fn mk_pexpr(lo: uint, hi: uint, node: expr_) -> pexpr {
return pexpr(self.mk_expr(lo, hi, node));
}
fn to_expr(e: pexpr) -> @expr {
match e.node {
expr_tup(es) if vec::len(es) == 1u => es[0u],
_ => *e
}
}
fn parse_bottom_expr() -> pexpr {
maybe_whole_expr!(self);
let lo = self.span.lo;
let mut hi = self.span.hi;
let mut ex: expr_;
match self.maybe_parse_dollar_mac() {
Some(x) => return pexpr(self.mk_mac_expr(lo, self.span.hi, x)),
_ => ()
}
if self.token == token::LPAREN {
self.bump();
if self.token == token::RPAREN {
hi = self.span.hi;
self.bump();
let lit = @spanned(lo, hi, lit_nil);
return self.mk_pexpr(lo, hi, expr_lit(lit));
}
let mut es = ~[self.parse_expr()];
while self.token == token::COMMA {
self.bump(); vec::push(es, self.parse_expr());
}
hi = self.span.hi;
self.expect(token::RPAREN);
// Note: we retain the expr_tup() even for simple
// parenthesized expressions, but only for a "little while".
// This is so that wrappers around parse_bottom_expr()
// can tell whether the expression was parenthesized or not,
// which affects expr_is_complete().
return self.mk_pexpr(lo, hi, expr_tup(es));
} else if self.token == token::LBRACE {
if self.looking_at_record_literal() {
ex = self.parse_record_literal();
hi = self.span.hi;
} else {
self.bump();
let blk = self.parse_block_tail(lo, default_blk);
return self.mk_pexpr(blk.span.lo, blk.span.hi,
expr_block(blk));
}
} else if token::is_bar(self.token) {
return pexpr(self.parse_lambda_expr());
} else if self.eat_keyword(~"if") {
return pexpr(self.parse_if_expr());
} else if self.eat_keyword(~"for") {
return pexpr(self.parse_sugary_call_expr(~"for", expr_loop_body));
} else if self.eat_keyword(~"do") {
return pexpr(self.parse_sugary_call_expr(~"do", expr_do_body));
} else if self.eat_keyword(~"while") {
return pexpr(self.parse_while_expr());
} else if self.eat_keyword(~"loop") {
return pexpr(self.parse_loop_expr());
} else if self.eat_keyword(~"match") {
return pexpr(self.parse_alt_expr());
} else if self.eat_keyword(~"fn") {
let proto = self.parse_fn_ty_proto();
match proto {
proto_bare => self.fatal(~"fn expr are deprecated, use fn@"),
_ => { /* fallthrough */ }
}
return pexpr(self.parse_fn_expr(proto));
} else if self.eat_keyword(~"unchecked") {
return pexpr(self.parse_block_expr(lo, unchecked_blk));
} else if self.eat_keyword(~"unsafe") {
return pexpr(self.parse_block_expr(lo, unsafe_blk));
} else if self.token == token::LBRACKET {
self.bump();
let mutbl = self.parse_mutability();
if self.token == token::RBRACKET {
// Empty vector.
self.bump();
ex = expr_vec(~[], mutbl);
} else {
// Nonempty vector.
let first_expr = self.parse_expr();
if self.token == token::COMMA &&
self.look_ahead(1) == token::DOTDOT {
// Repeating vector syntax: [ 0, ..512 ]
self.bump();
self.bump();
let count = self.parse_expr();
self.expect(token::RBRACKET);
ex = expr_repeat(first_expr, count, mutbl);
} else if self.token == token::COMMA {
// Vector with two or more elements.
self.bump();
let remaining_exprs =
self.parse_seq_to_end(token::RBRACKET,
seq_sep_trailing_allowed(token::COMMA),
|p| p.parse_expr());
ex = expr_vec(~[first_expr] + remaining_exprs, mutbl);
} else {
// Vector with one element.
self.expect(token::RBRACKET);
ex = expr_vec(~[first_expr], mutbl);
}
}
hi = self.span.hi;
} else if self.token == token::ELLIPSIS {
self.bump();
return pexpr(self.mk_mac_expr(lo, self.span.hi, mac_ellipsis));
} else if self.token == token::POUND {
let ex_ext = self.parse_syntax_ext();
hi = ex_ext.span.hi;
ex = ex_ext.node;
} else if self.eat_keyword(~"fail") {
if can_begin_expr(self.token) {
let e = self.parse_expr();
hi = e.span.hi;
ex = expr_fail(Some(e));
} else { ex = expr_fail(None); }
} else if self.eat_keyword(~"log") {
self.expect(token::LPAREN);
let lvl = self.parse_expr();
self.expect(token::COMMA);
let e = self.parse_expr();
ex = expr_log(ast::other, lvl, e);
hi = self.span.hi;
self.expect(token::RPAREN);
} else if self.eat_keyword(~"assert") {
let e = self.parse_expr();
ex = expr_assert(e);
hi = e.span.hi;
} else if self.eat_keyword(~"return") {
if can_begin_expr(self.token) {
let e = self.parse_expr();
hi = e.span.hi;
ex = expr_ret(Some(e));
} else { ex = expr_ret(None); }
} else if self.eat_keyword(~"break") {
if is_ident(self.token) {
ex = expr_break(Some(self.parse_ident()));
} else {
ex = expr_break(None);
}
hi = self.span.hi;
} else if self.eat_keyword(~"copy") {
let e = self.parse_expr();
ex = expr_copy(e);
hi = e.span.hi;
} else if self.eat_keyword(~"move") {
let e = self.parse_expr();
ex = expr_unary_move(e);
hi = e.span.hi;
} else if self.token == token::MOD_SEP ||
is_ident(self.token) && !self.is_keyword(~"true") &&
!self.is_keyword(~"false") {
let pth = self.parse_path_with_tps(true);
/* `!`, as an operator, is prefix, so we know this isn't that */
if self.token == token::NOT {
self.bump();
let tts = self.parse_unspanned_seq(
token::LPAREN, token::RPAREN, seq_sep_none(),
|p| p.parse_token_tree());
let hi = self.span.hi;
return pexpr(self.mk_mac_expr(
lo, hi, mac_invoc_tt(pth, tts)));
} else if self.token == token::LBRACE {
// This might be a struct literal.
if self.looking_at_record_literal() {
// It's a struct literal.
self.bump();
let mut fields = ~[];
let mut base = None;
vec::push(fields, self.parse_field(token::COLON));
while self.token != token::RBRACE {
if self.try_parse_obsolete_with() {
break;
}
self.expect(token::COMMA);
if self.eat(token::DOTDOT) {
base = Some(self.parse_expr());
break;
}
if self.token == token::RBRACE {
// Accept an optional trailing comma.
break;
}
vec::push(fields, self.parse_field(token::COLON));
}
hi = pth.span.hi;
self.expect(token::RBRACE);
ex = expr_struct(pth, fields, base);
return self.mk_pexpr(lo, hi, ex);
}
}
hi = pth.span.hi;
ex = expr_path(pth);
} else {
let lit = self.parse_lit();
hi = lit.span.hi;
ex = expr_lit(@lit);
}
// Vstore is legal following expr_lit(lit_str(...)) and expr_vec(...)
// only.
match ex {
expr_lit(@{node: lit_str(_), span: _}) |
expr_vec(_, _) => match self.maybe_parse_fixed_vstore() {
None => (),
Some(v) => {
hi = self.span.hi;
ex = expr_vstore(self.mk_expr(lo, hi, ex), vstore_fixed(v));
}
},
_ => ()
}
return self.mk_pexpr(lo, hi, ex);
}
fn parse_block_expr(lo: uint, blk_mode: blk_check_mode) -> @expr {
self.expect(token::LBRACE);
let blk = self.parse_block_tail(lo, blk_mode);
return self.mk_expr(blk.span.lo, blk.span.hi, expr_block(blk));
}
fn parse_syntax_ext() -> @expr {
let lo = self.span.lo;
self.expect(token::POUND);
return self.parse_syntax_ext_naked(lo);
}
fn parse_syntax_ext_naked(lo: uint) -> @expr {
match self.token {
token::IDENT(_, _) => (),
_ => self.fatal(~"expected a syntax expander name")
}
let pth = self.parse_path_without_tps();
//temporary for a backwards-compatible cycle:
let sep = seq_sep_trailing_disallowed(token::COMMA);
let mut e = None;
if (self.token == token::LPAREN || self.token == token::LBRACKET) {
let lo = self.span.lo;
let es =
if self.token == token::LPAREN {
self.parse_unspanned_seq(token::LPAREN, token::RPAREN,
sep, |p| p.parse_expr())
} else {
self.parse_unspanned_seq(token::LBRACKET, token::RBRACKET,
sep, |p| p.parse_expr())
};
let hi = self.span.hi;
e = Some(self.mk_expr(lo, hi, expr_vec(es, m_imm)));
}
let mut b = None;
if self.token == token::LBRACE {
self.bump();
let lo = self.span.lo;
let mut depth = 1u;
while (depth > 0u) {
match (self.token) {
token::LBRACE => depth += 1u,
token::RBRACE => depth -= 1u,
token::EOF => self.fatal(~"unexpected EOF in macro body"),
_ => ()
}
self.bump();
}
let hi = self.last_span.lo;
b = Some({span: mk_sp(lo,hi)});
}
return self.mk_mac_expr(lo, self.span.hi, mac_invoc(pth, e, b));
}
fn parse_dot_or_call_expr() -> pexpr {
let b = self.parse_bottom_expr();
self.parse_dot_or_call_expr_with(b)
}
fn permits_call() -> bool {
return self.restriction != RESTRICT_NO_CALL_EXPRS;
}
fn parse_dot_or_call_expr_with(e0: pexpr) -> pexpr {
let mut e = e0;
let lo = e.span.lo;
let mut hi;
loop {
// expr.f
if self.eat(token::DOT) {
match copy self.token {
token::IDENT(i, _) => {
hi = self.span.hi;
self.bump();
let tys = if self.eat(token::MOD_SEP) {
self.expect(token::LT);
self.parse_seq_to_gt(Some(token::COMMA),
|p| p.parse_ty(false))
} else { ~[] };
e = self.mk_pexpr(lo, hi, expr_field(self.to_expr(e), i,
tys));
}
_ => self.unexpected()
}
loop;
}
if self.expr_is_complete(e) { break; }
match copy self.token {
// expr(...)
token::LPAREN if self.permits_call() => {
let es = self.parse_unspanned_seq(
token::LPAREN, token::RPAREN,
seq_sep_trailing_disallowed(token::COMMA),
|p| p.parse_expr());
hi = self.span.hi;
let nd = expr_call(self.to_expr(e), es, false);
e = self.mk_pexpr(lo, hi, nd);
}
// expr[...]
token::LBRACKET => {
self.bump();
let ix = self.parse_expr();
hi = ix.span.hi;
self.expect(token::RBRACKET);
e = self.mk_pexpr(lo, hi, expr_index(self.to_expr(e), ix));
}
_ => return e
}
}
return e;
}
fn parse_sep_and_zerok() -> (Option<token::token>, bool) {
if self.token == token::BINOP(token::STAR)
|| self.token == token::BINOP(token::PLUS) {
let zerok = self.token == token::BINOP(token::STAR);
self.bump();
return (None, zerok);
} else {
let sep = self.token;
self.bump();
if self.token == token::BINOP(token::STAR)
|| self.token == token::BINOP(token::PLUS) {
let zerok = self.token == token::BINOP(token::STAR);
self.bump();
return (Some(sep), zerok);
} else {
self.fatal(~"expected `*` or `+`");
}
}
}
fn parse_token_tree() -> token_tree {
maybe_whole!(deref self, nt_tt);
fn parse_tt_tok(p: parser, delim_ok: bool) -> token_tree {
match p.token {
token::RPAREN | token::RBRACE | token::RBRACKET
if !delim_ok => {
p.fatal(~"incorrect close delimiter: `"
+ token_to_str(p.reader, p.token) + ~"`");
}
token::EOF => {
p.fatal(~"file ended in the middle of a macro invocation");
}
/* we ought to allow different depths of unquotation */
token::DOLLAR if p.quote_depth > 0u => {
p.bump();
let sp = p.span;
if p.token == token::LPAREN {
let seq = p.parse_seq(token::LPAREN, token::RPAREN,
seq_sep_none(),
|p| p.parse_token_tree());
let (s, z) = p.parse_sep_and_zerok();
return tt_seq(mk_sp(sp.lo ,p.span.hi), seq.node, s, z);
} else {
return tt_nonterminal(sp, p.parse_ident());
}
}
_ => { /* ok */ }
}
let res = tt_tok(p.span, p.token);
p.bump();
return res;
}
return match self.token {
token::LPAREN | token::LBRACE | token::LBRACKET => {
let ket = token::flip_delimiter(self.token);
tt_delim(vec::append(
~[parse_tt_tok(self, true)],
vec::append(
self.parse_seq_to_before_end(
ket, seq_sep_none(),
|p| p.parse_token_tree()),
~[parse_tt_tok(self, true)])))
}
_ => parse_tt_tok(self, false)
};
}
fn parse_matchers() -> ~[matcher] {
// unification of matchers and token_trees would vastly improve
// the interpolation of matchers
maybe_whole!(self, nt_matchers);
let name_idx = @mut 0u;
return match self.token {
token::LBRACE | token::LPAREN | token::LBRACKET => {
self.parse_matcher_subseq(name_idx, copy self.token,
token::flip_delimiter(self.token))
}
_ => self.fatal(~"expected open delimiter")
}
}
// This goofy function is necessary to correctly match parens in matchers.
// Otherwise, `$( ( )` would be a valid matcher, and `$( () )` would be
// invalid. It's similar to common::parse_seq.
fn parse_matcher_subseq(name_idx: @mut uint, bra: token::token,
ket: token::token) -> ~[matcher] {
let mut ret_val = ~[];
let mut lparens = 0u;
self.expect(bra);
while self.token != ket || lparens > 0u {
if self.token == token::LPAREN { lparens += 1u; }
if self.token == token::RPAREN { lparens -= 1u; }
vec::push(ret_val, self.parse_matcher(name_idx));
}
self.bump();
return ret_val;
}
fn parse_matcher(name_idx: @mut uint) -> matcher {
let lo = self.span.lo;
let m = if self.token == token::DOLLAR {
self.bump();
if self.token == token::LPAREN {
let name_idx_lo = *name_idx;
let ms = self.parse_matcher_subseq(name_idx, token::LPAREN,
token::RPAREN);
if ms.len() == 0u {
self.fatal(~"repetition body must be nonempty");
}
let (sep, zerok) = self.parse_sep_and_zerok();
match_seq(ms, sep, zerok, name_idx_lo, *name_idx)
} else {
let bound_to = self.parse_ident();
self.expect(token::COLON);
let nt_name = self.parse_ident();
let m = match_nonterminal(bound_to, nt_name, *name_idx);
*name_idx += 1u;
m
}
} else {
let m = match_tok(self.token);
self.bump();
m
};
return spanned(lo, self.span.hi, m);
}
fn parse_prefix_expr() -> pexpr {
let lo = self.span.lo;
let mut hi;
let mut ex;
match copy self.token {
token::NOT => {
self.bump();
let e = self.to_expr(self.parse_prefix_expr());
hi = e.span.hi;
self.get_id(); // see ast_util::op_expr_callee_id
ex = expr_unary(not, e);
}
token::BINOP(b) => {
match b {
token::MINUS => {
self.bump();
let e = self.to_expr(self.parse_prefix_expr());
hi = e.span.hi;
self.get_id(); // see ast_util::op_expr_callee_id
ex = expr_unary(neg, e);
}
token::STAR => {
self.bump();
let e = self.to_expr(self.parse_prefix_expr());
hi = e.span.hi;
ex = expr_unary(deref, e);
}
token::AND => {
self.bump();
let m = self.parse_mutability();
let e = self.to_expr(self.parse_prefix_expr());
hi = e.span.hi;
// HACK: turn &[...] into a &-evec
ex = match e.node {
expr_vec(*) | expr_lit(@{node: lit_str(_), span: _})
if m == m_imm => {
expr_vstore(e, vstore_slice(self.region_from_name(None)))
}
_ => expr_addr_of(m, e)
};
}
_ => return self.parse_dot_or_call_expr()
}
}
token::AT => {
self.bump();
let m = self.parse_mutability();
let e = self.to_expr(self.parse_prefix_expr());
hi = e.span.hi;
// HACK: turn @[...] into a @-evec
ex = match e.node {
expr_vec(*) | expr_lit(@{node: lit_str(_), span: _})
if m == m_imm => expr_vstore(e, vstore_box),
_ => expr_unary(box(m), e)
};
}
token::TILDE => {
self.bump();
let m = self.parse_mutability();
let e = self.to_expr(self.parse_prefix_expr());
hi = e.span.hi;
// HACK: turn ~[...] into a ~-evec
ex = match e.node {
expr_vec(*) | expr_lit(@{node: lit_str(_), span: _})
if m == m_imm => expr_vstore(e, vstore_uniq),
_ => expr_unary(uniq(m), e)
};
}
_ => return self.parse_dot_or_call_expr()
}
return self.mk_pexpr(lo, hi, ex);
}
fn parse_binops() -> @expr {
return self.parse_more_binops(self.parse_prefix_expr(), 0u);
}
fn parse_more_binops(plhs: pexpr, min_prec: uint) ->
@expr {
let lhs = self.to_expr(plhs);
if self.expr_is_complete(plhs) { return lhs; }
let peeked = self.token;
if peeked == token::BINOP(token::OR) &&
(self.restriction == RESTRICT_NO_BAR_OP ||
self.restriction == RESTRICT_NO_BAR_OR_DOUBLEBAR_OP) {
return lhs;
}
if peeked == token::OROR &&
self.restriction == RESTRICT_NO_BAR_OR_DOUBLEBAR_OP {
return lhs;
}
let cur_opt = token_to_binop(peeked);
match cur_opt {
Some(cur_op) => {
let cur_prec = operator_prec(cur_op);
if cur_prec > min_prec {
self.bump();
let expr = self.parse_prefix_expr();
let rhs = self.parse_more_binops(expr, cur_prec);
self.get_id(); // see ast_util::op_expr_callee_id
let bin = self.mk_pexpr(lhs.span.lo, rhs.span.hi,
expr_binary(cur_op, lhs, rhs));
return self.parse_more_binops(bin, min_prec);
}
}
_ => ()
}
if as_prec > min_prec && self.eat_keyword(~"as") {
let rhs = self.parse_ty(true);
let _as =
self.mk_pexpr(lhs.span.lo, rhs.span.hi, expr_cast(lhs, rhs));
return self.parse_more_binops(_as, min_prec);
}
return lhs;
}
fn parse_assign_expr() -> @expr {
let lo = self.span.lo;
let lhs = self.parse_binops();
match copy self.token {
token::EQ => {
self.bump();
let rhs = self.parse_expr();
return self.mk_expr(lo, rhs.span.hi, expr_assign(lhs, rhs));
}
token::BINOPEQ(op) => {
self.bump();
let rhs = self.parse_expr();
let mut aop;
match op {
token::PLUS => aop = add,
token::MINUS => aop = subtract,
token::STAR => aop = mul,
token::SLASH => aop = div,
token::PERCENT => aop = rem,
token::CARET => aop = bitxor,
token::AND => aop = bitand,
token::OR => aop = bitor,
token::SHL => aop = shl,
token::SHR => aop = shr
}
self.get_id(); // see ast_util::op_expr_callee_id
return self.mk_expr(lo, rhs.span.hi,
expr_assign_op(aop, lhs, rhs));
}
token::LARROW => {
self.bump();
let rhs = self.parse_expr();
return self.mk_expr(lo, rhs.span.hi, expr_move(lhs, rhs));
}
token::DARROW => {
self.bump();
let rhs = self.parse_expr();
return self.mk_expr(lo, rhs.span.hi, expr_swap(lhs, rhs));
}
_ => {/* fall through */ }
}
return lhs;
}
fn parse_if_expr() -> @expr {
let lo = self.last_span.lo;
let cond = self.parse_expr();
let thn = self.parse_block();
let mut els: Option<@expr> = None;
let mut hi = thn.span.hi;
if self.eat_keyword(~"else") {
let elexpr = self.parse_else_expr();
els = Some(elexpr);
hi = elexpr.span.hi;
}
let q = {cond: cond, then: thn, els: els, lo: lo, hi: hi};
return self.mk_expr(q.lo, q.hi, expr_if(q.cond, q.then, q.els));
}
fn parse_fn_expr(proto: proto) -> @expr {
let lo = self.last_span.lo;
// if we want to allow fn expression argument types to be inferred in
// the future, just have to change parse_arg to parse_fn_block_arg.
let (decl, capture_clause) =
self.parse_fn_decl(|p| p.parse_arg_or_capture_item());
let body = self.parse_block();
return self.mk_expr(lo, body.span.hi,
expr_fn(proto, decl, body, capture_clause));
}
// `|args| { ... }` like in `do` expressions
fn parse_lambda_block_expr() -> @expr {
self.parse_lambda_expr_(
|| {
match self.token {
token::BINOP(token::OR) | token::OROR => {
self.parse_fn_block_decl()
}
_ => {
// No argument list - `do foo {`
({
{
inputs: ~[],
output: @{
id: self.get_id(),
node: ty_infer,
span: self.span
},
cf: return_val
}
},
@~[])
}
}
},
|| {
let blk = self.parse_block();
self.mk_expr(blk.span.lo, blk.span.hi, expr_block(blk))
})
}
// `|args| expr`
fn parse_lambda_expr() -> @expr {
self.parse_lambda_expr_(|| self.parse_fn_block_decl(),
|| self.parse_expr())
}
fn parse_lambda_expr_(parse_decl: fn&() -> (fn_decl, capture_clause),
parse_body: fn&() -> @expr) -> @expr {
let lo = self.last_span.lo;
let (decl, captures) = parse_decl();
let body = parse_body();
let fakeblock = {view_items: ~[], stmts: ~[], expr: Some(body),
id: self.get_id(), rules: default_blk};
let fakeblock = spanned(body.span.lo, body.span.hi,
fakeblock);
return self.mk_expr(lo, body.span.hi,
expr_fn_block(decl, fakeblock, captures));
}
fn parse_else_expr() -> @expr {
if self.eat_keyword(~"if") {
return self.parse_if_expr();
} else {
let blk = self.parse_block();
return self.mk_expr(blk.span.lo, blk.span.hi, expr_block(blk));
}
}
fn parse_sugary_call_expr(keyword: ~str,
ctor: fn(+@expr) -> expr_) -> @expr {
let lo = self.last_span;
// Parse the callee `foo` in
// for foo || {
// for foo.bar || {
// etc, or the portion of the call expression before the lambda in
// for foo() || {
// or
// for foo.bar(a) || {
// Turn on the restriction to stop at | or || so we can parse
// them as the lambda arguments
let e = self.parse_expr_res(RESTRICT_NO_BAR_OR_DOUBLEBAR_OP);
match e.node {
expr_call(f, args, false) => {
let block = self.parse_lambda_block_expr();
let last_arg = self.mk_expr(block.span.lo, block.span.hi,
ctor(block));
let args = vec::append(args, ~[last_arg]);
@{node: expr_call(f, args, true),
.. *e}
}
expr_path(*) | expr_field(*) | expr_call(*) => {
let block = self.parse_lambda_block_expr();
let last_arg = self.mk_expr(block.span.lo, block.span.hi,
ctor(block));
self.mk_expr(lo.lo, last_arg.span.hi,
expr_call(e, ~[last_arg], true))
}
_ => {
// There may be other types of expressions that can
// represent the callee in `for` and `do` expressions
// but they aren't represented by tests
debug!("sugary call on %?", e.node);
self.span_fatal(
lo, fmt!("`%s` must be followed by a block call", keyword));
}
}
}
fn parse_while_expr() -> @expr {
let lo = self.last_span.lo;
let cond = self.parse_expr();
let body = self.parse_block_no_value();
let mut hi = body.span.hi;
return self.mk_expr(lo, hi, expr_while(cond, body));
}
fn parse_loop_expr() -> @expr {
// loop headers look like 'loop {' or 'loop unsafe {'
let is_loop_header =
self.token == token::LBRACE
|| (is_ident(copy self.token)
&& self.look_ahead(1) == token::LBRACE);
// labeled loop headers look like 'loop foo: {'
let is_labeled_loop_header =
is_ident(self.token)
&& !self.is_any_keyword(copy self.token)
&& self.look_ahead(1) == token::COLON;
if is_loop_header || is_labeled_loop_header {
// This is a loop body
let opt_ident;
if is_labeled_loop_header {
opt_ident = Some(self.parse_ident());
self.expect(token::COLON);
} else {
opt_ident = None;
}
let lo = self.last_span.lo;
let body = self.parse_block_no_value();
let mut hi = body.span.hi;
return self.mk_expr(lo, hi, expr_loop(body, opt_ident));
} else {
// This is a 'continue' expression
let lo = self.span.lo;
let ex = if is_ident(self.token) {
expr_again(Some(self.parse_ident()))
} else {
expr_again(None)
};
let hi = self.span.hi;
return self.mk_expr(lo, hi, ex);
}
}
// For distingishing between record literals and blocks
fn looking_at_record_literal() -> bool {
let lookahead = self.look_ahead(1);
self.token == token::LBRACE &&
(self.token_is_keyword(~"mut", lookahead) ||
(is_plain_ident(lookahead) &&
self.look_ahead(2) == token::COLON))
}
fn parse_record_literal() -> expr_ {
self.expect(token::LBRACE);
let mut fields = ~[self.parse_field(token::COLON)];
let mut base = None;
while self.token != token::RBRACE {
if self.token == token::COMMA
&& self.look_ahead(1) == token::DOTDOT {
self.bump();
self.bump();
base = Some(self.parse_expr()); break;
}
if self.try_parse_obsolete_with() {
break;
}
self.expect(token::COMMA);
if self.token == token::RBRACE {
// record ends by an optional trailing comma
break;
}
vec::push(fields, self.parse_field(token::COLON));
}
self.expect(token::RBRACE);
return expr_rec(fields, base);
}
fn parse_alt_expr() -> @expr {
let lo = self.last_span.lo;
let discriminant = self.parse_expr();
self.expect(token::LBRACE);
let mut arms: ~[arm] = ~[];
while self.token != token::RBRACE {
let pats = self.parse_pats();
let mut guard = None;
if self.eat_keyword(~"if") { guard = Some(self.parse_expr()); }
self.expect(token::FAT_ARROW);
let expr = self.parse_expr_res(RESTRICT_STMT_EXPR);
let require_comma =
!classify::expr_is_simple_block(expr)
&& self.token != token::RBRACE;
if require_comma {
self.expect(token::COMMA);
} else {
self.eat(token::COMMA);
}
let blk = {node: {view_items: ~[],
stmts: ~[],
expr: Some(expr),
id: self.get_id(),
rules: default_blk},
span: expr.span};
vec::push(arms, {pats: pats, guard: guard, body: blk});
}
let mut hi = self.span.hi;
self.bump();
return self.mk_expr(lo, hi, expr_match(discriminant, arms));
}
fn parse_expr() -> @expr {
return self.parse_expr_res(UNRESTRICTED);
}
fn parse_expr_res(r: restriction) -> @expr {
let old = self.restriction;
self.restriction = r;
let e = self.parse_assign_expr();
self.restriction = old;
return e;
}
fn parse_initializer() -> Option<initializer> {
match self.token {
token::EQ => {
self.bump();
return Some({op: init_assign, expr: self.parse_expr()});
}
token::LARROW => {
self.bump();
return Some({op: init_move, expr: self.parse_expr()});
}
// Now that the the channel is the first argument to receive,
// combining it with an initializer doesn't really make sense.
// case (token::RECV) {
// self.bump();
// return Some(rec(op = init_recv,
// expr = self.parse_expr()));
// }
_ => {
return None;
}
}
}
fn parse_pats() -> ~[@pat] {
let mut pats = ~[];
loop {
vec::push(pats, self.parse_pat(true));
if self.token == token::BINOP(token::OR) { self.bump(); }
else { return pats; }
};
}
fn parse_pat_fields(refutable: bool) -> (~[ast::field_pat], bool) {
let mut fields = ~[];
let mut etc = false;
let mut first = true;
while self.token != token::RBRACE {
if first { first = false; }
else { self.expect(token::COMMA); }
if self.token == token::UNDERSCORE {
self.bump();
if self.token != token::RBRACE {
self.fatal(~"expected `}`, found `" +
token_to_str(self.reader, self.token) +
~"`");
}
etc = true;
break;
}
let lo1 = self.last_span.lo;
let fieldname = if self.look_ahead(1u) == token::COLON {
self.parse_ident()
} else {
self.parse_value_ident()
};
let hi1 = self.last_span.lo;
let fieldpath = ast_util::ident_to_path(mk_sp(lo1, hi1),
fieldname);
let mut subpat;
if self.token == token::COLON {
self.bump();
subpat = self.parse_pat(refutable);
} else {
subpat = @{
id: self.get_id(),
node: pat_ident(bind_by_implicit_ref,
fieldpath,
None),
span: self.last_span
};
}
vec::push(fields, {ident: fieldname, pat: subpat});
}
return (fields, etc);
}
fn parse_pat(refutable: bool) -> @pat {
maybe_whole!(self, nt_pat);
let lo = self.span.lo;
let mut hi = self.span.hi;
let mut pat;
match self.token {
token::UNDERSCORE => { self.bump(); pat = pat_wild; }
token::AT => {
self.bump();
let sub = self.parse_pat(refutable);
hi = sub.span.hi;
// HACK: parse @"..." as a literal of a vstore @str
pat = match sub.node {
pat_lit(e@@{
node: expr_lit(@{node: lit_str(_), span: _}), _
}) => {
let vst = @{id: self.get_id(), callee_id: self.get_id(),
node: expr_vstore(e, vstore_box),
span: mk_sp(lo, hi)};
pat_lit(vst)
}
_ => pat_box(sub)
};
}
token::TILDE => {
self.bump();
let sub = self.parse_pat(refutable);
hi = sub.span.hi;
// HACK: parse ~"..." as a literal of a vstore ~str
pat = match sub.node {
pat_lit(e@@{
node: expr_lit(@{node: lit_str(_), span: _}), _
}) => {
let vst = @{id: self.get_id(), callee_id: self.get_id(),
node: expr_vstore(e, vstore_uniq),
span: mk_sp(lo, hi)};
pat_lit(vst)
}
_ => pat_uniq(sub)
};
}
token::BINOP(token::AND) => {
let lo = self.span.lo;
self.bump();
let sub = self.parse_pat(refutable);
hi = sub.span.hi;
// HACK: parse &"..." as a literal of a borrowed str
pat = match sub.node {
pat_lit(e@@{
node: expr_lit(@{node: lit_str(_), span: _}), _
}) => {
let vst = @{id: self.get_id(), callee_id: self.get_id(),
node: expr_vstore(e,
vstore_slice(self.region_from_name(None))),
span: mk_sp(lo, hi)};
pat_lit(vst)
}
_ => pat_region(sub)
};
}
token::LBRACE => {
self.bump();
let (fields, etc) = self.parse_pat_fields(refutable);
hi = self.span.hi;
self.bump();
pat = pat_rec(fields, etc);
}
token::LPAREN => {
self.bump();
if self.token == token::RPAREN {
hi = self.span.hi;
self.bump();
let lit = @{node: lit_nil, span: mk_sp(lo, hi)};
let expr = self.mk_expr(lo, hi, expr_lit(lit));
pat = pat_lit(expr);
} else {
let mut fields = ~[self.parse_pat(refutable)];
while self.token == token::COMMA {
self.bump();
vec::push(fields, self.parse_pat(refutable));
}
if vec::len(fields) == 1u { self.expect(token::COMMA); }
hi = self.span.hi;
self.expect(token::RPAREN);
pat = pat_tup(fields);
}
}
tok => {
if !is_ident_or_path(tok)
|| self.is_keyword(~"true")
|| self.is_keyword(~"false")
{
let val = self.parse_expr_res(RESTRICT_NO_BAR_OP);
if self.eat(token::DOTDOT) {
let end = self.parse_expr_res(RESTRICT_NO_BAR_OP);
pat = pat_range(val, end);
} else {
pat = pat_lit(val);
}
} else if self.eat_keyword(~"ref") {
let mutbl = self.parse_mutability();
pat = self.parse_pat_ident(refutable, bind_by_ref(mutbl));
} else if self.eat_keyword(~"copy") {
pat = self.parse_pat_ident(refutable, bind_by_value);
} else if self.eat_keyword(~"move") {
pat = self.parse_pat_ident(refutable, bind_by_move);
} else if !is_plain_ident(self.token) {
pat = self.parse_enum_variant(refutable);
} else {
let binding_mode;
// XXX: Aren't these two cases deadcode? -- bblum
if self.eat_keyword(~"copy") {
binding_mode = bind_by_value;
} else if self.eat_keyword(~"move") {
binding_mode = bind_by_move;
} else if refutable {
// XXX: Should be bind_by_value, but that's not
// backward compatible.
binding_mode = bind_by_implicit_ref;
} else {
binding_mode = bind_by_value;
}
let cannot_be_enum_or_struct;
match self.look_ahead(1) {
token::LPAREN | token::LBRACKET | token::LT |
token::LBRACE =>
cannot_be_enum_or_struct = false,
_ =>
cannot_be_enum_or_struct = true
}
if is_plain_ident(self.token) && cannot_be_enum_or_struct {
let name = self.parse_value_path();
let sub;
if self.eat(token::AT) {
sub = Some(self.parse_pat(refutable));
} else {
sub = None;
};
pat = pat_ident(binding_mode, name, sub);
} else {
let enum_path = self.parse_path_with_tps(true);
match self.token {
token::LBRACE => {
self.bump();
let (fields, etc) =
self.parse_pat_fields(refutable);
self.bump();
pat = pat_struct(enum_path, fields, etc);
}
_ => {
let mut args: ~[@pat] = ~[];
let mut star_pat = false;
match self.token {
token::LPAREN => match self.look_ahead(1u) {
token::BINOP(token::STAR) => {
// This is a "top constructor only" pat
self.bump(); self.bump();
star_pat = true;
self.expect(token::RPAREN);
}
_ => {
args = self.parse_unspanned_seq(
token::LPAREN, token::RPAREN,
seq_sep_trailing_disallowed
(token::COMMA),
|p| p.parse_pat(refutable));
}
},
_ => ()
}
// at this point, we're not sure whether it's a
// enum or a bind
if star_pat {
pat = pat_enum(enum_path, None);
}
else if vec::is_empty(args) &&
vec::len(enum_path.idents) == 1u {
pat = pat_ident(binding_mode,
enum_path,
None);
}
else {
pat = pat_enum(enum_path, Some(args));
}
}
}
}
}
hi = self.span.hi;
}
}
return @{id: self.get_id(), node: pat, span: mk_sp(lo, hi)};
}
fn parse_pat_ident(refutable: bool,
binding_mode: ast::binding_mode) -> ast::pat_ {
if !is_plain_ident(self.token) {
self.span_fatal(
copy self.last_span,
~"expected identifier, found path");
}
let name = self.parse_value_path();
let sub = if self.eat(token::AT) {
Some(self.parse_pat(refutable))
} else { None };
// just to be friendly, if they write something like
// ref Some(i)
// we end up here with ( as the current token. This shortly
// leads to a parse error. Note that if there is no explicit
// binding mode then we do not end up here, because the lookahead
// will direct us over to parse_enum_variant()
if self.token == token::LPAREN {
self.span_fatal(
copy self.last_span,
~"expected identifier, found enum pattern");
}
pat_ident(binding_mode, name, sub)
}
fn parse_enum_variant(refutable: bool) -> ast::pat_ {
let enum_path = self.parse_path_with_tps(true);
match self.token {
token::LPAREN => {
match self.look_ahead(1u) {
token::BINOP(token::STAR) => { // foo(*)
self.expect(token::LPAREN);
self.expect(token::BINOP(token::STAR));
self.expect(token::RPAREN);
pat_enum(enum_path, None)
}
_ => { // foo(a, ..., z)
let args = self.parse_unspanned_seq(
token::LPAREN, token::RPAREN,
seq_sep_trailing_disallowed(token::COMMA),
|p| p.parse_pat(refutable));
pat_enum(enum_path, Some(args))
}
}
}
_ => { // option::None
pat_enum(enum_path, Some(~[]))
}
}
}
fn parse_local(is_mutbl: bool,
allow_init: bool) -> @local {
let lo = self.span.lo;
let pat = self.parse_pat(false);
let mut ty = @{id: self.get_id(),
node: ty_infer,
span: mk_sp(lo, lo)};
if self.eat(token::COLON) { ty = self.parse_ty(false); }
let init = if allow_init { self.parse_initializer() } else { None };
return @spanned(lo, self.last_span.hi,
{is_mutbl: is_mutbl, ty: ty, pat: pat,
init: init, id: self.get_id()});
}
fn parse_let() -> @decl {
let is_mutbl = self.eat_keyword(~"mut");
let lo = self.span.lo;
let mut locals = ~[self.parse_local(is_mutbl, true)];
while self.eat(token::COMMA) {
vec::push(locals, self.parse_local(is_mutbl, true));
}
return @spanned(lo, self.last_span.hi, decl_local(locals));
}
/* assumes "let" token has already been consumed */
fn parse_instance_var(pr: visibility) -> @class_member {
let mut is_mutbl = class_immutable;
let lo = self.span.lo;
if self.eat_keyword(~"mut") {
is_mutbl = class_mutable;
}
if !is_plain_ident(self.token) {
self.fatal(~"expected ident");
}
let name = self.parse_ident();
self.expect(token::COLON);
let ty = self.parse_ty(false);
return @field_member(@spanned(lo, self.last_span.hi, {
kind: named_field(name, is_mutbl, pr),
id: self.get_id(),
ty: ty
}));
}
fn parse_stmt(+first_item_attrs: ~[attribute]) -> @stmt {
maybe_whole!(self, nt_stmt);
fn check_expected_item(p: parser, current_attrs: ~[attribute]) {
// If we have attributes then we should have an item
if vec::is_not_empty(current_attrs) {
p.fatal(~"expected item");
}
}
let lo = self.span.lo;
if self.is_keyword(~"let") {
check_expected_item(self, first_item_attrs);
self.expect_keyword(~"let");
let decl = self.parse_let();
return @spanned(lo, decl.span.hi, stmt_decl(decl, self.get_id()));
} else {
let mut item_attrs;
match self.parse_outer_attrs_or_ext(first_item_attrs) {
None => item_attrs = ~[],
Some(Left(attrs)) => item_attrs = attrs,
Some(Right(ext)) => {
return @spanned(lo, ext.span.hi,
stmt_expr(ext, self.get_id()));
}
}
let item_attrs = vec::append(first_item_attrs, item_attrs);
match self.parse_item_or_view_item(item_attrs, true) {
iovi_item(i) => {
let mut hi = i.span.hi;
let decl = @spanned(lo, hi, decl_item(i));
return @spanned(lo, hi, stmt_decl(decl, self.get_id()));
}
iovi_view_item(vi) => {
self.span_fatal(vi.span, ~"view items must be declared at \
the top of the block");
}
iovi_none() => { /* fallthrough */ }
}
check_expected_item(self, item_attrs);
// Remainder are line-expr stmts.
let e = self.parse_expr_res(RESTRICT_STMT_EXPR);
return @spanned(lo, e.span.hi, stmt_expr(e, self.get_id()));
}
}
fn expr_is_complete(e: pexpr) -> bool {
return self.restriction == RESTRICT_STMT_EXPR &&
!classify::expr_requires_semi_to_be_stmt(*e);
}
fn parse_block() -> blk {
let (attrs, blk) = self.parse_inner_attrs_and_block(false);
assert vec::is_empty(attrs);
return blk;
}
fn parse_inner_attrs_and_block(parse_attrs: bool)
-> (~[attribute], blk) {
maybe_whole!(pair_empty self, nt_block);
fn maybe_parse_inner_attrs_and_next(p: parser, parse_attrs: bool) ->
{inner: ~[attribute], next: ~[attribute]} {
if parse_attrs {
p.parse_inner_attrs_and_next()
} else {
{inner: ~[], next: ~[]}
}
}
let lo = self.span.lo;
if self.eat_keyword(~"unchecked") {
self.expect(token::LBRACE);
let {inner, next} = maybe_parse_inner_attrs_and_next(self,
parse_attrs);
return (inner, self.parse_block_tail_(lo, unchecked_blk, next));
} else if self.eat_keyword(~"unsafe") {
self.expect(token::LBRACE);
let {inner, next} = maybe_parse_inner_attrs_and_next(self,
parse_attrs);
return (inner, self.parse_block_tail_(lo, unsafe_blk, next));
} else {
self.expect(token::LBRACE);
let {inner, next} = maybe_parse_inner_attrs_and_next(self,
parse_attrs);
return (inner, self.parse_block_tail_(lo, default_blk, next));
}
}
fn parse_block_no_value() -> blk {
// We parse blocks that cannot have a value the same as any other
// block; the type checker will make sure that the tail expression (if
// any) has unit type.
return self.parse_block();
}
// Precondition: already parsed the '{' or '#{'
// I guess that also means "already parsed the 'impure'" if
// necessary, and this should take a qualifier.
// some blocks start with "#{"...
fn parse_block_tail(lo: uint, s: blk_check_mode) -> blk {
self.parse_block_tail_(lo, s, ~[])
}
fn parse_block_tail_(lo: uint, s: blk_check_mode,
+first_item_attrs: ~[attribute]) -> blk {
let mut stmts = ~[];
let mut expr = None;
let {attrs_remaining, view_items, items: items} =
self.parse_items_and_view_items(first_item_attrs,
IMPORTS_AND_ITEMS_ALLOWED);
for items.each |item| {
let decl = @spanned(item.span.lo, item.span.hi, decl_item(item));
push(stmts, @spanned(item.span.lo, item.span.hi,
stmt_decl(decl, self.get_id())));
}
let mut initial_attrs = attrs_remaining;
if self.token == token::RBRACE && !vec::is_empty(initial_attrs) {
self.fatal(~"expected item");
}
while self.token != token::RBRACE {
match self.token {
token::SEMI => {
self.bump(); // empty
}
_ => {
let stmt = self.parse_stmt(initial_attrs);
initial_attrs = ~[];
match stmt.node {
stmt_expr(e, stmt_id) => { // Expression without semicolon:
match self.token {
token::SEMI => {
self.bump();
push(stmts,
@{node: stmt_semi(e, stmt_id),.. *stmt});
}
token::RBRACE => {
expr = Some(e);
}
t => {
if classify::stmt_ends_with_semi(*stmt) {
self.fatal(~"expected `;` or `}` after \
expression but found `"
+ token_to_str(self.reader, t) + ~"`");
}
vec::push(stmts, stmt);
}
}
}
_ => { // All other kinds of statements:
vec::push(stmts, stmt);
if classify::stmt_ends_with_semi(*stmt) {
self.expect(token::SEMI);
}
}
}
}
}
}
let mut hi = self.span.hi;
self.bump();
let bloc = {view_items: view_items, stmts: stmts, expr: expr,
id: self.get_id(), rules: s};
return spanned(lo, hi, bloc);
}
fn parse_optional_ty_param_bounds() -> @~[ty_param_bound] {
let mut bounds = ~[];
if self.eat(token::COLON) {
while is_ident(self.token) {
if is_ident(self.token) {
// XXX: temporary until kinds become traits
let maybe_bound = match self.token {
token::IDENT(copy sid, _) => {
match *self.id_to_str(sid) {
~"Send" => Some(bound_send),
~"Copy" => Some(bound_copy),
~"Const" => Some(bound_const),
~"Owned" => Some(bound_owned),
~"send"
| ~"copy"
| ~"const"
| ~"owned" => {
self.obsolete(copy self.span,
ObsoleteLowerCaseKindBounds);
None
}
_ => None
}
}
_ => fail
};
match maybe_bound {
Some(bound) => {
self.bump();
push(bounds, bound);
}
None => {
push(bounds, bound_trait(self.parse_ty(false)));
}
}
} else {
push(bounds, bound_trait(self.parse_ty(false)));
}
}
}
return @move bounds;
}
fn parse_ty_param() -> ty_param {
let ident = self.parse_ident();
let bounds = self.parse_optional_ty_param_bounds();
return {ident: ident, id: self.get_id(), bounds: bounds};
}
fn parse_ty_params() -> ~[ty_param] {
if self.eat(token::LT) {
self.parse_seq_to_gt(Some(token::COMMA), |p| p.parse_ty_param())
} else { ~[] }
}
fn parse_fn_decl(parse_arg_fn: fn(parser) -> arg_or_capture_item)
-> (fn_decl, capture_clause) {
let args_or_capture_items: ~[arg_or_capture_item] =
self.parse_unspanned_seq(
token::LPAREN, token::RPAREN,
seq_sep_trailing_disallowed(token::COMMA), parse_arg_fn);
let inputs = either::lefts(args_or_capture_items);
let capture_clause = @either::rights(args_or_capture_items);
let (ret_style, ret_ty) = self.parse_ret_ty();
return ({inputs: inputs,
output: ret_ty,
cf: ret_style}, capture_clause);
}
fn is_self_ident() -> bool {
match self.token {
token::IDENT(id, false) if id == token::special_idents::self_
=> true,
_ => false
}
}
fn expect_self_ident() {
if !self.is_self_ident() {
self.fatal(#fmt("expected `self` but found `%s`",
token_to_str(self.reader, self.token)));
}
self.bump();
}
fn parse_fn_decl_with_self(parse_arg_fn:
fn(parser) -> arg_or_capture_item)
-> (self_ty, fn_decl, capture_clause) {
fn maybe_parse_self_ty(cnstr: fn(+mutability) -> ast::self_ty_,
p: parser) -> ast::self_ty_ {
// We need to make sure it isn't a mode or a type
if p.token_is_keyword(~"self", p.look_ahead(1)) ||
((p.token_is_keyword(~"const", p.look_ahead(1)) ||
p.token_is_keyword(~"mut", p.look_ahead(1))) &&
p.token_is_keyword(~"self", p.look_ahead(2))) {
p.bump();
let mutability = p.parse_mutability();
p.expect_self_ident();
cnstr(mutability)
} else {
sty_by_ref
}
}
self.expect(token::LPAREN);
// A bit of complexity and lookahead is needed here in order to to be
// backwards compatible.
let lo = self.span.lo;
let self_ty = match copy self.token {
token::BINOP(token::AND) => {
maybe_parse_self_ty(sty_region, self)
}
token::AT => {
maybe_parse_self_ty(sty_box, self)
}
token::TILDE => {
maybe_parse_self_ty(sty_uniq, self)
}
token::IDENT(*) if self.is_self_ident() => {
self.bump();
sty_value
}
_ => {
sty_by_ref
}
};
// If we parsed a self type, expect a comma before the argument list.
let args_or_capture_items;
if self_ty != sty_by_ref {
match copy self.token {
token::COMMA => {
self.bump();
let sep = seq_sep_trailing_disallowed(token::COMMA);
args_or_capture_items =
self.parse_seq_to_before_end(token::RPAREN,
sep,
parse_arg_fn);
}
token::RPAREN => {
args_or_capture_items = ~[];
}
_ => {
self.fatal(~"expected `,` or `)`, found `" +
token_to_str(self.reader, self.token) + ~"`");
}
}
} else {
let sep = seq_sep_trailing_disallowed(token::COMMA);
args_or_capture_items =
self.parse_seq_to_before_end(token::RPAREN,
sep,
parse_arg_fn);
}
self.expect(token::RPAREN);
let hi = self.span.hi;
let inputs = either::lefts(args_or_capture_items);
let capture_clause = @either::rights(args_or_capture_items);
let (ret_style, ret_ty) = self.parse_ret_ty();
let fn_decl = {
inputs: inputs,
output: ret_ty,
cf: ret_style
};
(spanned(lo, hi, self_ty), fn_decl, capture_clause)
}
fn parse_fn_block_decl() -> (fn_decl, capture_clause) {
let inputs_captures = {
if self.eat(token::OROR) {
~[]
} else {
self.parse_unspanned_seq(
token::BINOP(token::OR), token::BINOP(token::OR),
seq_sep_trailing_disallowed(token::COMMA),
|p| p.parse_fn_block_arg())
}
};
let output = if self.eat(token::RARROW) {
self.parse_ty(false)
} else {
@{id: self.get_id(), node: ty_infer, span: self.span}
};
return ({inputs: either::lefts(inputs_captures),
output: output,
cf: return_val},
@either::rights(inputs_captures));
}
fn parse_fn_header() -> {ident: ident, tps: ~[ty_param]} {
let id = self.parse_value_ident();
let ty_params = self.parse_ty_params();
return {ident: id, tps: ty_params};
}
fn mk_item(lo: uint, hi: uint, +ident: ident,
+node: item_, vis: visibility,
+attrs: ~[attribute]) -> @item {
return @{ident: ident,
attrs: attrs,
id: self.get_id(),
node: node,
vis: vis,
span: mk_sp(lo, hi)};
}
fn parse_item_fn(purity: purity) -> item_info {
let t = self.parse_fn_header();
let (decl, _) = self.parse_fn_decl(|p| p.parse_arg());
let (inner_attrs, body) = self.parse_inner_attrs_and_block(true);
(t.ident, item_fn(decl, purity, t.tps, body), Some(inner_attrs))
}
fn parse_method_name() -> ident {
self.parse_value_ident()
}
fn parse_method(pr: visibility) -> @method {
let attrs = self.parse_outer_attributes();
let lo = self.span.lo;
let is_static = self.parse_staticness();
let static_sty = spanned(lo, self.span.hi, sty_static);
let pur = self.parse_fn_purity();
let ident = self.parse_method_name();
let tps = self.parse_ty_params();
let (self_ty, decl, _) = do self.parse_fn_decl_with_self() |p| {
p.parse_arg()
};
// XXX: interaction between staticness, self_ty is broken now
let self_ty = if is_static { static_sty} else { self_ty };
let (inner_attrs, body) = self.parse_inner_attrs_and_block(true);
let attrs = vec::append(attrs, inner_attrs);
@{ident: ident, attrs: attrs,
tps: tps, self_ty: self_ty, purity: pur, decl: decl,
body: body, id: self.get_id(), span: mk_sp(lo, body.span.hi),
self_id: self.get_id(), vis: pr}
}
fn parse_item_trait() -> item_info {
let ident = self.parse_ident();
self.parse_region_param();
let tps = self.parse_ty_params();
// Parse traits, if necessary.
let traits;
if self.token == token::COLON {
self.bump();
traits = self.parse_trait_ref_list(token::LBRACE);
} else {
traits = ~[];
}
let meths = self.parse_trait_methods();
(ident, item_trait(tps, traits, meths), None)
}
// Parses four variants (with the region/type params always optional):
// impl<T> ~[T] : to_str { ... }
fn parse_item_impl() -> item_info {
fn wrap_path(p: parser, pt: @path) -> @ty {
@{id: p.get_id(), node: ty_path(pt, p.get_id()), span: pt.span}
}
// We do two separate paths here: old-style impls and new-style impls.
// First, parse type parameters if necessary.
let mut tps;
if self.token == token::LT {
tps = self.parse_ty_params();
} else {
tps = ~[];
}
// This is a new-style impl declaration.
// XXX: clownshoes
let ident = token::special_idents::clownshoes_extensions;
// Parse the type.
let ty = self.parse_ty(false);
// Parse traits, if necessary.
let opt_trait = if self.token == token::COLON {
self.bump();
Some(self.parse_trait_ref())
} else {
None
};
let mut meths = ~[];
self.expect(token::LBRACE);
while !self.eat(token::RBRACE) {
let vis = self.parse_visibility();
vec::push(meths, self.parse_method(vis));
}
(ident, item_impl(tps, opt_trait, ty, meths), None)
}
// Instantiates ident <i> with references to <typarams> as arguments.
// Used to create a path that refers to a class which will be defined as
// the return type of the ctor function.
fn ident_to_path_tys(i: ident,
typarams: ~[ty_param]) -> @path {
let s = self.last_span;
@{span: s, global: false, idents: ~[i],
rp: None,
types: vec::map(typarams, |tp| {
@{id: self.get_id(),
node: ty_path(ident_to_path(s, tp.ident), self.get_id()),
span: s}})
}
}
fn parse_trait_ref() -> @trait_ref {
@{path: self.parse_path_with_tps(false),
ref_id: self.get_id(), impl_id: self.get_id()}
}
fn parse_trait_ref_list(ket: token::token) -> ~[@trait_ref] {
self.parse_seq_to_before_end(
ket, seq_sep_trailing_disallowed(token::COMMA),
|p| p.parse_trait_ref())
}
fn parse_item_class() -> item_info {
let class_name = self.parse_value_ident();
self.parse_region_param();
let ty_params = self.parse_ty_params();
let traits : ~[@trait_ref] = if self.eat(token::COLON)
{ self.parse_trait_ref_list(token::LBRACE) }
else { ~[] };
let mut fields: ~[@struct_field];
let mut methods: ~[@method] = ~[];
let mut the_ctor: Option<(fn_decl, ~[attribute], blk, codemap::span)>
= None;
let mut the_dtor: Option<(blk, ~[attribute], codemap::span)> = None;
let ctor_id = self.get_id();
if self.eat(token::LBRACE) {
// It's a record-like struct.
fields = ~[];
while self.token != token::RBRACE {
match self.parse_class_item() {
ctor_decl(a_fn_decl, attrs, blk, s) => {
match the_ctor {
Some((_, _, _, s_first)) => {
self.span_note(s, #fmt("Duplicate constructor \
declaration for class %s",
*self.interner.get(class_name)));
self.span_fatal(copy s_first, ~"First constructor \
declared here");
}
None => {
the_ctor = Some((a_fn_decl, attrs, blk, s));
}
}
}
dtor_decl(blk, attrs, s) => {
match the_dtor {
Some((_, _, s_first)) => {
self.span_note(s, #fmt("Duplicate destructor \
declaration for class %s",
*self.interner.get(class_name)));
self.span_fatal(copy s_first, ~"First destructor \
declared here");
}
None => {
the_dtor = Some((blk, attrs, s));
}
}
}
members(mms) => {
for mms.each |mm| {
match mm {
@field_member(struct_field) =>
vec::push(fields, struct_field),
@method_member(the_method_member) =>
vec::push(methods, the_method_member)
}
}
}
}
}
self.bump();
} else if self.token == token::LPAREN {
// It's a tuple-like struct.
fields = do self.parse_unspanned_seq(token::LPAREN, token::RPAREN,
seq_sep_trailing_allowed
(token::COMMA)) |p| {
let lo = p.span.lo;
let struct_field_ = {
kind: unnamed_field,
id: self.get_id(),
ty: p.parse_ty(false)
};
@spanned(lo, p.span.hi, struct_field_)
};
self.expect(token::SEMI);
} else if self.eat(token::SEMI) {
// It's a unit-like struct.
fields = ~[];
} else {
self.fatal(fmt!("expected `{`, `(`, or `;` after struct name \
but found `%s`",
token_to_str(self.reader, self.token)));
}
let actual_dtor = do option::map(the_dtor) |dtor| {
let (d_body, d_attrs, d_s) = dtor;
{node: {id: self.get_id(),
attrs: d_attrs,
self_id: self.get_id(),
body: d_body},
span: d_s}};
match the_ctor {
Some((ct_d, ct_attrs, ct_b, ct_s)) => {
(class_name,
item_class(@{
traits: traits,
fields: move fields,
methods: move methods,
ctor: Some({
node: {id: ctor_id,
attrs: ct_attrs,
self_id: self.get_id(),
dec: ct_d,
body: ct_b},
span: ct_s}),
dtor: actual_dtor
}, ty_params),
None)
}
None => {
(class_name,
item_class(@{
traits: traits,
fields: move fields,
methods: move methods,
ctor: None,
dtor: actual_dtor
}, ty_params),
None)
}
}
}
fn token_is_pound_or_doc_comment(++tok: token::token) -> bool {
match tok {
token::POUND | token::DOC_COMMENT(_) => true,
_ => false
}
}
fn parse_single_class_item(vis: visibility) -> @class_member {
let obsolete_let = self.eat_obsolete_ident("let");
if obsolete_let { self.obsolete(copy self.last_span, ObsoleteLet) }
let a_var = self.parse_instance_var(vis);
match self.token {
token::SEMI => {
self.obsolete(copy self.span, ObsoleteFieldTerminator);
self.bump();
}
token::COMMA => {
self.bump();
}
token::RBRACE => {}
_ => {
self.span_fatal(copy self.span,
fmt!("expected `;`, `,`, or '}' but \
found `%s`",
token_to_str(self.reader,
self.token)));
}
}
return a_var;
}
fn parse_dtor(attrs: ~[attribute]) -> class_contents {
let lo = self.last_span.lo;
let body = self.parse_block();
dtor_decl(body, attrs, mk_sp(lo, self.last_span.hi))
}
fn parse_class_item() -> class_contents {
if self.eat_keyword(~"priv") {
// XXX: Remove after snapshot.
match self.token {
token::LBRACE => {
self.bump();
let mut results = ~[];
while self.token != token::RBRACE {
vec::push(results,
self.parse_single_class_item(private));
}
self.bump();
return members(results);
}
_ =>
return members(~[self.parse_single_class_item(private)])
}
}
if self.eat_keyword(~"pub") {
return members(~[self.parse_single_class_item(public)]);
}
let attrs = self.parse_outer_attributes();
if self.try_parse_obsolete_struct_ctor() {
return members(~[]);
}
if self.eat_keyword(~"drop") {
return self.parse_dtor(attrs);
}
else {
return members(~[self.parse_single_class_item(inherited)]);
}
}
fn parse_visibility() -> visibility {
if self.eat_keyword(~"pub") { public }
else if self.eat_keyword(~"priv") { private }
else { inherited }
}
fn parse_staticness() -> bool {
self.eat_keyword(~"static")
}
fn parse_mod_items(term: token::token,
+first_item_attrs: ~[attribute]) -> _mod {
// Shouldn't be any view items since we've already parsed an item attr
let {attrs_remaining, view_items, items: starting_items} =
self.parse_items_and_view_items(first_item_attrs,
VIEW_ITEMS_AND_ITEMS_ALLOWED);
let mut items: ~[@item] = move starting_items;
let mut first = true;
while self.token != term {
let mut attrs = self.parse_outer_attributes();
if first {
attrs = vec::append(attrs_remaining, attrs);
first = false;
}
debug!("parse_mod_items: parse_item_or_view_item(attrs=%?)",
attrs);
match self.parse_item_or_view_item(attrs, true) {
iovi_item(item) => vec::push(items, item),
iovi_view_item(view_item) => {
self.span_fatal(view_item.span, ~"view items must be \
declared at the top of the \
module");
}
_ => {
self.fatal(~"expected item but found `" +
token_to_str(self.reader, self.token) + ~"`");
}
}
debug!("parse_mod_items: attrs=%?", attrs);
}
if first && attrs_remaining.len() > 0u {
// We parsed attributes for the first item but didn't find it
self.fatal(~"expected item");
}
return {view_items: view_items, items: items};
}
fn parse_item_const() -> item_info {
let id = self.parse_value_ident();
self.expect(token::COLON);
let ty = self.parse_ty(false);
self.expect(token::EQ);
let e = self.parse_expr();
self.expect(token::SEMI);
(id, item_const(ty, e), None)
}
fn parse_item_mod() -> item_info {
let id = self.parse_ident();
self.expect(token::LBRACE);
let inner_attrs = self.parse_inner_attrs_and_next();
let m = self.parse_mod_items(token::RBRACE, inner_attrs.next);
self.expect(token::RBRACE);
(id, item_mod(m), Some(inner_attrs.inner))
}
fn parse_item_foreign_fn(+attrs: ~[attribute]) -> @foreign_item {
let lo = self.span.lo;
let purity = self.parse_fn_purity();
let t = self.parse_fn_header();
let (decl, _) = self.parse_fn_decl(|p| p.parse_arg());
let mut hi = self.span.hi;
self.expect(token::SEMI);
return @{ident: t.ident,
attrs: attrs,
node: foreign_item_fn(decl, purity, t.tps),
id: self.get_id(),
span: mk_sp(lo, hi)};
}
fn parse_item_foreign_const(+attrs: ~[attribute]) -> @foreign_item {
let lo = self.span.lo;
self.expect_keyword(~"const");
let ident = self.parse_ident();
self.expect(token::COLON);
let ty = self.parse_ty(false);
let hi = self.span.hi;
self.expect(token::SEMI);
return @{ident: ident,
attrs: attrs,
node: foreign_item_const(move ty),
id: self.get_id(),
span: mk_sp(lo, hi)};
}
fn parse_fn_purity() -> purity {
if self.eat_keyword(~"fn") { impure_fn }
else if self.eat_keyword(~"pure") {
self.expect_keyword(~"fn");
pure_fn
} else if self.eat_keyword(~"unsafe") {
self.expect_keyword(~"fn");
unsafe_fn
}
else { self.unexpected(); }
}
fn parse_foreign_item(+attrs: ~[attribute]) -> @foreign_item {
if self.is_keyword(~"const") {
self.parse_item_foreign_const(move attrs)
} else {
self.parse_item_foreign_fn(move attrs)
}
}
fn parse_foreign_mod_items(sort: ast::foreign_mod_sort,
+first_item_attrs: ~[attribute]) ->
foreign_mod {
// Shouldn't be any view items since we've already parsed an item attr
let {attrs_remaining, view_items, items: _} =
self.parse_items_and_view_items(first_item_attrs,
VIEW_ITEMS_ALLOWED);
let mut items: ~[@foreign_item] = ~[];
let mut initial_attrs = attrs_remaining;
while self.token != token::RBRACE {
let attrs = vec::append(initial_attrs,
self.parse_outer_attributes());
initial_attrs = ~[];
vec::push(items, self.parse_foreign_item(attrs));
}
return {sort: sort, view_items: view_items,
items: items};
}
fn parse_item_foreign_mod(lo: uint,
visibility: visibility,
attrs: ~[attribute],
items_allowed: bool)
-> item_or_view_item {
let mut must_be_named_mod = false;
if self.is_keyword(~"mod") {
must_be_named_mod = true;
self.expect_keyword(~"mod");
} else if self.token != token::LBRACE {
self.span_fatal(copy self.span,
fmt!("expected `{` or `mod` but found %s",
token_to_str(self.reader, self.token)));
}
let (sort, ident) = match self.token {
token::IDENT(*) => (ast::named, self.parse_ident()),
_ => {
if must_be_named_mod {
self.span_fatal(copy self.span,
fmt!("expected foreign module name but \
found %s",
token_to_str(self.reader,
self.token)));
}
(ast::anonymous,
token::special_idents::clownshoes_foreign_mod)
}
};
// extern mod { ... }
if items_allowed && self.eat(token::LBRACE) {
let extra_attrs = self.parse_inner_attrs_and_next();
let m = self.parse_foreign_mod_items(sort, extra_attrs.next);
self.expect(token::RBRACE);
return iovi_item(self.mk_item(lo, self.last_span.hi, ident,
item_foreign_mod(m), visibility,
maybe_append(attrs,
Some(extra_attrs.
inner))));
}
// extern mod foo;
let metadata = self.parse_optional_meta();
self.expect(token::SEMI);
return iovi_view_item(@{
node: view_item_use(ident, metadata, self.get_id()),
attrs: attrs,
vis: visibility,
span: mk_sp(lo, self.last_span.hi)
});
}
fn parse_type_decl() -> {lo: uint, ident: ident} {
let lo = self.last_span.lo;
let id = self.parse_ident();
return {lo: lo, ident: id};
}
fn parse_item_type() -> item_info {
let t = self.parse_type_decl();
self.parse_region_param();
let tps = self.parse_ty_params();
self.expect(token::EQ);
let ty = self.parse_ty(false);
self.expect(token::SEMI);
(t.ident, item_ty(ty, tps), None)
}
fn parse_region_param() {
if self.eat(token::BINOP(token::SLASH)) {
self.expect(token::BINOP(token::AND));
}
}
fn parse_struct_def() -> @struct_def {
let mut the_dtor: Option<(blk, ~[attribute], codemap::span)> = None;
let mut fields: ~[@struct_field] = ~[];
let mut methods: ~[@method] = ~[];
while self.token != token::RBRACE {
match self.parse_class_item() {
ctor_decl(*) => {
self.span_fatal(copy self.span,
~"deprecated explicit \
constructors are not allowed \
here");
}
dtor_decl(blk, attrs, s) => {
match the_dtor {
Some((_, _, s_first)) => {
self.span_note(s, ~"duplicate destructor \
declaration");
self.span_fatal(copy s_first,
~"first destructor \
declared here");
}
None => {
the_dtor = Some((blk, attrs, s));
}
}
}
members(mms) => {
for mms.each |mm| {
match mm {
@field_member(struct_field) =>
vec::push(fields, struct_field),
@method_member(the_method_member) =>
vec::push(methods, the_method_member)
}
}
}
}
}
self.bump();
let mut actual_dtor = do option::map(the_dtor) |dtor| {
let (d_body, d_attrs, d_s) = dtor;
{node: {id: self.get_id(),
attrs: d_attrs,
self_id: self.get_id(),
body: d_body},
span: d_s}
};
return @{
traits: ~[],
fields: move fields,
methods: move methods,
ctor: None,
dtor: actual_dtor
};
}
fn parse_enum_def(ty_params: ~[ast::ty_param])
-> enum_def {
let mut variants: ~[variant] = ~[];
let mut all_nullary = true, have_disr = false;
let mut common_fields = None;
while self.token != token::RBRACE {
let variant_attrs = self.parse_outer_attributes();
let vlo = self.span.lo;
// Is this a common field declaration?
if self.eat_keyword(~"struct") {
if common_fields.is_some() {
self.fatal(~"duplicate declaration of shared fields");
}
self.expect(token::LBRACE);
common_fields = Some(self.parse_struct_def());
loop;
}
let vis = self.parse_visibility();
// Is this a nested enum declaration?
let ident, needs_comma, kind;
let mut args = ~[], disr_expr = None;
if self.eat_keyword(~"enum") {
ident = self.parse_ident();
self.expect(token::LBRACE);
let nested_enum_def = self.parse_enum_def(ty_params);
kind = enum_variant_kind(move nested_enum_def);
needs_comma = false;
} else {
ident = self.parse_value_ident();
if self.eat(token::LBRACE) {
// Parse a struct variant.
all_nullary = false;
kind = struct_variant_kind(self.parse_struct_def());
} else if self.token == token::LPAREN {
all_nullary = false;
let arg_tys = self.parse_unspanned_seq(
token::LPAREN, token::RPAREN,
seq_sep_trailing_disallowed(token::COMMA),
|p| p.parse_ty(false));
for arg_tys.each |ty| {
vec::push(args, {ty: ty, id: self.get_id()});
}
kind = tuple_variant_kind(args);
} else if self.eat(token::EQ) {
have_disr = true;
disr_expr = Some(self.parse_expr());
kind = tuple_variant_kind(args);
} else {
kind = tuple_variant_kind(~[]);
}
needs_comma = true;
}
let vr = {name: ident, attrs: variant_attrs,
kind: kind, id: self.get_id(),
disr_expr: disr_expr, vis: vis};
vec::push(variants, spanned(vlo, self.last_span.hi, vr));
if needs_comma && !self.eat(token::COMMA) { break; }
}
self.expect(token::RBRACE);
if (have_disr && !all_nullary) {
self.fatal(~"discriminator values can only be used with a c-like \
enum");
}
return enum_def({ variants: variants, common: common_fields });
}
fn parse_item_enum() -> item_info {
let id = self.parse_ident();
self.parse_region_param();
let ty_params = self.parse_ty_params();
// Newtype syntax
if self.token == token::EQ {
self.check_restricted_keywords_(*self.id_to_str(id));
self.bump();
let ty = self.parse_ty(false);
self.expect(token::SEMI);
let variant =
spanned(ty.span.lo, ty.span.hi,
{name: id,
attrs: ~[],
kind: tuple_variant_kind
(~[{ty: ty, id: self.get_id()}]),
id: self.get_id(),
disr_expr: None,
vis: public});
return (id, item_enum(enum_def({ variants: ~[variant],
common: None }),
ty_params), None);
}
self.expect(token::LBRACE);
let enum_definition = self.parse_enum_def(ty_params);
(id, item_enum(enum_definition, ty_params), None)
}
fn parse_fn_ty_proto() -> proto {
match self.token {
token::AT => {
self.bump();
proto_box
}
token::TILDE => {
self.bump();
proto_uniq
}
token::BINOP(token::AND) => {
self.bump();
proto_block
}
_ => {
proto_block
}
}
}
fn fn_expr_lookahead(tok: token::token) -> bool {
match tok {
token::LPAREN | token::AT | token::TILDE | token::BINOP(_) => true,
_ => false
}
}
fn parse_item_or_view_item(+attrs: ~[attribute], items_allowed: bool)
-> item_or_view_item {
maybe_whole!(iovi self,nt_item);
let lo = self.span.lo;
let visibility;
if self.eat_keyword(~"pub") {
visibility = public;
} else if self.eat_keyword(~"priv") {
visibility = private;
} else {
visibility = inherited;
}
if items_allowed && self.eat_keyword(~"const") {
let (ident, item_, extra_attrs) = self.parse_item_const();
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
} else if items_allowed &&
self.is_keyword(~"fn") &&
!self.fn_expr_lookahead(self.look_ahead(1u)) {
self.bump();
let (ident, item_, extra_attrs) = self.parse_item_fn(impure_fn);
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
} else if items_allowed && self.eat_keyword(~"pure") {
self.expect_keyword(~"fn");
let (ident, item_, extra_attrs) = self.parse_item_fn(pure_fn);
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
} else if items_allowed && self.is_keyword(~"unsafe")
&& self.look_ahead(1u) != token::LBRACE {
self.bump();
self.expect_keyword(~"fn");
let (ident, item_, extra_attrs) = self.parse_item_fn(unsafe_fn);
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
} else if self.eat_keyword(~"extern") {
if items_allowed && self.eat_keyword(~"fn") {
let (ident, item_, extra_attrs) =
self.parse_item_fn(extern_fn);
return iovi_item(self.mk_item(lo, self.last_span.hi, ident,
item_, visibility,
maybe_append(attrs,
extra_attrs)));
}
return self.parse_item_foreign_mod(lo, visibility, attrs,
items_allowed);
} else if items_allowed && self.eat_keyword(~"mod") {
let (ident, item_, extra_attrs) = self.parse_item_mod();
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
} else if items_allowed && self.eat_keyword(~"type") {
let (ident, item_, extra_attrs) = self.parse_item_type();
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
} else if items_allowed && self.eat_keyword(~"enum") {
let (ident, item_, extra_attrs) = self.parse_item_enum();
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
} else if items_allowed && self.eat_keyword(~"trait") {
let (ident, item_, extra_attrs) = self.parse_item_trait();
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
} else if items_allowed && self.eat_keyword(~"impl") {
let (ident, item_, extra_attrs) = self.parse_item_impl();
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
} else if items_allowed && self.eat_keyword(~"struct") {
let (ident, item_, extra_attrs) = self.parse_item_class();
return iovi_item(self.mk_item(lo, self.last_span.hi, ident, item_,
visibility,
maybe_append(attrs, extra_attrs)));
} else if self.eat_keyword(~"use") {
let view_item = self.parse_use(visibility);
self.expect(token::SEMI);
return iovi_view_item(@{
node: view_item,
attrs: attrs,
vis: visibility,
span: mk_sp(lo, self.last_span.hi)
});
} else if self.eat_keyword(~"import") {
let view_paths = self.parse_view_paths();
self.expect(token::SEMI);
return iovi_view_item(@{
node: view_item_import(view_paths),
attrs: attrs,
vis: visibility,
span: mk_sp(lo, self.last_span.hi)
});
} else if self.eat_keyword(~"export") {
let view_paths = self.parse_view_paths();
self.expect(token::SEMI);
return iovi_view_item(@{
node: view_item_export(view_paths),
attrs: attrs,
vis: visibility,
span: mk_sp(lo, self.last_span.hi)
});
} else if items_allowed && (!self.is_any_keyword(copy self.token)
&& self.look_ahead(1) == token::NOT
&& is_plain_ident(self.look_ahead(2))) {
// item macro.
let pth = self.parse_path_without_tps();
self.expect(token::NOT);
let id = self.parse_ident();
let tts = self.parse_unspanned_seq(
token::LPAREN, token::RPAREN, seq_sep_none(),
|p| p.parse_token_tree());
let m = ast::mac_invoc_tt(pth, tts);
let m: ast::mac = {node: m,
span: {lo: self.span.lo,
hi: self.span.hi,
expn_info: None}};
let item_ = item_mac(m);
return iovi_item(self.mk_item(lo, self.last_span.hi, id, item_,
visibility, attrs));
} else {
return iovi_none;
};
}
fn parse_item(+attrs: ~[attribute]) -> Option<@ast::item> {
match self.parse_item_or_view_item(attrs, true) {
iovi_none =>
None,
iovi_view_item(_) =>
self.fatal(~"view items are not allowed here"),
iovi_item(item) =>
Some(item)
}
}
fn parse_use(vis: visibility) -> view_item_ {
if vis != public && (self.look_ahead(1) == token::SEMI ||
self.look_ahead(1) == token::LPAREN) {
// Old-style "use"; i.e. what we now call "extern mod".
let ident = self.parse_ident();
let metadata = self.parse_optional_meta();
return view_item_use(ident, metadata, self.get_id());
}
return view_item_import(self.parse_view_paths());
}
fn parse_view_path() -> @view_path {
let lo = self.span.lo;
let namespace;
if self.eat_keyword(~"mod") {
namespace = module_ns;
} else {
namespace = type_value_ns;
}
let first_ident = self.parse_ident();
let mut path = ~[first_ident];
debug!("parsed view_path: %s", *self.id_to_str(first_ident));
match self.token {
token::EQ => {
// x = foo::bar
self.bump();
path = ~[self.parse_ident()];
while self.token == token::MOD_SEP {
self.bump();
let id = self.parse_ident();
vec::push(path, id);
}
let path = @{span: mk_sp(lo, self.span.hi), global: false,
idents: path, rp: None, types: ~[]};
return @spanned(lo, self.span.hi,
view_path_simple(first_ident, path, namespace,
self.get_id()));
}
token::MOD_SEP => {
// foo::bar or foo::{a,b,c} or foo::*
while self.token == token::MOD_SEP {
self.bump();
match copy self.token {
token::IDENT(i, _) => {
self.bump();
vec::push(path, i);
}
// foo::bar::{a,b,c}
token::LBRACE => {
let idents = self.parse_unspanned_seq(
token::LBRACE, token::RBRACE,
seq_sep_trailing_allowed(token::COMMA),
|p| p.parse_path_list_ident());
let path = @{span: mk_sp(lo, self.span.hi),
global: false, idents: path,
rp: None, types: ~[]};
return @spanned(lo, self.span.hi,
view_path_list(path, idents, self.get_id()));
}
// foo::bar::*
token::BINOP(token::STAR) => {
self.bump();
let path = @{span: mk_sp(lo, self.span.hi),
global: false, idents: path,
rp: None, types: ~[]};
return @spanned(lo, self.span.hi,
view_path_glob(path, self.get_id()));
}
_ => break
}
}
}
_ => ()
}
let last = path[vec::len(path) - 1u];
let path = @{span: mk_sp(lo, self.span.hi), global: false,
idents: path, rp: None, types: ~[]};
return @spanned(lo, self.span.hi,
view_path_simple(last, path, namespace, self.get_id()));
}
fn parse_view_paths() -> ~[@view_path] {
let mut vp = ~[self.parse_view_path()];
while self.token == token::COMMA {
self.bump();
vec::push(vp, self.parse_view_path());
}
return vp;
}
fn is_view_item() -> bool {
let tok, next_tok;
if !self.is_keyword(~"pub") && !self.is_keyword(~"priv") {
tok = self.token;
next_tok = self.look_ahead(1);
} else {
tok = self.look_ahead(1);
next_tok = self.look_ahead(2);
};
self.token_is_keyword(~"use", tok)
|| self.token_is_keyword(~"import", tok)
|| self.token_is_keyword(~"export", tok)
|| (self.token_is_keyword(~"extern", tok) &&
self.token_is_keyword(~"mod", next_tok))
}
fn parse_view_item(+attrs: ~[attribute]) -> @view_item {
let lo = self.span.lo, vis = self.parse_visibility();
let node = if self.eat_keyword(~"use") {
self.parse_use(vis)
} else if self.eat_keyword(~"import") {
view_item_import(self.parse_view_paths())
} else if self.eat_keyword(~"export") {
view_item_export(self.parse_view_paths())
} else if self.eat_keyword(~"extern") {
self.expect_keyword(~"mod");
let ident = self.parse_ident();
let metadata = self.parse_optional_meta();
view_item_use(ident, metadata, self.get_id())
} else {
fail;
};
self.expect(token::SEMI);
@{node: node, attrs: attrs,
vis: vis, span: mk_sp(lo, self.last_span.hi)}
}
fn parse_items_and_view_items(+first_item_attrs: ~[attribute],
mode: view_item_parse_mode)
-> {attrs_remaining: ~[attribute],
view_items: ~[@view_item],
items: ~[@item]} {
let mut attrs = vec::append(first_item_attrs,
self.parse_outer_attributes());
let items_allowed;
match mode {
VIEW_ITEMS_AND_ITEMS_ALLOWED | IMPORTS_AND_ITEMS_ALLOWED =>
items_allowed = true,
VIEW_ITEMS_ALLOWED =>
items_allowed = false
}
let (view_items, items) = (DVec(), DVec());
loop {
match self.parse_item_or_view_item(attrs, items_allowed) {
iovi_none =>
break,
iovi_view_item(view_item) => {
match mode {
VIEW_ITEMS_AND_ITEMS_ALLOWED |
VIEW_ITEMS_ALLOWED => {}
IMPORTS_AND_ITEMS_ALLOWED =>
match view_item.node {
view_item_import(_) => {}
view_item_export(_) | view_item_use(*) =>
self.fatal(~"exports and \"extern mod\" \
declarations are not \
allowed here")
}
}
view_items.push(view_item);
}
iovi_item(item) => {
assert items_allowed;
items.push(item)
}
}
attrs = self.parse_outer_attributes();
}
{attrs_remaining: attrs,
view_items: vec::from_mut(dvec::unwrap(view_items)),
items: vec::from_mut(dvec::unwrap(items))}
}
// Parses a source module as a crate
fn parse_crate_mod(_cfg: crate_cfg) -> @crate {
let lo = self.span.lo;
let crate_attrs = self.parse_inner_attrs_and_next();
let first_item_outer_attrs = crate_attrs.next;
let m = self.parse_mod_items(token::EOF, first_item_outer_attrs);
return @spanned(lo, self.span.lo,
{directives: ~[],
module: m,
attrs: crate_attrs.inner,
config: self.cfg});
}
fn parse_str() -> @~str {
match copy self.token {
token::LIT_STR(s) => { self.bump(); self.id_to_str(s) }
_ => self.fatal(~"expected string literal")
}
}
// Logic for parsing crate files (.rc)
//
// Each crate file is a sequence of directives.
//
// Each directive imperatively extends its environment with 0 or more
// items.
fn parse_crate_directive(first_outer_attr: ~[attribute]) ->
crate_directive {
// Collect the next attributes
let outer_attrs = vec::append(first_outer_attr,
self.parse_outer_attributes());
// In a crate file outer attributes are only going to apply to mods
let expect_mod = vec::len(outer_attrs) > 0u;
let lo = self.span.lo;
if expect_mod || self.is_keyword(~"mod") {
self.expect_keyword(~"mod");
let id = self.parse_ident();
match self.token {
// mod x = "foo.rs";
token::SEMI => {
let mut hi = self.span.hi;
self.bump();
return spanned(lo, hi, cdir_src_mod(id, outer_attrs));
}
// mod x = "foo_dir" { ...directives... }
token::LBRACE => {
self.bump();
let inner_attrs = self.parse_inner_attrs_and_next();
let mod_attrs = vec::append(outer_attrs, inner_attrs.inner);
let next_outer_attr = inner_attrs.next;
let cdirs = self.parse_crate_directives(token::RBRACE,
next_outer_attr);
let mut hi = self.span.hi;
self.expect(token::RBRACE);
return spanned(lo, hi,
cdir_dir_mod(id, cdirs, mod_attrs));
}
_ => self.unexpected()
}
} else if self.is_view_item() {
let vi = self.parse_view_item(outer_attrs);
return spanned(lo, vi.span.hi, cdir_view_item(vi));
}
return self.fatal(~"expected crate directive");
}
fn parse_crate_directives(term: token::token,
first_outer_attr: ~[attribute]) ->
~[@crate_directive] {
// This is pretty ugly. If we have an outer attribute then we can't
// accept seeing the terminator next, so if we do see it then fail the
// same way parse_crate_directive would
if vec::len(first_outer_attr) > 0u && self.token == term {
self.expect_keyword(~"mod");
}
let mut cdirs: ~[@crate_directive] = ~[];
let mut first_outer_attr = first_outer_attr;
while self.token != term {
let cdir = @self.parse_crate_directive(first_outer_attr);
vec::push(cdirs, cdir);
first_outer_attr = ~[];
}
return cdirs;
}
}
impl restriction : cmp::Eq {
pure fn eq(&&other: restriction) -> bool {
(self as uint) == (other as uint)
}
pure fn ne(&&other: restriction) -> bool { !self.eq(other) }
}
//
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End:
//