f94d671bfa
This commit revisits the `cast` module in libcore and libstd, and scrutinizes all functions inside of it. The result was to remove the `cast` module entirely, folding all functionality into the `mem` module. Specifically, this is the fate of each function in the `cast` module. * transmute - This function was moved to `mem`, but it is now marked as #[unstable]. This is due to planned changes to the `transmute` function and how it can be invoked (see the #[unstable] comment). For more information, see RFC 5 and #12898 * transmute_copy - This function was moved to `mem`, with clarification that is is not an error to invoke it with T/U that are different sizes, but rather that it is strongly discouraged. This function is now #[stable] * forget - This function was moved to `mem` and marked #[stable] * bump_box_refcount - This function was removed due to the deprecation of managed boxes as well as its questionable utility. * transmute_mut - This function was previously deprecated, and removed as part of this commit. * transmute_mut_unsafe - This function doesn't serve much of a purpose when it can be achieved with an `as` in safe code, so it was removed. * transmute_lifetime - This function was removed because it is likely a strong indication that code is incorrect in the first place. * transmute_mut_lifetime - This function was removed for the same reasons as `transmute_lifetime` * copy_lifetime - This function was moved to `mem`, but it is marked `#[unstable]` now due to the likelihood of being removed in the future if it is found to not be very useful. * copy_mut_lifetime - This function was also moved to `mem`, but had the same treatment as `copy_lifetime`. * copy_lifetime_vec - This function was removed because it is not used today, and its existence is not necessary with DST (copy_lifetime will suffice). In summary, the cast module was stripped down to these functions, and then the functions were moved to the `mem` module. transmute - #[unstable] transmute_copy - #[stable] forget - #[stable] copy_lifetime - #[unstable] copy_mut_lifetime - #[unstable] [breaking-change]
862 lines
28 KiB
Rust
862 lines
28 KiB
Rust
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
|
||
// file at the top-level directory of this distribution and at
|
||
// http://rust-lang.org/COPYRIGHT.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||
// option. This file may not be copied, modified, or distributed
|
||
// except according to those terms.
|
||
|
||
//! Character manipulation (`char` type, Unicode Scalar Value)
|
||
//!
|
||
//! This module provides the `Char` trait, as well as its implementation
|
||
//! for the primitive `char` type, in order to allow basic character manipulation.
|
||
//!
|
||
//! A `char` actually represents a
|
||
//! *[Unicode Scalar Value](http://www.unicode.org/glossary/#unicode_scalar_value)*,
|
||
//! as it can contain any Unicode code point except high-surrogate and
|
||
//! low-surrogate code points.
|
||
//!
|
||
//! As such, only values in the ranges \[0x0,0xD7FF\] and \[0xE000,0x10FFFF\]
|
||
//! (inclusive) are allowed. A `char` can always be safely cast to a `u32`;
|
||
//! however the converse is not always true due to the above range limits
|
||
//! and, as such, should be performed via the `from_u32` function..
|
||
|
||
|
||
use mem::transmute;
|
||
use option::{None, Option, Some};
|
||
use iter::{Iterator, range_step};
|
||
use unicode::{derived_property, property, general_category, decompose, conversions};
|
||
|
||
#[cfg(not(test))] use cmp::{Eq, Ord, TotalEq, TotalOrd, Ordering};
|
||
#[cfg(not(test))] use default::Default;
|
||
|
||
// UTF-8 ranges and tags for encoding characters
|
||
static TAG_CONT: uint = 128u;
|
||
static MAX_ONE_B: uint = 128u;
|
||
static TAG_TWO_B: uint = 192u;
|
||
static MAX_TWO_B: uint = 2048u;
|
||
static TAG_THREE_B: uint = 224u;
|
||
static MAX_THREE_B: uint = 65536u;
|
||
static TAG_FOUR_B: uint = 240u;
|
||
|
||
/*
|
||
Lu Uppercase_Letter an uppercase letter
|
||
Ll Lowercase_Letter a lowercase letter
|
||
Lt Titlecase_Letter a digraphic character, with first part uppercase
|
||
Lm Modifier_Letter a modifier letter
|
||
Lo Other_Letter other letters, including syllables and ideographs
|
||
Mn Nonspacing_Mark a nonspacing combining mark (zero advance width)
|
||
Mc Spacing_Mark a spacing combining mark (positive advance width)
|
||
Me Enclosing_Mark an enclosing combining mark
|
||
Nd Decimal_Number a decimal digit
|
||
Nl Letter_Number a letterlike numeric character
|
||
No Other_Number a numeric character of other type
|
||
Pc Connector_Punctuation a connecting punctuation mark, like a tie
|
||
Pd Dash_Punctuation a dash or hyphen punctuation mark
|
||
Ps Open_Punctuation an opening punctuation mark (of a pair)
|
||
Pe Close_Punctuation a closing punctuation mark (of a pair)
|
||
Pi Initial_Punctuation an initial quotation mark
|
||
Pf Final_Punctuation a final quotation mark
|
||
Po Other_Punctuation a punctuation mark of other type
|
||
Sm Math_Symbol a symbol of primarily mathematical use
|
||
Sc Currency_Symbol a currency sign
|
||
Sk Modifier_Symbol a non-letterlike modifier symbol
|
||
So Other_Symbol a symbol of other type
|
||
Zs Space_Separator a space character (of various non-zero widths)
|
||
Zl Line_Separator U+2028 LINE SEPARATOR only
|
||
Zp Paragraph_Separator U+2029 PARAGRAPH SEPARATOR only
|
||
Cc Control a C0 or C1 control code
|
||
Cf Format a format control character
|
||
Cs Surrogate a surrogate code point
|
||
Co Private_Use a private-use character
|
||
Cn Unassigned a reserved unassigned code point or a noncharacter
|
||
*/
|
||
|
||
/// The highest valid code point
|
||
pub static MAX: char = '\U0010ffff';
|
||
|
||
/// Converts from `u32` to a `char`
|
||
#[inline]
|
||
pub fn from_u32(i: u32) -> Option<char> {
|
||
// catch out-of-bounds and surrogates
|
||
if (i > MAX as u32) || (i >= 0xD800 && i <= 0xDFFF) {
|
||
None
|
||
} else {
|
||
Some(unsafe { transmute(i) })
|
||
}
|
||
}
|
||
|
||
/// Returns whether the specified `char` is considered a Unicode alphabetic
|
||
/// code point
|
||
pub fn is_alphabetic(c: char) -> bool { derived_property::Alphabetic(c) }
|
||
|
||
/// Returns whether the specified `char` satisfies the 'XID_Start' Unicode property
|
||
///
|
||
/// 'XID_Start' is a Unicode Derived Property specified in
|
||
/// [UAX #31](http://unicode.org/reports/tr31/#NFKC_Modifications),
|
||
/// mostly similar to ID_Start but modified for closure under NFKx.
|
||
pub fn is_XID_start(c: char) -> bool { derived_property::XID_Start(c) }
|
||
|
||
/// Returns whether the specified `char` satisfies the 'XID_Continue' Unicode property
|
||
///
|
||
/// 'XID_Continue' is a Unicode Derived Property specified in
|
||
/// [UAX #31](http://unicode.org/reports/tr31/#NFKC_Modifications),
|
||
/// mostly similar to 'ID_Continue' but modified for closure under NFKx.
|
||
pub fn is_XID_continue(c: char) -> bool { derived_property::XID_Continue(c) }
|
||
|
||
///
|
||
/// Indicates whether a `char` is in lower case
|
||
///
|
||
/// This is defined according to the terms of the Unicode Derived Core Property 'Lowercase'.
|
||
///
|
||
#[inline]
|
||
pub fn is_lowercase(c: char) -> bool { derived_property::Lowercase(c) }
|
||
|
||
///
|
||
/// Indicates whether a `char` is in upper case
|
||
///
|
||
/// This is defined according to the terms of the Unicode Derived Core Property 'Uppercase'.
|
||
///
|
||
#[inline]
|
||
pub fn is_uppercase(c: char) -> bool { derived_property::Uppercase(c) }
|
||
|
||
///
|
||
/// Indicates whether a `char` is whitespace
|
||
///
|
||
/// Whitespace is defined in terms of the Unicode Property 'White_Space'.
|
||
///
|
||
#[inline]
|
||
pub fn is_whitespace(c: char) -> bool {
|
||
// As an optimization ASCII whitespace characters are checked separately
|
||
c == ' '
|
||
|| ('\x09' <= c && c <= '\x0d')
|
||
|| property::White_Space(c)
|
||
}
|
||
|
||
///
|
||
/// Indicates whether a `char` is alphanumeric
|
||
///
|
||
/// Alphanumericness is defined in terms of the Unicode General Categories
|
||
/// 'Nd', 'Nl', 'No' and the Derived Core Property 'Alphabetic'.
|
||
///
|
||
#[inline]
|
||
pub fn is_alphanumeric(c: char) -> bool {
|
||
derived_property::Alphabetic(c)
|
||
|| general_category::Nd(c)
|
||
|| general_category::Nl(c)
|
||
|| general_category::No(c)
|
||
}
|
||
|
||
///
|
||
/// Indicates whether a `char` is a control code point
|
||
///
|
||
/// Control code points are defined in terms of the Unicode General Category
|
||
/// 'Cc'.
|
||
///
|
||
#[inline]
|
||
pub fn is_control(c: char) -> bool { general_category::Cc(c) }
|
||
|
||
/// Indicates whether the `char` is numeric (Nd, Nl, or No)
|
||
#[inline]
|
||
pub fn is_digit(c: char) -> bool {
|
||
general_category::Nd(c)
|
||
|| general_category::Nl(c)
|
||
|| general_category::No(c)
|
||
}
|
||
|
||
///
|
||
/// Checks if a `char` parses as a numeric digit in the given radix
|
||
///
|
||
/// Compared to `is_digit()`, this function only recognizes the
|
||
/// characters `0-9`, `a-z` and `A-Z`.
|
||
///
|
||
/// # Return value
|
||
///
|
||
/// Returns `true` if `c` is a valid digit under `radix`, and `false`
|
||
/// otherwise.
|
||
///
|
||
/// # Failure
|
||
///
|
||
/// Fails if given a `radix` > 36.
|
||
///
|
||
/// # Note
|
||
///
|
||
/// This just wraps `to_digit()`.
|
||
///
|
||
#[inline]
|
||
pub fn is_digit_radix(c: char, radix: uint) -> bool {
|
||
match to_digit(c, radix) {
|
||
Some(_) => true,
|
||
None => false,
|
||
}
|
||
}
|
||
|
||
///
|
||
/// Converts a `char` to the corresponding digit
|
||
///
|
||
/// # Return value
|
||
///
|
||
/// If `c` is between '0' and '9', the corresponding value
|
||
/// between 0 and 9. If `c` is 'a' or 'A', 10. If `c` is
|
||
/// 'b' or 'B', 11, etc. Returns none if the `char` does not
|
||
/// refer to a digit in the given radix.
|
||
///
|
||
/// # Failure
|
||
///
|
||
/// Fails if given a `radix` outside the range `[0..36]`.
|
||
///
|
||
#[inline]
|
||
pub fn to_digit(c: char, radix: uint) -> Option<uint> {
|
||
if radix > 36 {
|
||
fail!("to_digit: radix is too high (maximum 36)");
|
||
}
|
||
let val = match c {
|
||
'0' .. '9' => c as uint - ('0' as uint),
|
||
'a' .. 'z' => c as uint + 10u - ('a' as uint),
|
||
'A' .. 'Z' => c as uint + 10u - ('A' as uint),
|
||
_ => return None,
|
||
};
|
||
if val < radix { Some(val) }
|
||
else { None }
|
||
}
|
||
|
||
/// Convert a char to its uppercase equivalent
|
||
///
|
||
/// The case-folding performed is the common or simple mapping:
|
||
/// it maps one unicode codepoint (one char in Rust) to its uppercase equivalent according
|
||
/// to the Unicode database at ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt
|
||
/// The additional SpecialCasing.txt is not considered here, as it expands to multiple
|
||
/// codepoints in some cases.
|
||
///
|
||
/// A full reference can be found here
|
||
/// http://www.unicode.org/versions/Unicode4.0.0/ch03.pdf#G33992
|
||
///
|
||
/// # Return value
|
||
///
|
||
/// Returns the char itself if no conversion was made
|
||
#[inline]
|
||
pub fn to_uppercase(c: char) -> char {
|
||
conversions::to_upper(c)
|
||
}
|
||
|
||
/// Convert a char to its lowercase equivalent
|
||
///
|
||
/// The case-folding performed is the common or simple mapping
|
||
/// see `to_uppercase` for references and more information
|
||
///
|
||
/// # Return value
|
||
///
|
||
/// Returns the char itself if no conversion if possible
|
||
#[inline]
|
||
pub fn to_lowercase(c: char) -> char {
|
||
conversions::to_lower(c)
|
||
}
|
||
|
||
///
|
||
/// Converts a number to the character representing it
|
||
///
|
||
/// # Return value
|
||
///
|
||
/// Returns `Some(char)` if `num` represents one digit under `radix`,
|
||
/// using one character of `0-9` or `a-z`, or `None` if it doesn't.
|
||
///
|
||
/// # Failure
|
||
///
|
||
/// Fails if given an `radix` > 36.
|
||
///
|
||
#[inline]
|
||
pub fn from_digit(num: uint, radix: uint) -> Option<char> {
|
||
if radix > 36 {
|
||
fail!("from_digit: radix is to high (maximum 36)");
|
||
}
|
||
if num < radix {
|
||
unsafe {
|
||
if num < 10 {
|
||
Some(transmute(('0' as uint + num) as u32))
|
||
} else {
|
||
Some(transmute(('a' as uint + num - 10u) as u32))
|
||
}
|
||
}
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
|
||
// Constants from Unicode 6.2.0 Section 3.12 Conjoining Jamo Behavior
|
||
static S_BASE: uint = 0xAC00;
|
||
static L_BASE: uint = 0x1100;
|
||
static V_BASE: uint = 0x1161;
|
||
static T_BASE: uint = 0x11A7;
|
||
static L_COUNT: uint = 19;
|
||
static V_COUNT: uint = 21;
|
||
static T_COUNT: uint = 28;
|
||
static N_COUNT: uint = (V_COUNT * T_COUNT);
|
||
static S_COUNT: uint = (L_COUNT * N_COUNT);
|
||
|
||
// Decompose a precomposed Hangul syllable
|
||
fn decompose_hangul(s: char, f: |char|) {
|
||
let si = s as uint - S_BASE;
|
||
|
||
let li = si / N_COUNT;
|
||
unsafe {
|
||
f(transmute((L_BASE + li) as u32));
|
||
|
||
let vi = (si % N_COUNT) / T_COUNT;
|
||
f(transmute((V_BASE + vi) as u32));
|
||
|
||
let ti = si % T_COUNT;
|
||
if ti > 0 {
|
||
f(transmute((T_BASE + ti) as u32));
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Returns the canonical decomposition of a character
|
||
pub fn decompose_canonical(c: char, f: |char|) {
|
||
if (c as uint) < S_BASE || (c as uint) >= (S_BASE + S_COUNT) {
|
||
decompose::canonical(c, f);
|
||
} else {
|
||
decompose_hangul(c, f);
|
||
}
|
||
}
|
||
|
||
/// Returns the compatibility decomposition of a character
|
||
pub fn decompose_compatible(c: char, f: |char|) {
|
||
if (c as uint) < S_BASE || (c as uint) >= (S_BASE + S_COUNT) {
|
||
decompose::compatibility(c, f);
|
||
} else {
|
||
decompose_hangul(c, f);
|
||
}
|
||
}
|
||
|
||
///
|
||
/// Returns the hexadecimal Unicode escape of a `char`
|
||
///
|
||
/// The rules are as follows:
|
||
///
|
||
/// - chars in [0,0xff] get 2-digit escapes: `\\xNN`
|
||
/// - chars in [0x100,0xffff] get 4-digit escapes: `\\uNNNN`
|
||
/// - chars above 0x10000 get 8-digit escapes: `\\UNNNNNNNN`
|
||
///
|
||
pub fn escape_unicode(c: char, f: |char|) {
|
||
// avoid calling str::to_str_radix because we don't really need to allocate
|
||
// here.
|
||
f('\\');
|
||
let pad = match () {
|
||
_ if c <= '\xff' => { f('x'); 2 }
|
||
_ if c <= '\uffff' => { f('u'); 4 }
|
||
_ => { f('U'); 8 }
|
||
};
|
||
for offset in range_step::<i32>(4 * (pad - 1), -1, -4) {
|
||
unsafe {
|
||
match ((c as i32) >> offset) & 0xf {
|
||
i @ 0 .. 9 => { f(transmute('0' as i32 + i)); }
|
||
i => { f(transmute('a' as i32 + (i - 10))); }
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
///
|
||
/// Returns a 'default' ASCII and C++11-like literal escape of a `char`
|
||
///
|
||
/// The default is chosen with a bias toward producing literals that are
|
||
/// legal in a variety of languages, including C++11 and similar C-family
|
||
/// languages. The exact rules are:
|
||
///
|
||
/// - Tab, CR and LF are escaped as '\t', '\r' and '\n' respectively.
|
||
/// - Single-quote, double-quote and backslash chars are backslash-escaped.
|
||
/// - Any other chars in the range [0x20,0x7e] are not escaped.
|
||
/// - Any other chars are given hex unicode escapes; see `escape_unicode`.
|
||
///
|
||
pub fn escape_default(c: char, f: |char|) {
|
||
match c {
|
||
'\t' => { f('\\'); f('t'); }
|
||
'\r' => { f('\\'); f('r'); }
|
||
'\n' => { f('\\'); f('n'); }
|
||
'\\' => { f('\\'); f('\\'); }
|
||
'\'' => { f('\\'); f('\''); }
|
||
'"' => { f('\\'); f('"'); }
|
||
'\x20' .. '\x7e' => { f(c); }
|
||
_ => c.escape_unicode(f),
|
||
}
|
||
}
|
||
|
||
/// Returns the amount of bytes this `char` would need if encoded in UTF-8
|
||
pub fn len_utf8_bytes(c: char) -> uint {
|
||
static MAX_ONE_B: uint = 128u;
|
||
static MAX_TWO_B: uint = 2048u;
|
||
static MAX_THREE_B: uint = 65536u;
|
||
static MAX_FOUR_B: uint = 2097152u;
|
||
|
||
let code = c as uint;
|
||
match () {
|
||
_ if code < MAX_ONE_B => 1u,
|
||
_ if code < MAX_TWO_B => 2u,
|
||
_ if code < MAX_THREE_B => 3u,
|
||
_ if code < MAX_FOUR_B => 4u,
|
||
_ => fail!("invalid character!"),
|
||
}
|
||
}
|
||
|
||
/// Useful functions for Unicode characters.
|
||
pub trait Char {
|
||
/// Returns whether the specified character is considered a Unicode
|
||
/// alphabetic code point.
|
||
fn is_alphabetic(&self) -> bool;
|
||
|
||
/// Returns whether the specified character satisfies the 'XID_Start'
|
||
/// Unicode property.
|
||
///
|
||
/// 'XID_Start' is a Unicode Derived Property specified in
|
||
/// [UAX #31](http://unicode.org/reports/tr31/#NFKC_Modifications),
|
||
/// mostly similar to ID_Start but modified for closure under NFKx.
|
||
fn is_XID_start(&self) -> bool;
|
||
|
||
/// Returns whether the specified `char` satisfies the 'XID_Continue'
|
||
/// Unicode property.
|
||
///
|
||
/// 'XID_Continue' is a Unicode Derived Property specified in
|
||
/// [UAX #31](http://unicode.org/reports/tr31/#NFKC_Modifications),
|
||
/// mostly similar to 'ID_Continue' but modified for closure under NFKx.
|
||
fn is_XID_continue(&self) -> bool;
|
||
|
||
|
||
/// Indicates whether a character is in lowercase.
|
||
///
|
||
/// This is defined according to the terms of the Unicode Derived Core
|
||
/// Property `Lowercase`.
|
||
fn is_lowercase(&self) -> bool;
|
||
|
||
/// Indicates whether a character is in uppercase.
|
||
///
|
||
/// This is defined according to the terms of the Unicode Derived Core
|
||
/// Property `Uppercase`.
|
||
fn is_uppercase(&self) -> bool;
|
||
|
||
/// Indicates whether a character is whitespace.
|
||
///
|
||
/// Whitespace is defined in terms of the Unicode Property `White_Space`.
|
||
fn is_whitespace(&self) -> bool;
|
||
|
||
/// Indicates whether a character is alphanumeric.
|
||
///
|
||
/// Alphanumericness is defined in terms of the Unicode General Categories
|
||
/// 'Nd', 'Nl', 'No' and the Derived Core Property 'Alphabetic'.
|
||
fn is_alphanumeric(&self) -> bool;
|
||
|
||
/// Indicates whether a character is a control code point.
|
||
///
|
||
/// Control code points are defined in terms of the Unicode General
|
||
/// Category `Cc`.
|
||
fn is_control(&self) -> bool;
|
||
|
||
/// Indicates whether the character is numeric (Nd, Nl, or No).
|
||
fn is_digit(&self) -> bool;
|
||
|
||
/// Checks if a `char` parses as a numeric digit in the given radix.
|
||
///
|
||
/// Compared to `is_digit()`, this function only recognizes the characters
|
||
/// `0-9`, `a-z` and `A-Z`.
|
||
///
|
||
/// # Return value
|
||
///
|
||
/// Returns `true` if `c` is a valid digit under `radix`, and `false`
|
||
/// otherwise.
|
||
///
|
||
/// # Failure
|
||
///
|
||
/// Fails if given a radix > 36.
|
||
fn is_digit_radix(&self, radix: uint) -> bool;
|
||
|
||
/// Converts a character to the corresponding digit.
|
||
///
|
||
/// # Return value
|
||
///
|
||
/// If `c` is between '0' and '9', the corresponding value between 0 and
|
||
/// 9. If `c` is 'a' or 'A', 10. If `c` is 'b' or 'B', 11, etc. Returns
|
||
/// none if the character does not refer to a digit in the given radix.
|
||
///
|
||
/// # Failure
|
||
///
|
||
/// Fails if given a radix outside the range [0..36].
|
||
fn to_digit(&self, radix: uint) -> Option<uint>;
|
||
|
||
/// Converts a character to its lowercase equivalent.
|
||
///
|
||
/// The case-folding performed is the common or simple mapping. See
|
||
/// `to_uppercase()` for references and more information.
|
||
///
|
||
/// # Return value
|
||
///
|
||
/// Returns the lowercase equivalent of the character, or the character
|
||
/// itself if no conversion is possible.
|
||
fn to_lowercase(&self) -> char;
|
||
|
||
/// Converts a character to its uppercase equivalent.
|
||
///
|
||
/// The case-folding performed is the common or simple mapping: it maps
|
||
/// one unicode codepoint (one character in Rust) to its uppercase
|
||
/// equivalent according to the Unicode database [1]. The additional
|
||
/// `SpecialCasing.txt` is not considered here, as it expands to multiple
|
||
/// codepoints in some cases.
|
||
///
|
||
/// A full reference can be found here [2].
|
||
///
|
||
/// # Return value
|
||
///
|
||
/// Returns the uppercase equivalent of the character, or the character
|
||
/// itself if no conversion was made.
|
||
///
|
||
/// [1]: ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt
|
||
///
|
||
/// [2]: http://www.unicode.org/versions/Unicode4.0.0/ch03.pdf#G33992
|
||
fn to_uppercase(&self) -> char;
|
||
|
||
/// Converts a number to the character representing it.
|
||
///
|
||
/// # Return value
|
||
///
|
||
/// Returns `Some(char)` if `num` represents one digit under `radix`,
|
||
/// using one character of `0-9` or `a-z`, or `None` if it doesn't.
|
||
///
|
||
/// # Failure
|
||
///
|
||
/// Fails if given a radix > 36.
|
||
fn from_digit(num: uint, radix: uint) -> Option<char>;
|
||
|
||
/// Returns the hexadecimal Unicode escape of a character.
|
||
///
|
||
/// The rules are as follows:
|
||
///
|
||
/// * Characters in [0,0xff] get 2-digit escapes: `\\xNN`
|
||
/// * Characters in [0x100,0xffff] get 4-digit escapes: `\\uNNNN`.
|
||
/// * Characters above 0x10000 get 8-digit escapes: `\\UNNNNNNNN`.
|
||
fn escape_unicode(&self, f: |char|);
|
||
|
||
/// Returns a 'default' ASCII and C++11-like literal escape of a
|
||
/// character.
|
||
///
|
||
/// The default is chosen with a bias toward producing literals that are
|
||
/// legal in a variety of languages, including C++11 and similar C-family
|
||
/// languages. The exact rules are:
|
||
///
|
||
/// * Tab, CR and LF are escaped as '\t', '\r' and '\n' respectively.
|
||
/// * Single-quote, double-quote and backslash chars are backslash-
|
||
/// escaped.
|
||
/// * Any other chars in the range [0x20,0x7e] are not escaped.
|
||
/// * Any other chars are given hex unicode escapes; see `escape_unicode`.
|
||
fn escape_default(&self, f: |char|);
|
||
|
||
/// Returns the amount of bytes this character would need if encoded in
|
||
/// UTF-8.
|
||
fn len_utf8_bytes(&self) -> uint;
|
||
|
||
/// Encodes this character as UTF-8 into the provided byte buffer.
|
||
///
|
||
/// The buffer must be at least 4 bytes long or a runtime failure may
|
||
/// occur.
|
||
///
|
||
/// This will then return the number of bytes written to the slice.
|
||
fn encode_utf8(&self, dst: &mut [u8]) -> uint;
|
||
|
||
/// Encodes this character as UTF-16 into the provided `u16` buffer.
|
||
///
|
||
/// The buffer must be at least 2 elements long or a runtime failure may
|
||
/// occur.
|
||
///
|
||
/// This will then return the number of `u16`s written to the slice.
|
||
fn encode_utf16(&self, dst: &mut [u16]) -> uint;
|
||
}
|
||
|
||
impl Char for char {
|
||
fn is_alphabetic(&self) -> bool { is_alphabetic(*self) }
|
||
|
||
fn is_XID_start(&self) -> bool { is_XID_start(*self) }
|
||
|
||
fn is_XID_continue(&self) -> bool { is_XID_continue(*self) }
|
||
|
||
fn is_lowercase(&self) -> bool { is_lowercase(*self) }
|
||
|
||
fn is_uppercase(&self) -> bool { is_uppercase(*self) }
|
||
|
||
fn is_whitespace(&self) -> bool { is_whitespace(*self) }
|
||
|
||
fn is_alphanumeric(&self) -> bool { is_alphanumeric(*self) }
|
||
|
||
fn is_control(&self) -> bool { is_control(*self) }
|
||
|
||
fn is_digit(&self) -> bool { is_digit(*self) }
|
||
|
||
fn is_digit_radix(&self, radix: uint) -> bool { is_digit_radix(*self, radix) }
|
||
|
||
fn to_digit(&self, radix: uint) -> Option<uint> { to_digit(*self, radix) }
|
||
|
||
fn to_lowercase(&self) -> char { to_lowercase(*self) }
|
||
|
||
fn to_uppercase(&self) -> char { to_uppercase(*self) }
|
||
|
||
fn from_digit(num: uint, radix: uint) -> Option<char> { from_digit(num, radix) }
|
||
|
||
fn escape_unicode(&self, f: |char|) { escape_unicode(*self, f) }
|
||
|
||
fn escape_default(&self, f: |char|) { escape_default(*self, f) }
|
||
|
||
fn len_utf8_bytes(&self) -> uint { len_utf8_bytes(*self) }
|
||
|
||
fn encode_utf8(&self, dst: &mut [u8]) -> uint {
|
||
let code = *self as uint;
|
||
if code < MAX_ONE_B {
|
||
dst[0] = code as u8;
|
||
return 1;
|
||
} else if code < MAX_TWO_B {
|
||
dst[0] = (code >> 6u & 31u | TAG_TWO_B) as u8;
|
||
dst[1] = (code & 63u | TAG_CONT) as u8;
|
||
return 2;
|
||
} else if code < MAX_THREE_B {
|
||
dst[0] = (code >> 12u & 15u | TAG_THREE_B) as u8;
|
||
dst[1] = (code >> 6u & 63u | TAG_CONT) as u8;
|
||
dst[2] = (code & 63u | TAG_CONT) as u8;
|
||
return 3;
|
||
} else {
|
||
dst[0] = (code >> 18u & 7u | TAG_FOUR_B) as u8;
|
||
dst[1] = (code >> 12u & 63u | TAG_CONT) as u8;
|
||
dst[2] = (code >> 6u & 63u | TAG_CONT) as u8;
|
||
dst[3] = (code & 63u | TAG_CONT) as u8;
|
||
return 4;
|
||
}
|
||
}
|
||
|
||
fn encode_utf16(&self, dst: &mut [u16]) -> uint {
|
||
let mut ch = *self as uint;
|
||
if (ch & 0xFFFF_u) == ch {
|
||
// The BMP falls through (assuming non-surrogate, as it
|
||
// should)
|
||
assert!(ch <= 0xD7FF_u || ch >= 0xE000_u);
|
||
dst[0] = ch as u16;
|
||
1
|
||
} else {
|
||
// Supplementary planes break into surrogates.
|
||
assert!(ch >= 0x1_0000_u && ch <= 0x10_FFFF_u);
|
||
ch -= 0x1_0000_u;
|
||
dst[0] = 0xD800_u16 | ((ch >> 10) as u16);
|
||
dst[1] = 0xDC00_u16 | ((ch as u16) & 0x3FF_u16);
|
||
2
|
||
}
|
||
}
|
||
}
|
||
|
||
#[cfg(not(test))]
|
||
impl Eq for char {
|
||
#[inline]
|
||
fn eq(&self, other: &char) -> bool { (*self) == (*other) }
|
||
}
|
||
|
||
#[cfg(not(test))]
|
||
impl TotalEq for char {}
|
||
|
||
#[cfg(not(test))]
|
||
impl Ord for char {
|
||
#[inline]
|
||
fn lt(&self, other: &char) -> bool { *self < *other }
|
||
}
|
||
|
||
#[cfg(not(test))]
|
||
impl TotalOrd for char {
|
||
fn cmp(&self, other: &char) -> Ordering {
|
||
(*self as u32).cmp(&(*other as u32))
|
||
}
|
||
}
|
||
|
||
#[cfg(not(test))]
|
||
impl Default for char {
|
||
#[inline]
|
||
fn default() -> char { '\x00' }
|
||
}
|
||
|
||
#[cfg(test)]
|
||
mod test {
|
||
use super::{escape_unicode, escape_default};
|
||
|
||
use realcore::char::Char;
|
||
use slice::ImmutableVector;
|
||
use realstd::option::{Some, None};
|
||
use realstd::strbuf::StrBuf;
|
||
use realstd::str::StrAllocating;
|
||
|
||
#[test]
|
||
fn test_is_lowercase() {
|
||
assert!('a'.is_lowercase());
|
||
assert!('ö'.is_lowercase());
|
||
assert!('ß'.is_lowercase());
|
||
assert!(!'Ü'.is_lowercase());
|
||
assert!(!'P'.is_lowercase());
|
||
}
|
||
|
||
#[test]
|
||
fn test_is_uppercase() {
|
||
assert!(!'h'.is_uppercase());
|
||
assert!(!'ä'.is_uppercase());
|
||
assert!(!'ß'.is_uppercase());
|
||
assert!('Ö'.is_uppercase());
|
||
assert!('T'.is_uppercase());
|
||
}
|
||
|
||
#[test]
|
||
fn test_is_whitespace() {
|
||
assert!(' '.is_whitespace());
|
||
assert!('\u2007'.is_whitespace());
|
||
assert!('\t'.is_whitespace());
|
||
assert!('\n'.is_whitespace());
|
||
assert!(!'a'.is_whitespace());
|
||
assert!(!'_'.is_whitespace());
|
||
assert!(!'\u0000'.is_whitespace());
|
||
}
|
||
|
||
#[test]
|
||
fn test_to_digit() {
|
||
assert_eq!('0'.to_digit(10u), Some(0u));
|
||
assert_eq!('1'.to_digit(2u), Some(1u));
|
||
assert_eq!('2'.to_digit(3u), Some(2u));
|
||
assert_eq!('9'.to_digit(10u), Some(9u));
|
||
assert_eq!('a'.to_digit(16u), Some(10u));
|
||
assert_eq!('A'.to_digit(16u), Some(10u));
|
||
assert_eq!('b'.to_digit(16u), Some(11u));
|
||
assert_eq!('B'.to_digit(16u), Some(11u));
|
||
assert_eq!('z'.to_digit(36u), Some(35u));
|
||
assert_eq!('Z'.to_digit(36u), Some(35u));
|
||
assert_eq!(' '.to_digit(10u), None);
|
||
assert_eq!('$'.to_digit(36u), None);
|
||
}
|
||
|
||
#[test]
|
||
fn test_to_lowercase() {
|
||
assert_eq!('A'.to_lowercase(), 'a');
|
||
assert_eq!('Ö'.to_lowercase(), 'ö');
|
||
assert_eq!('ß'.to_lowercase(), 'ß');
|
||
assert_eq!('Ü'.to_lowercase(), 'ü');
|
||
assert_eq!('💩'.to_lowercase(), '💩');
|
||
assert_eq!('Σ'.to_lowercase(), 'σ');
|
||
assert_eq!('Τ'.to_lowercase(), 'τ');
|
||
assert_eq!('Ι'.to_lowercase(), 'ι');
|
||
assert_eq!('Γ'.to_lowercase(), 'γ');
|
||
assert_eq!('Μ'.to_lowercase(), 'μ');
|
||
assert_eq!('Α'.to_lowercase(), 'α');
|
||
assert_eq!('Σ'.to_lowercase(), 'σ');
|
||
}
|
||
|
||
#[test]
|
||
fn test_to_uppercase() {
|
||
assert_eq!('a'.to_uppercase(), 'A');
|
||
assert_eq!('ö'.to_uppercase(), 'Ö');
|
||
assert_eq!('ß'.to_uppercase(), 'ß'); // not ẞ: Latin capital letter sharp s
|
||
assert_eq!('ü'.to_uppercase(), 'Ü');
|
||
assert_eq!('💩'.to_uppercase(), '💩');
|
||
|
||
assert_eq!('σ'.to_uppercase(), 'Σ');
|
||
assert_eq!('τ'.to_uppercase(), 'Τ');
|
||
assert_eq!('ι'.to_uppercase(), 'Ι');
|
||
assert_eq!('γ'.to_uppercase(), 'Γ');
|
||
assert_eq!('μ'.to_uppercase(), 'Μ');
|
||
assert_eq!('α'.to_uppercase(), 'Α');
|
||
assert_eq!('ς'.to_uppercase(), 'Σ');
|
||
}
|
||
|
||
#[test]
|
||
fn test_is_control() {
|
||
assert!('\u0000'.is_control());
|
||
assert!('\u0003'.is_control());
|
||
assert!('\u0006'.is_control());
|
||
assert!('\u0009'.is_control());
|
||
assert!('\u007f'.is_control());
|
||
assert!('\u0092'.is_control());
|
||
assert!(!'\u0020'.is_control());
|
||
assert!(!'\u0055'.is_control());
|
||
assert!(!'\u0068'.is_control());
|
||
}
|
||
|
||
#[test]
|
||
fn test_is_digit() {
|
||
assert!('2'.is_digit());
|
||
assert!('7'.is_digit());
|
||
assert!(!'c'.is_digit());
|
||
assert!(!'i'.is_digit());
|
||
assert!(!'z'.is_digit());
|
||
assert!(!'Q'.is_digit());
|
||
}
|
||
|
||
#[test]
|
||
fn test_escape_default() {
|
||
fn string(c: char) -> ~str {
|
||
let mut result = StrBuf::new();
|
||
escape_default(c, |c| { result.push_char(c); });
|
||
return result.into_owned();
|
||
}
|
||
assert_eq!(string('\n'), "\\n".to_owned());
|
||
assert_eq!(string('\r'), "\\r".to_owned());
|
||
assert_eq!(string('\''), "\\'".to_owned());
|
||
assert_eq!(string('"'), "\\\"".to_owned());
|
||
assert_eq!(string(' '), " ".to_owned());
|
||
assert_eq!(string('a'), "a".to_owned());
|
||
assert_eq!(string('~'), "~".to_owned());
|
||
assert_eq!(string('\x00'), "\\x00".to_owned());
|
||
assert_eq!(string('\x1f'), "\\x1f".to_owned());
|
||
assert_eq!(string('\x7f'), "\\x7f".to_owned());
|
||
assert_eq!(string('\xff'), "\\xff".to_owned());
|
||
assert_eq!(string('\u011b'), "\\u011b".to_owned());
|
||
assert_eq!(string('\U0001d4b6'), "\\U0001d4b6".to_owned());
|
||
}
|
||
|
||
#[test]
|
||
fn test_escape_unicode() {
|
||
fn string(c: char) -> ~str {
|
||
let mut result = StrBuf::new();
|
||
escape_unicode(c, |c| { result.push_char(c); });
|
||
return result.into_owned();
|
||
}
|
||
assert_eq!(string('\x00'), "\\x00".to_owned());
|
||
assert_eq!(string('\n'), "\\x0a".to_owned());
|
||
assert_eq!(string(' '), "\\x20".to_owned());
|
||
assert_eq!(string('a'), "\\x61".to_owned());
|
||
assert_eq!(string('\u011b'), "\\u011b".to_owned());
|
||
assert_eq!(string('\U0001d4b6'), "\\U0001d4b6".to_owned());
|
||
}
|
||
|
||
#[test]
|
||
fn test_to_str() {
|
||
use realstd::to_str::ToStr;
|
||
let s = 't'.to_str();
|
||
assert_eq!(s, "t".to_owned());
|
||
}
|
||
|
||
#[test]
|
||
fn test_encode_utf8() {
|
||
fn check(input: char, expect: &[u8]) {
|
||
let mut buf = [0u8, ..4];
|
||
let n = input.encode_utf8(buf /* as mut slice! */);
|
||
assert_eq!(buf.slice_to(n), expect);
|
||
}
|
||
|
||
check('x', [0x78]);
|
||
check('\u00e9', [0xc3, 0xa9]);
|
||
check('\ua66e', [0xea, 0x99, 0xae]);
|
||
check('\U0001f4a9', [0xf0, 0x9f, 0x92, 0xa9]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_encode_utf16() {
|
||
fn check(input: char, expect: &[u16]) {
|
||
let mut buf = [0u16, ..2];
|
||
let n = input.encode_utf16(buf /* as mut slice! */);
|
||
assert_eq!(buf.slice_to(n), expect);
|
||
}
|
||
|
||
check('x', [0x0078]);
|
||
check('\u00e9', [0x00e9]);
|
||
check('\ua66e', [0xa66e]);
|
||
check('\U0001f4a9', [0xd83d, 0xdca9]);
|
||
}
|
||
}
|