rust/src/libcore/char.rs
Alex Crichton f94d671bfa core: Remove the cast module
This commit revisits the `cast` module in libcore and libstd, and scrutinizes
all functions inside of it. The result was to remove the `cast` module entirely,
folding all functionality into the `mem` module. Specifically, this is the fate
of each function in the `cast` module.

* transmute - This function was moved to `mem`, but it is now marked as
              #[unstable]. This is due to planned changes to the `transmute`
              function and how it can be invoked (see the #[unstable] comment).
              For more information, see RFC 5 and #12898

* transmute_copy - This function was moved to `mem`, with clarification that is
                   is not an error to invoke it with T/U that are different
                   sizes, but rather that it is strongly discouraged. This
                   function is now #[stable]

* forget - This function was moved to `mem` and marked #[stable]

* bump_box_refcount - This function was removed due to the deprecation of
                      managed boxes as well as its questionable utility.

* transmute_mut - This function was previously deprecated, and removed as part
                  of this commit.

* transmute_mut_unsafe - This function doesn't serve much of a purpose when it
                         can be achieved with an `as` in safe code, so it was
                         removed.

* transmute_lifetime - This function was removed because it is likely a strong
                       indication that code is incorrect in the first place.

* transmute_mut_lifetime - This function was removed for the same reasons as
                           `transmute_lifetime`

* copy_lifetime - This function was moved to `mem`, but it is marked
                  `#[unstable]` now due to the likelihood of being removed in
                  the future if it is found to not be very useful.

* copy_mut_lifetime - This function was also moved to `mem`, but had the same
                      treatment as `copy_lifetime`.

* copy_lifetime_vec - This function was removed because it is not used today,
                      and its existence is not necessary with DST
                      (copy_lifetime will suffice).

In summary, the cast module was stripped down to these functions, and then the
functions were moved to the `mem` module.

    transmute - #[unstable]
    transmute_copy - #[stable]
    forget - #[stable]
    copy_lifetime - #[unstable]
    copy_mut_lifetime - #[unstable]

[breaking-change]
2014-05-11 01:13:02 -07:00

862 lines
28 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Character manipulation (`char` type, Unicode Scalar Value)
//!
//! This module provides the `Char` trait, as well as its implementation
//! for the primitive `char` type, in order to allow basic character manipulation.
//!
//! A `char` actually represents a
//! *[Unicode Scalar Value](http://www.unicode.org/glossary/#unicode_scalar_value)*,
//! as it can contain any Unicode code point except high-surrogate and
//! low-surrogate code points.
//!
//! As such, only values in the ranges \[0x0,0xD7FF\] and \[0xE000,0x10FFFF\]
//! (inclusive) are allowed. A `char` can always be safely cast to a `u32`;
//! however the converse is not always true due to the above range limits
//! and, as such, should be performed via the `from_u32` function..
use mem::transmute;
use option::{None, Option, Some};
use iter::{Iterator, range_step};
use unicode::{derived_property, property, general_category, decompose, conversions};
#[cfg(not(test))] use cmp::{Eq, Ord, TotalEq, TotalOrd, Ordering};
#[cfg(not(test))] use default::Default;
// UTF-8 ranges and tags for encoding characters
static TAG_CONT: uint = 128u;
static MAX_ONE_B: uint = 128u;
static TAG_TWO_B: uint = 192u;
static MAX_TWO_B: uint = 2048u;
static TAG_THREE_B: uint = 224u;
static MAX_THREE_B: uint = 65536u;
static TAG_FOUR_B: uint = 240u;
/*
Lu Uppercase_Letter an uppercase letter
Ll Lowercase_Letter a lowercase letter
Lt Titlecase_Letter a digraphic character, with first part uppercase
Lm Modifier_Letter a modifier letter
Lo Other_Letter other letters, including syllables and ideographs
Mn Nonspacing_Mark a nonspacing combining mark (zero advance width)
Mc Spacing_Mark a spacing combining mark (positive advance width)
Me Enclosing_Mark an enclosing combining mark
Nd Decimal_Number a decimal digit
Nl Letter_Number a letterlike numeric character
No Other_Number a numeric character of other type
Pc Connector_Punctuation a connecting punctuation mark, like a tie
Pd Dash_Punctuation a dash or hyphen punctuation mark
Ps Open_Punctuation an opening punctuation mark (of a pair)
Pe Close_Punctuation a closing punctuation mark (of a pair)
Pi Initial_Punctuation an initial quotation mark
Pf Final_Punctuation a final quotation mark
Po Other_Punctuation a punctuation mark of other type
Sm Math_Symbol a symbol of primarily mathematical use
Sc Currency_Symbol a currency sign
Sk Modifier_Symbol a non-letterlike modifier symbol
So Other_Symbol a symbol of other type
Zs Space_Separator a space character (of various non-zero widths)
Zl Line_Separator U+2028 LINE SEPARATOR only
Zp Paragraph_Separator U+2029 PARAGRAPH SEPARATOR only
Cc Control a C0 or C1 control code
Cf Format a format control character
Cs Surrogate a surrogate code point
Co Private_Use a private-use character
Cn Unassigned a reserved unassigned code point or a noncharacter
*/
/// The highest valid code point
pub static MAX: char = '\U0010ffff';
/// Converts from `u32` to a `char`
#[inline]
pub fn from_u32(i: u32) -> Option<char> {
// catch out-of-bounds and surrogates
if (i > MAX as u32) || (i >= 0xD800 && i <= 0xDFFF) {
None
} else {
Some(unsafe { transmute(i) })
}
}
/// Returns whether the specified `char` is considered a Unicode alphabetic
/// code point
pub fn is_alphabetic(c: char) -> bool { derived_property::Alphabetic(c) }
/// Returns whether the specified `char` satisfies the 'XID_Start' Unicode property
///
/// 'XID_Start' is a Unicode Derived Property specified in
/// [UAX #31](http://unicode.org/reports/tr31/#NFKC_Modifications),
/// mostly similar to ID_Start but modified for closure under NFKx.
pub fn is_XID_start(c: char) -> bool { derived_property::XID_Start(c) }
/// Returns whether the specified `char` satisfies the 'XID_Continue' Unicode property
///
/// 'XID_Continue' is a Unicode Derived Property specified in
/// [UAX #31](http://unicode.org/reports/tr31/#NFKC_Modifications),
/// mostly similar to 'ID_Continue' but modified for closure under NFKx.
pub fn is_XID_continue(c: char) -> bool { derived_property::XID_Continue(c) }
///
/// Indicates whether a `char` is in lower case
///
/// This is defined according to the terms of the Unicode Derived Core Property 'Lowercase'.
///
#[inline]
pub fn is_lowercase(c: char) -> bool { derived_property::Lowercase(c) }
///
/// Indicates whether a `char` is in upper case
///
/// This is defined according to the terms of the Unicode Derived Core Property 'Uppercase'.
///
#[inline]
pub fn is_uppercase(c: char) -> bool { derived_property::Uppercase(c) }
///
/// Indicates whether a `char` is whitespace
///
/// Whitespace is defined in terms of the Unicode Property 'White_Space'.
///
#[inline]
pub fn is_whitespace(c: char) -> bool {
// As an optimization ASCII whitespace characters are checked separately
c == ' '
|| ('\x09' <= c && c <= '\x0d')
|| property::White_Space(c)
}
///
/// Indicates whether a `char` is alphanumeric
///
/// Alphanumericness is defined in terms of the Unicode General Categories
/// 'Nd', 'Nl', 'No' and the Derived Core Property 'Alphabetic'.
///
#[inline]
pub fn is_alphanumeric(c: char) -> bool {
derived_property::Alphabetic(c)
|| general_category::Nd(c)
|| general_category::Nl(c)
|| general_category::No(c)
}
///
/// Indicates whether a `char` is a control code point
///
/// Control code points are defined in terms of the Unicode General Category
/// 'Cc'.
///
#[inline]
pub fn is_control(c: char) -> bool { general_category::Cc(c) }
/// Indicates whether the `char` is numeric (Nd, Nl, or No)
#[inline]
pub fn is_digit(c: char) -> bool {
general_category::Nd(c)
|| general_category::Nl(c)
|| general_category::No(c)
}
///
/// Checks if a `char` parses as a numeric digit in the given radix
///
/// Compared to `is_digit()`, this function only recognizes the
/// characters `0-9`, `a-z` and `A-Z`.
///
/// # Return value
///
/// Returns `true` if `c` is a valid digit under `radix`, and `false`
/// otherwise.
///
/// # Failure
///
/// Fails if given a `radix` > 36.
///
/// # Note
///
/// This just wraps `to_digit()`.
///
#[inline]
pub fn is_digit_radix(c: char, radix: uint) -> bool {
match to_digit(c, radix) {
Some(_) => true,
None => false,
}
}
///
/// Converts a `char` to the corresponding digit
///
/// # Return value
///
/// If `c` is between '0' and '9', the corresponding value
/// between 0 and 9. If `c` is 'a' or 'A', 10. If `c` is
/// 'b' or 'B', 11, etc. Returns none if the `char` does not
/// refer to a digit in the given radix.
///
/// # Failure
///
/// Fails if given a `radix` outside the range `[0..36]`.
///
#[inline]
pub fn to_digit(c: char, radix: uint) -> Option<uint> {
if radix > 36 {
fail!("to_digit: radix is too high (maximum 36)");
}
let val = match c {
'0' .. '9' => c as uint - ('0' as uint),
'a' .. 'z' => c as uint + 10u - ('a' as uint),
'A' .. 'Z' => c as uint + 10u - ('A' as uint),
_ => return None,
};
if val < radix { Some(val) }
else { None }
}
/// Convert a char to its uppercase equivalent
///
/// The case-folding performed is the common or simple mapping:
/// it maps one unicode codepoint (one char in Rust) to its uppercase equivalent according
/// to the Unicode database at ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt
/// The additional SpecialCasing.txt is not considered here, as it expands to multiple
/// codepoints in some cases.
///
/// A full reference can be found here
/// http://www.unicode.org/versions/Unicode4.0.0/ch03.pdf#G33992
///
/// # Return value
///
/// Returns the char itself if no conversion was made
#[inline]
pub fn to_uppercase(c: char) -> char {
conversions::to_upper(c)
}
/// Convert a char to its lowercase equivalent
///
/// The case-folding performed is the common or simple mapping
/// see `to_uppercase` for references and more information
///
/// # Return value
///
/// Returns the char itself if no conversion if possible
#[inline]
pub fn to_lowercase(c: char) -> char {
conversions::to_lower(c)
}
///
/// Converts a number to the character representing it
///
/// # Return value
///
/// Returns `Some(char)` if `num` represents one digit under `radix`,
/// using one character of `0-9` or `a-z`, or `None` if it doesn't.
///
/// # Failure
///
/// Fails if given an `radix` > 36.
///
#[inline]
pub fn from_digit(num: uint, radix: uint) -> Option<char> {
if radix > 36 {
fail!("from_digit: radix is to high (maximum 36)");
}
if num < radix {
unsafe {
if num < 10 {
Some(transmute(('0' as uint + num) as u32))
} else {
Some(transmute(('a' as uint + num - 10u) as u32))
}
}
} else {
None
}
}
// Constants from Unicode 6.2.0 Section 3.12 Conjoining Jamo Behavior
static S_BASE: uint = 0xAC00;
static L_BASE: uint = 0x1100;
static V_BASE: uint = 0x1161;
static T_BASE: uint = 0x11A7;
static L_COUNT: uint = 19;
static V_COUNT: uint = 21;
static T_COUNT: uint = 28;
static N_COUNT: uint = (V_COUNT * T_COUNT);
static S_COUNT: uint = (L_COUNT * N_COUNT);
// Decompose a precomposed Hangul syllable
fn decompose_hangul(s: char, f: |char|) {
let si = s as uint - S_BASE;
let li = si / N_COUNT;
unsafe {
f(transmute((L_BASE + li) as u32));
let vi = (si % N_COUNT) / T_COUNT;
f(transmute((V_BASE + vi) as u32));
let ti = si % T_COUNT;
if ti > 0 {
f(transmute((T_BASE + ti) as u32));
}
}
}
/// Returns the canonical decomposition of a character
pub fn decompose_canonical(c: char, f: |char|) {
if (c as uint) < S_BASE || (c as uint) >= (S_BASE + S_COUNT) {
decompose::canonical(c, f);
} else {
decompose_hangul(c, f);
}
}
/// Returns the compatibility decomposition of a character
pub fn decompose_compatible(c: char, f: |char|) {
if (c as uint) < S_BASE || (c as uint) >= (S_BASE + S_COUNT) {
decompose::compatibility(c, f);
} else {
decompose_hangul(c, f);
}
}
///
/// Returns the hexadecimal Unicode escape of a `char`
///
/// The rules are as follows:
///
/// - chars in [0,0xff] get 2-digit escapes: `\\xNN`
/// - chars in [0x100,0xffff] get 4-digit escapes: `\\uNNNN`
/// - chars above 0x10000 get 8-digit escapes: `\\UNNNNNNNN`
///
pub fn escape_unicode(c: char, f: |char|) {
// avoid calling str::to_str_radix because we don't really need to allocate
// here.
f('\\');
let pad = match () {
_ if c <= '\xff' => { f('x'); 2 }
_ if c <= '\uffff' => { f('u'); 4 }
_ => { f('U'); 8 }
};
for offset in range_step::<i32>(4 * (pad - 1), -1, -4) {
unsafe {
match ((c as i32) >> offset) & 0xf {
i @ 0 .. 9 => { f(transmute('0' as i32 + i)); }
i => { f(transmute('a' as i32 + (i - 10))); }
}
}
}
}
///
/// Returns a 'default' ASCII and C++11-like literal escape of a `char`
///
/// The default is chosen with a bias toward producing literals that are
/// legal in a variety of languages, including C++11 and similar C-family
/// languages. The exact rules are:
///
/// - Tab, CR and LF are escaped as '\t', '\r' and '\n' respectively.
/// - Single-quote, double-quote and backslash chars are backslash-escaped.
/// - Any other chars in the range [0x20,0x7e] are not escaped.
/// - Any other chars are given hex unicode escapes; see `escape_unicode`.
///
pub fn escape_default(c: char, f: |char|) {
match c {
'\t' => { f('\\'); f('t'); }
'\r' => { f('\\'); f('r'); }
'\n' => { f('\\'); f('n'); }
'\\' => { f('\\'); f('\\'); }
'\'' => { f('\\'); f('\''); }
'"' => { f('\\'); f('"'); }
'\x20' .. '\x7e' => { f(c); }
_ => c.escape_unicode(f),
}
}
/// Returns the amount of bytes this `char` would need if encoded in UTF-8
pub fn len_utf8_bytes(c: char) -> uint {
static MAX_ONE_B: uint = 128u;
static MAX_TWO_B: uint = 2048u;
static MAX_THREE_B: uint = 65536u;
static MAX_FOUR_B: uint = 2097152u;
let code = c as uint;
match () {
_ if code < MAX_ONE_B => 1u,
_ if code < MAX_TWO_B => 2u,
_ if code < MAX_THREE_B => 3u,
_ if code < MAX_FOUR_B => 4u,
_ => fail!("invalid character!"),
}
}
/// Useful functions for Unicode characters.
pub trait Char {
/// Returns whether the specified character is considered a Unicode
/// alphabetic code point.
fn is_alphabetic(&self) -> bool;
/// Returns whether the specified character satisfies the 'XID_Start'
/// Unicode property.
///
/// 'XID_Start' is a Unicode Derived Property specified in
/// [UAX #31](http://unicode.org/reports/tr31/#NFKC_Modifications),
/// mostly similar to ID_Start but modified for closure under NFKx.
fn is_XID_start(&self) -> bool;
/// Returns whether the specified `char` satisfies the 'XID_Continue'
/// Unicode property.
///
/// 'XID_Continue' is a Unicode Derived Property specified in
/// [UAX #31](http://unicode.org/reports/tr31/#NFKC_Modifications),
/// mostly similar to 'ID_Continue' but modified for closure under NFKx.
fn is_XID_continue(&self) -> bool;
/// Indicates whether a character is in lowercase.
///
/// This is defined according to the terms of the Unicode Derived Core
/// Property `Lowercase`.
fn is_lowercase(&self) -> bool;
/// Indicates whether a character is in uppercase.
///
/// This is defined according to the terms of the Unicode Derived Core
/// Property `Uppercase`.
fn is_uppercase(&self) -> bool;
/// Indicates whether a character is whitespace.
///
/// Whitespace is defined in terms of the Unicode Property `White_Space`.
fn is_whitespace(&self) -> bool;
/// Indicates whether a character is alphanumeric.
///
/// Alphanumericness is defined in terms of the Unicode General Categories
/// 'Nd', 'Nl', 'No' and the Derived Core Property 'Alphabetic'.
fn is_alphanumeric(&self) -> bool;
/// Indicates whether a character is a control code point.
///
/// Control code points are defined in terms of the Unicode General
/// Category `Cc`.
fn is_control(&self) -> bool;
/// Indicates whether the character is numeric (Nd, Nl, or No).
fn is_digit(&self) -> bool;
/// Checks if a `char` parses as a numeric digit in the given radix.
///
/// Compared to `is_digit()`, this function only recognizes the characters
/// `0-9`, `a-z` and `A-Z`.
///
/// # Return value
///
/// Returns `true` if `c` is a valid digit under `radix`, and `false`
/// otherwise.
///
/// # Failure
///
/// Fails if given a radix > 36.
fn is_digit_radix(&self, radix: uint) -> bool;
/// Converts a character to the corresponding digit.
///
/// # Return value
///
/// If `c` is between '0' and '9', the corresponding value between 0 and
/// 9. If `c` is 'a' or 'A', 10. If `c` is 'b' or 'B', 11, etc. Returns
/// none if the character does not refer to a digit in the given radix.
///
/// # Failure
///
/// Fails if given a radix outside the range [0..36].
fn to_digit(&self, radix: uint) -> Option<uint>;
/// Converts a character to its lowercase equivalent.
///
/// The case-folding performed is the common or simple mapping. See
/// `to_uppercase()` for references and more information.
///
/// # Return value
///
/// Returns the lowercase equivalent of the character, or the character
/// itself if no conversion is possible.
fn to_lowercase(&self) -> char;
/// Converts a character to its uppercase equivalent.
///
/// The case-folding performed is the common or simple mapping: it maps
/// one unicode codepoint (one character in Rust) to its uppercase
/// equivalent according to the Unicode database [1]. The additional
/// `SpecialCasing.txt` is not considered here, as it expands to multiple
/// codepoints in some cases.
///
/// A full reference can be found here [2].
///
/// # Return value
///
/// Returns the uppercase equivalent of the character, or the character
/// itself if no conversion was made.
///
/// [1]: ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt
///
/// [2]: http://www.unicode.org/versions/Unicode4.0.0/ch03.pdf#G33992
fn to_uppercase(&self) -> char;
/// Converts a number to the character representing it.
///
/// # Return value
///
/// Returns `Some(char)` if `num` represents one digit under `radix`,
/// using one character of `0-9` or `a-z`, or `None` if it doesn't.
///
/// # Failure
///
/// Fails if given a radix > 36.
fn from_digit(num: uint, radix: uint) -> Option<char>;
/// Returns the hexadecimal Unicode escape of a character.
///
/// The rules are as follows:
///
/// * Characters in [0,0xff] get 2-digit escapes: `\\xNN`
/// * Characters in [0x100,0xffff] get 4-digit escapes: `\\uNNNN`.
/// * Characters above 0x10000 get 8-digit escapes: `\\UNNNNNNNN`.
fn escape_unicode(&self, f: |char|);
/// Returns a 'default' ASCII and C++11-like literal escape of a
/// character.
///
/// The default is chosen with a bias toward producing literals that are
/// legal in a variety of languages, including C++11 and similar C-family
/// languages. The exact rules are:
///
/// * Tab, CR and LF are escaped as '\t', '\r' and '\n' respectively.
/// * Single-quote, double-quote and backslash chars are backslash-
/// escaped.
/// * Any other chars in the range [0x20,0x7e] are not escaped.
/// * Any other chars are given hex unicode escapes; see `escape_unicode`.
fn escape_default(&self, f: |char|);
/// Returns the amount of bytes this character would need if encoded in
/// UTF-8.
fn len_utf8_bytes(&self) -> uint;
/// Encodes this character as UTF-8 into the provided byte buffer.
///
/// The buffer must be at least 4 bytes long or a runtime failure may
/// occur.
///
/// This will then return the number of bytes written to the slice.
fn encode_utf8(&self, dst: &mut [u8]) -> uint;
/// Encodes this character as UTF-16 into the provided `u16` buffer.
///
/// The buffer must be at least 2 elements long or a runtime failure may
/// occur.
///
/// This will then return the number of `u16`s written to the slice.
fn encode_utf16(&self, dst: &mut [u16]) -> uint;
}
impl Char for char {
fn is_alphabetic(&self) -> bool { is_alphabetic(*self) }
fn is_XID_start(&self) -> bool { is_XID_start(*self) }
fn is_XID_continue(&self) -> bool { is_XID_continue(*self) }
fn is_lowercase(&self) -> bool { is_lowercase(*self) }
fn is_uppercase(&self) -> bool { is_uppercase(*self) }
fn is_whitespace(&self) -> bool { is_whitespace(*self) }
fn is_alphanumeric(&self) -> bool { is_alphanumeric(*self) }
fn is_control(&self) -> bool { is_control(*self) }
fn is_digit(&self) -> bool { is_digit(*self) }
fn is_digit_radix(&self, radix: uint) -> bool { is_digit_radix(*self, radix) }
fn to_digit(&self, radix: uint) -> Option<uint> { to_digit(*self, radix) }
fn to_lowercase(&self) -> char { to_lowercase(*self) }
fn to_uppercase(&self) -> char { to_uppercase(*self) }
fn from_digit(num: uint, radix: uint) -> Option<char> { from_digit(num, radix) }
fn escape_unicode(&self, f: |char|) { escape_unicode(*self, f) }
fn escape_default(&self, f: |char|) { escape_default(*self, f) }
fn len_utf8_bytes(&self) -> uint { len_utf8_bytes(*self) }
fn encode_utf8(&self, dst: &mut [u8]) -> uint {
let code = *self as uint;
if code < MAX_ONE_B {
dst[0] = code as u8;
return 1;
} else if code < MAX_TWO_B {
dst[0] = (code >> 6u & 31u | TAG_TWO_B) as u8;
dst[1] = (code & 63u | TAG_CONT) as u8;
return 2;
} else if code < MAX_THREE_B {
dst[0] = (code >> 12u & 15u | TAG_THREE_B) as u8;
dst[1] = (code >> 6u & 63u | TAG_CONT) as u8;
dst[2] = (code & 63u | TAG_CONT) as u8;
return 3;
} else {
dst[0] = (code >> 18u & 7u | TAG_FOUR_B) as u8;
dst[1] = (code >> 12u & 63u | TAG_CONT) as u8;
dst[2] = (code >> 6u & 63u | TAG_CONT) as u8;
dst[3] = (code & 63u | TAG_CONT) as u8;
return 4;
}
}
fn encode_utf16(&self, dst: &mut [u16]) -> uint {
let mut ch = *self as uint;
if (ch & 0xFFFF_u) == ch {
// The BMP falls through (assuming non-surrogate, as it
// should)
assert!(ch <= 0xD7FF_u || ch >= 0xE000_u);
dst[0] = ch as u16;
1
} else {
// Supplementary planes break into surrogates.
assert!(ch >= 0x1_0000_u && ch <= 0x10_FFFF_u);
ch -= 0x1_0000_u;
dst[0] = 0xD800_u16 | ((ch >> 10) as u16);
dst[1] = 0xDC00_u16 | ((ch as u16) & 0x3FF_u16);
2
}
}
}
#[cfg(not(test))]
impl Eq for char {
#[inline]
fn eq(&self, other: &char) -> bool { (*self) == (*other) }
}
#[cfg(not(test))]
impl TotalEq for char {}
#[cfg(not(test))]
impl Ord for char {
#[inline]
fn lt(&self, other: &char) -> bool { *self < *other }
}
#[cfg(not(test))]
impl TotalOrd for char {
fn cmp(&self, other: &char) -> Ordering {
(*self as u32).cmp(&(*other as u32))
}
}
#[cfg(not(test))]
impl Default for char {
#[inline]
fn default() -> char { '\x00' }
}
#[cfg(test)]
mod test {
use super::{escape_unicode, escape_default};
use realcore::char::Char;
use slice::ImmutableVector;
use realstd::option::{Some, None};
use realstd::strbuf::StrBuf;
use realstd::str::StrAllocating;
#[test]
fn test_is_lowercase() {
assert!('a'.is_lowercase());
assert!('ö'.is_lowercase());
assert!('ß'.is_lowercase());
assert!(!'Ü'.is_lowercase());
assert!(!'P'.is_lowercase());
}
#[test]
fn test_is_uppercase() {
assert!(!'h'.is_uppercase());
assert!(!'ä'.is_uppercase());
assert!(!'ß'.is_uppercase());
assert!('Ö'.is_uppercase());
assert!('T'.is_uppercase());
}
#[test]
fn test_is_whitespace() {
assert!(' '.is_whitespace());
assert!('\u2007'.is_whitespace());
assert!('\t'.is_whitespace());
assert!('\n'.is_whitespace());
assert!(!'a'.is_whitespace());
assert!(!'_'.is_whitespace());
assert!(!'\u0000'.is_whitespace());
}
#[test]
fn test_to_digit() {
assert_eq!('0'.to_digit(10u), Some(0u));
assert_eq!('1'.to_digit(2u), Some(1u));
assert_eq!('2'.to_digit(3u), Some(2u));
assert_eq!('9'.to_digit(10u), Some(9u));
assert_eq!('a'.to_digit(16u), Some(10u));
assert_eq!('A'.to_digit(16u), Some(10u));
assert_eq!('b'.to_digit(16u), Some(11u));
assert_eq!('B'.to_digit(16u), Some(11u));
assert_eq!('z'.to_digit(36u), Some(35u));
assert_eq!('Z'.to_digit(36u), Some(35u));
assert_eq!(' '.to_digit(10u), None);
assert_eq!('$'.to_digit(36u), None);
}
#[test]
fn test_to_lowercase() {
assert_eq!('A'.to_lowercase(), 'a');
assert_eq!('Ö'.to_lowercase(), 'ö');
assert_eq!('ß'.to_lowercase(), 'ß');
assert_eq!('Ü'.to_lowercase(), 'ü');
assert_eq!('💩'.to_lowercase(), '💩');
assert_eq!('Σ'.to_lowercase(), 'σ');
assert_eq!('Τ'.to_lowercase(), 'τ');
assert_eq!('Ι'.to_lowercase(), 'ι');
assert_eq!('Γ'.to_lowercase(), 'γ');
assert_eq!('Μ'.to_lowercase(), 'μ');
assert_eq!('Α'.to_lowercase(), 'α');
assert_eq!('Σ'.to_lowercase(), 'σ');
}
#[test]
fn test_to_uppercase() {
assert_eq!('a'.to_uppercase(), 'A');
assert_eq!('ö'.to_uppercase(), 'Ö');
assert_eq!('ß'.to_uppercase(), 'ß'); // not ẞ: Latin capital letter sharp s
assert_eq!('ü'.to_uppercase(), 'Ü');
assert_eq!('💩'.to_uppercase(), '💩');
assert_eq!('σ'.to_uppercase(), 'Σ');
assert_eq!('τ'.to_uppercase(), 'Τ');
assert_eq!('ι'.to_uppercase(), 'Ι');
assert_eq!('γ'.to_uppercase(), 'Γ');
assert_eq!('μ'.to_uppercase(), 'Μ');
assert_eq!('α'.to_uppercase(), 'Α');
assert_eq!('ς'.to_uppercase(), 'Σ');
}
#[test]
fn test_is_control() {
assert!('\u0000'.is_control());
assert!('\u0003'.is_control());
assert!('\u0006'.is_control());
assert!('\u0009'.is_control());
assert!('\u007f'.is_control());
assert!('\u0092'.is_control());
assert!(!'\u0020'.is_control());
assert!(!'\u0055'.is_control());
assert!(!'\u0068'.is_control());
}
#[test]
fn test_is_digit() {
assert!('2'.is_digit());
assert!('7'.is_digit());
assert!(!'c'.is_digit());
assert!(!'i'.is_digit());
assert!(!'z'.is_digit());
assert!(!'Q'.is_digit());
}
#[test]
fn test_escape_default() {
fn string(c: char) -> ~str {
let mut result = StrBuf::new();
escape_default(c, |c| { result.push_char(c); });
return result.into_owned();
}
assert_eq!(string('\n'), "\\n".to_owned());
assert_eq!(string('\r'), "\\r".to_owned());
assert_eq!(string('\''), "\\'".to_owned());
assert_eq!(string('"'), "\\\"".to_owned());
assert_eq!(string(' '), " ".to_owned());
assert_eq!(string('a'), "a".to_owned());
assert_eq!(string('~'), "~".to_owned());
assert_eq!(string('\x00'), "\\x00".to_owned());
assert_eq!(string('\x1f'), "\\x1f".to_owned());
assert_eq!(string('\x7f'), "\\x7f".to_owned());
assert_eq!(string('\xff'), "\\xff".to_owned());
assert_eq!(string('\u011b'), "\\u011b".to_owned());
assert_eq!(string('\U0001d4b6'), "\\U0001d4b6".to_owned());
}
#[test]
fn test_escape_unicode() {
fn string(c: char) -> ~str {
let mut result = StrBuf::new();
escape_unicode(c, |c| { result.push_char(c); });
return result.into_owned();
}
assert_eq!(string('\x00'), "\\x00".to_owned());
assert_eq!(string('\n'), "\\x0a".to_owned());
assert_eq!(string(' '), "\\x20".to_owned());
assert_eq!(string('a'), "\\x61".to_owned());
assert_eq!(string('\u011b'), "\\u011b".to_owned());
assert_eq!(string('\U0001d4b6'), "\\U0001d4b6".to_owned());
}
#[test]
fn test_to_str() {
use realstd::to_str::ToStr;
let s = 't'.to_str();
assert_eq!(s, "t".to_owned());
}
#[test]
fn test_encode_utf8() {
fn check(input: char, expect: &[u8]) {
let mut buf = [0u8, ..4];
let n = input.encode_utf8(buf /* as mut slice! */);
assert_eq!(buf.slice_to(n), expect);
}
check('x', [0x78]);
check('\u00e9', [0xc3, 0xa9]);
check('\ua66e', [0xea, 0x99, 0xae]);
check('\U0001f4a9', [0xf0, 0x9f, 0x92, 0xa9]);
}
#[test]
fn test_encode_utf16() {
fn check(input: char, expect: &[u16]) {
let mut buf = [0u16, ..2];
let n = input.encode_utf16(buf /* as mut slice! */);
assert_eq!(buf.slice_to(n), expect);
}
check('x', [0x0078]);
check('\u00e9', [0x00e9]);
check('\ua66e', [0xa66e]);
check('\U0001f4a9', [0xd83d, 0xdca9]);
}
}