940 lines
27 KiB
Rust
940 lines
27 KiB
Rust
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
// FIXME(#4375): this shouldn't have to be a nested module named 'generated'
|
|
|
|
#[macro_escape];
|
|
|
|
macro_rules! int_module (($T:ty, $bits:expr) => (mod generated {
|
|
|
|
#[allow(non_uppercase_statics)];
|
|
|
|
use default::Default;
|
|
use num::{ToStrRadix, FromStrRadix};
|
|
use num::{CheckedDiv, Zero, One, strconv};
|
|
use prelude::*;
|
|
use str;
|
|
|
|
pub use cmp::{min, max};
|
|
|
|
pub static bits : uint = $bits;
|
|
pub static bytes : uint = ($bits / 8);
|
|
|
|
pub static min_value: $T = (-1 as $T) << (bits - 1);
|
|
pub static max_value: $T = min_value - 1 as $T;
|
|
|
|
impl CheckedDiv for $T {
|
|
#[inline]
|
|
fn checked_div(&self, v: &$T) -> Option<$T> {
|
|
if *v == 0 || (*self == min_value && *v == -1) {
|
|
None
|
|
} else {
|
|
Some(self / *v)
|
|
}
|
|
}
|
|
}
|
|
|
|
enum Range { Closed, HalfOpen }
|
|
|
|
#[inline]
|
|
///
|
|
/// Iterate through a range with a given step value.
|
|
///
|
|
/// Let `term` denote the closed interval `[stop-step,stop]` if `r` is Closed;
|
|
/// otherwise `term` denotes the half-open interval `[stop-step,stop)`.
|
|
/// Iterates through the range `[x_0, x_1, ..., x_n]` where
|
|
/// `x_j == start + step*j`, and `x_n` lies in the interval `term`.
|
|
///
|
|
/// If no such nonnegative integer `n` exists, then the iteration range
|
|
/// is empty.
|
|
///
|
|
fn range_step_core(start: $T, stop: $T, step: $T, r: Range, it: &fn($T) -> bool) -> bool {
|
|
let mut i = start;
|
|
if step == 0 {
|
|
fail!(~"range_step called with step == 0");
|
|
} else if step == (1 as $T) { // elide bounds check to tighten loop
|
|
while i < stop {
|
|
if !it(i) { return false; }
|
|
// no need for overflow check;
|
|
// cannot have i + 1 > max_value because i < stop <= max_value
|
|
i += (1 as $T);
|
|
}
|
|
} else if step == (-1 as $T) { // elide bounds check to tighten loop
|
|
while i > stop {
|
|
if !it(i) { return false; }
|
|
// no need for underflow check;
|
|
// cannot have i - 1 < min_value because i > stop >= min_value
|
|
i -= (1 as $T);
|
|
}
|
|
} else if step > 0 { // ascending
|
|
while i < stop {
|
|
if !it(i) { return false; }
|
|
// avoiding overflow. break if i + step > max_value
|
|
if i > max_value - step { return true; }
|
|
i += step;
|
|
}
|
|
} else { // descending
|
|
while i > stop {
|
|
if !it(i) { return false; }
|
|
// avoiding underflow. break if i + step < min_value
|
|
if i < min_value - step { return true; }
|
|
i += step;
|
|
}
|
|
}
|
|
match r {
|
|
HalfOpen => return true,
|
|
Closed => return (i != stop || it(i))
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
///
|
|
/// Iterate through the range [`start`..`stop`) with a given step value.
|
|
///
|
|
/// Iterates through the range `[x_0, x_1, ..., x_n]` where
|
|
/// * `x_i == start + step*i`, and
|
|
/// * `n` is the greatest nonnegative integer such that `x_n < stop`
|
|
///
|
|
/// (If no such `n` exists, then the iteration range is empty.)
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * `start` - lower bound, inclusive
|
|
/// * `stop` - higher bound, exclusive
|
|
///
|
|
/// # Examples
|
|
/// ~~~
|
|
/// let mut sum = 0;
|
|
/// for int::range(1, 5) |i| {
|
|
/// sum += i;
|
|
/// }
|
|
/// assert!(sum == 10);
|
|
/// ~~~
|
|
///
|
|
pub fn range_step(start: $T, stop: $T, step: $T, it: &fn($T) -> bool) -> bool {
|
|
range_step_core(start, stop, step, HalfOpen, it)
|
|
}
|
|
|
|
#[inline]
|
|
///
|
|
/// Iterate through a range with a given step value.
|
|
///
|
|
/// Iterates through the range `[x_0, x_1, ..., x_n]` where
|
|
/// `x_i == start + step*i` and `x_n <= last < step + x_n`.
|
|
///
|
|
/// (If no such nonnegative integer `n` exists, then the iteration
|
|
/// range is empty.)
|
|
///
|
|
pub fn range_step_inclusive(start: $T, last: $T, step: $T, it: &fn($T) -> bool) -> bool {
|
|
range_step_core(start, last, step, Closed, it)
|
|
}
|
|
|
|
impl Num for $T {}
|
|
|
|
#[cfg(not(test))]
|
|
impl Ord for $T {
|
|
#[inline]
|
|
fn lt(&self, other: &$T) -> bool { return (*self) < (*other); }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Eq for $T {
|
|
#[inline]
|
|
fn eq(&self, other: &$T) -> bool { return (*self) == (*other); }
|
|
}
|
|
|
|
impl Orderable for $T {
|
|
#[inline]
|
|
fn min(&self, other: &$T) -> $T {
|
|
if *self < *other { *self } else { *other }
|
|
}
|
|
|
|
#[inline]
|
|
fn max(&self, other: &$T) -> $T {
|
|
if *self > *other { *self } else { *other }
|
|
}
|
|
|
|
#[inline]
|
|
fn clamp(&self, mn: &$T, mx: &$T) -> $T {
|
|
if *self > *mx { *mx } else
|
|
if *self < *mn { *mn } else { *self }
|
|
}
|
|
}
|
|
|
|
impl Default for $T {
|
|
#[inline]
|
|
fn default() -> $T { 0 }
|
|
}
|
|
|
|
impl Zero for $T {
|
|
#[inline]
|
|
fn zero() -> $T { 0 }
|
|
|
|
#[inline]
|
|
fn is_zero(&self) -> bool { *self == 0 }
|
|
}
|
|
|
|
impl One for $T {
|
|
#[inline]
|
|
fn one() -> $T { 1 }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Add<$T,$T> for $T {
|
|
#[inline]
|
|
fn add(&self, other: &$T) -> $T { *self + *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Sub<$T,$T> for $T {
|
|
#[inline]
|
|
fn sub(&self, other: &$T) -> $T { *self - *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Mul<$T,$T> for $T {
|
|
#[inline]
|
|
fn mul(&self, other: &$T) -> $T { *self * *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Div<$T,$T> for $T {
|
|
///
|
|
/// Integer division, truncated towards 0. As this behaviour reflects the underlying
|
|
/// machine implementation it is more efficient than `Integer::div_floor`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ~~~
|
|
/// assert!( 8 / 3 == 2);
|
|
/// assert!( 8 / -3 == -2);
|
|
/// assert!(-8 / 3 == -2);
|
|
/// assert!(-8 / -3 == 2);
|
|
|
|
/// assert!( 1 / 2 == 0);
|
|
/// assert!( 1 / -2 == 0);
|
|
/// assert!(-1 / 2 == 0);
|
|
/// assert!(-1 / -2 == 0);
|
|
/// ~~~
|
|
///
|
|
#[inline]
|
|
fn div(&self, other: &$T) -> $T { *self / *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Rem<$T,$T> for $T {
|
|
///
|
|
/// Returns the integer remainder after division, satisfying:
|
|
///
|
|
/// ~~~
|
|
/// assert!((n / d) * d + (n % d) == n)
|
|
/// ~~~
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ~~~
|
|
/// assert!( 8 % 3 == 2);
|
|
/// assert!( 8 % -3 == 2);
|
|
/// assert!(-8 % 3 == -2);
|
|
/// assert!(-8 % -3 == -2);
|
|
|
|
/// assert!( 1 % 2 == 1);
|
|
/// assert!( 1 % -2 == 1);
|
|
/// assert!(-1 % 2 == -1);
|
|
/// assert!(-1 % -2 == -1);
|
|
/// ~~~
|
|
///
|
|
#[inline]
|
|
fn rem(&self, other: &$T) -> $T { *self % *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Neg<$T> for $T {
|
|
#[inline]
|
|
fn neg(&self) -> $T { -*self }
|
|
}
|
|
|
|
impl Signed for $T {
|
|
/// Computes the absolute value
|
|
#[inline]
|
|
fn abs(&self) -> $T {
|
|
if self.is_negative() { -*self } else { *self }
|
|
}
|
|
|
|
///
|
|
/// The positive difference of two numbers. Returns `0` if the number is less than or
|
|
/// equal to `other`, otherwise the difference between`self` and `other` is returned.
|
|
///
|
|
#[inline]
|
|
fn abs_sub(&self, other: &$T) -> $T {
|
|
if *self <= *other { 0 } else { *self - *other }
|
|
}
|
|
|
|
///
|
|
/// # Returns
|
|
///
|
|
/// - `0` if the number is zero
|
|
/// - `1` if the number is positive
|
|
/// - `-1` if the number is negative
|
|
///
|
|
#[inline]
|
|
fn signum(&self) -> $T {
|
|
match *self {
|
|
n if n > 0 => 1,
|
|
0 => 0,
|
|
_ => -1,
|
|
}
|
|
}
|
|
|
|
/// Returns true if the number is positive
|
|
#[inline]
|
|
fn is_positive(&self) -> bool { *self > 0 }
|
|
|
|
/// Returns true if the number is negative
|
|
#[inline]
|
|
fn is_negative(&self) -> bool { *self < 0 }
|
|
}
|
|
|
|
impl Integer for $T {
|
|
///
|
|
/// Floored integer division
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ~~~
|
|
/// assert!(( 8).div_floor( 3) == 2);
|
|
/// assert!(( 8).div_floor(-3) == -3);
|
|
/// assert!((-8).div_floor( 3) == -3);
|
|
/// assert!((-8).div_floor(-3) == 2);
|
|
///
|
|
/// assert!(( 1).div_floor( 2) == 0);
|
|
/// assert!(( 1).div_floor(-2) == -1);
|
|
/// assert!((-1).div_floor( 2) == -1);
|
|
/// assert!((-1).div_floor(-2) == 0);
|
|
/// ~~~
|
|
///
|
|
#[inline]
|
|
fn div_floor(&self, other: &$T) -> $T {
|
|
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
|
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
|
match self.div_rem(other) {
|
|
(d, r) if (r > 0 && *other < 0)
|
|
|| (r < 0 && *other > 0) => d - 1,
|
|
(d, _) => d,
|
|
}
|
|
}
|
|
|
|
///
|
|
/// Integer modulo, satisfying:
|
|
///
|
|
/// ~~~
|
|
/// assert!(n.div_floor(d) * d + n.mod_floor(d) == n)
|
|
/// ~~~
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ~~~
|
|
/// assert!(( 8).mod_floor( 3) == 2);
|
|
/// assert!(( 8).mod_floor(-3) == -1);
|
|
/// assert!((-8).mod_floor( 3) == 1);
|
|
/// assert!((-8).mod_floor(-3) == -2);
|
|
///
|
|
/// assert!(( 1).mod_floor( 2) == 1);
|
|
/// assert!(( 1).mod_floor(-2) == -1);
|
|
/// assert!((-1).mod_floor( 2) == 1);
|
|
/// assert!((-1).mod_floor(-2) == -1);
|
|
/// ~~~
|
|
///
|
|
#[inline]
|
|
fn mod_floor(&self, other: &$T) -> $T {
|
|
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
|
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
|
match *self % *other {
|
|
r if (r > 0 && *other < 0)
|
|
|| (r < 0 && *other > 0) => r + *other,
|
|
r => r,
|
|
}
|
|
}
|
|
|
|
/// Calculates `div_floor` and `mod_floor` simultaneously
|
|
#[inline]
|
|
fn div_mod_floor(&self, other: &$T) -> ($T,$T) {
|
|
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
|
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
|
match self.div_rem(other) {
|
|
(d, r) if (r > 0 && *other < 0)
|
|
|| (r < 0 && *other > 0) => (d - 1, r + *other),
|
|
(d, r) => (d, r),
|
|
}
|
|
}
|
|
|
|
/// Calculates `div` (`\`) and `rem` (`%`) simultaneously
|
|
#[inline]
|
|
fn div_rem(&self, other: &$T) -> ($T,$T) {
|
|
(*self / *other, *self % *other)
|
|
}
|
|
|
|
///
|
|
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`
|
|
///
|
|
/// The result is always positive
|
|
///
|
|
#[inline]
|
|
fn gcd(&self, other: &$T) -> $T {
|
|
// Use Euclid's algorithm
|
|
let mut m = *self;
|
|
let mut n = *other;
|
|
while m != 0 {
|
|
let temp = m;
|
|
m = n % temp;
|
|
n = temp;
|
|
}
|
|
n.abs()
|
|
}
|
|
|
|
///
|
|
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`
|
|
///
|
|
#[inline]
|
|
fn lcm(&self, other: &$T) -> $T {
|
|
((*self * *other) / self.gcd(other)).abs() // should not have to recaluculate abs
|
|
}
|
|
|
|
/// Returns `true` if the number can be divided by `other` without leaving a remainder
|
|
#[inline]
|
|
fn is_multiple_of(&self, other: &$T) -> bool { *self % *other == 0 }
|
|
|
|
/// Returns `true` if the number is divisible by `2`
|
|
#[inline]
|
|
fn is_even(&self) -> bool { self.is_multiple_of(&2) }
|
|
|
|
/// Returns `true` if the number is not divisible by `2`
|
|
#[inline]
|
|
fn is_odd(&self) -> bool { !self.is_even() }
|
|
}
|
|
|
|
impl Bitwise for $T {}
|
|
|
|
#[cfg(not(test))]
|
|
impl BitOr<$T,$T> for $T {
|
|
#[inline]
|
|
fn bitor(&self, other: &$T) -> $T { *self | *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl BitAnd<$T,$T> for $T {
|
|
#[inline]
|
|
fn bitand(&self, other: &$T) -> $T { *self & *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl BitXor<$T,$T> for $T {
|
|
#[inline]
|
|
fn bitxor(&self, other: &$T) -> $T { *self ^ *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Shl<$T,$T> for $T {
|
|
#[inline]
|
|
fn shl(&self, other: &$T) -> $T { *self << *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Shr<$T,$T> for $T {
|
|
#[inline]
|
|
fn shr(&self, other: &$T) -> $T { *self >> *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Not<$T> for $T {
|
|
#[inline]
|
|
fn not(&self) -> $T { !*self }
|
|
}
|
|
|
|
impl Bounded for $T {
|
|
#[inline]
|
|
fn min_value() -> $T { min_value }
|
|
|
|
#[inline]
|
|
fn max_value() -> $T { max_value }
|
|
}
|
|
|
|
impl Int for $T {}
|
|
|
|
impl Primitive for $T {
|
|
#[inline]
|
|
fn bits(_: Option<$T>) -> uint { bits }
|
|
|
|
#[inline]
|
|
fn bytes(_: Option<$T>) -> uint { bits / 8 }
|
|
}
|
|
|
|
// String conversion functions and impl str -> num
|
|
|
|
/// Parse a string as a number in base 10.
|
|
#[inline]
|
|
pub fn from_str(s: &str) -> Option<$T> {
|
|
strconv::from_str_common(s, 10u, true, false, false,
|
|
strconv::ExpNone, false, false)
|
|
}
|
|
|
|
/// Parse a string as a number in the given base.
|
|
#[inline]
|
|
pub fn from_str_radix(s: &str, radix: uint) -> Option<$T> {
|
|
strconv::from_str_common(s, radix, true, false, false,
|
|
strconv::ExpNone, false, false)
|
|
}
|
|
|
|
/// Parse a byte slice as a number in the given base.
|
|
#[inline]
|
|
pub fn parse_bytes(buf: &[u8], radix: uint) -> Option<$T> {
|
|
strconv::from_str_bytes_common(buf, radix, true, false, false,
|
|
strconv::ExpNone, false, false)
|
|
}
|
|
|
|
impl FromStr for $T {
|
|
#[inline]
|
|
fn from_str(s: &str) -> Option<$T> {
|
|
from_str(s)
|
|
}
|
|
}
|
|
|
|
impl FromStrRadix for $T {
|
|
#[inline]
|
|
fn from_str_radix(s: &str, radix: uint) -> Option<$T> {
|
|
from_str_radix(s, radix)
|
|
}
|
|
}
|
|
|
|
// String conversion functions and impl num -> str
|
|
|
|
/// Convert to a string as a byte slice in a given base.
|
|
#[inline]
|
|
pub fn to_str_bytes<U>(n: $T, radix: uint, f: &fn(v: &[u8]) -> U) -> U {
|
|
// The radix can be as low as 2, so we need at least 64 characters for a
|
|
// base 2 number, and then we need another for a possible '-' character.
|
|
let mut buf = [0u8, ..65];
|
|
let mut cur = 0;
|
|
do strconv::int_to_str_bytes_common(n, radix, strconv::SignNeg) |i| {
|
|
buf[cur] = i;
|
|
cur += 1;
|
|
}
|
|
f(buf.slice(0, cur))
|
|
}
|
|
|
|
impl ToStr for $T {
|
|
/// Convert to a string in base 10.
|
|
#[inline]
|
|
fn to_str(&self) -> ~str {
|
|
self.to_str_radix(10)
|
|
}
|
|
}
|
|
|
|
impl ToStrRadix for $T {
|
|
/// Convert to a string in a given base.
|
|
#[inline]
|
|
fn to_str_radix(&self, radix: uint) -> ~str {
|
|
let mut buf: ~[u8] = ~[];
|
|
do strconv::int_to_str_bytes_common(*self, radix, strconv::SignNeg) |i| {
|
|
buf.push(i);
|
|
}
|
|
// We know we generated valid utf-8, so we don't need to go through that
|
|
// check.
|
|
unsafe { str::raw::from_utf8_owned(buf) }
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use prelude::*;
|
|
use super::*;
|
|
|
|
use int;
|
|
use i16;
|
|
use i32;
|
|
use i64;
|
|
use i8;
|
|
use num;
|
|
use sys;
|
|
|
|
#[test]
|
|
fn test_num() {
|
|
num::test_num(10 as $T, 2 as $T);
|
|
}
|
|
|
|
#[test]
|
|
fn test_orderable() {
|
|
assert_eq!((1 as $T).min(&(2 as $T)), 1 as $T);
|
|
assert_eq!((2 as $T).min(&(1 as $T)), 1 as $T);
|
|
assert_eq!((1 as $T).max(&(2 as $T)), 2 as $T);
|
|
assert_eq!((2 as $T).max(&(1 as $T)), 2 as $T);
|
|
assert_eq!((1 as $T).clamp(&(2 as $T), &(4 as $T)), 2 as $T);
|
|
assert_eq!((8 as $T).clamp(&(2 as $T), &(4 as $T)), 4 as $T);
|
|
assert_eq!((3 as $T).clamp(&(2 as $T), &(4 as $T)), 3 as $T);
|
|
}
|
|
|
|
#[test]
|
|
pub fn test_abs() {
|
|
assert_eq!((1 as $T).abs(), 1 as $T);
|
|
assert_eq!((0 as $T).abs(), 0 as $T);
|
|
assert_eq!((-1 as $T).abs(), 1 as $T);
|
|
}
|
|
|
|
#[test]
|
|
fn test_abs_sub() {
|
|
assert_eq!((-1 as $T).abs_sub(&(1 as $T)), 0 as $T);
|
|
assert_eq!((1 as $T).abs_sub(&(1 as $T)), 0 as $T);
|
|
assert_eq!((1 as $T).abs_sub(&(0 as $T)), 1 as $T);
|
|
assert_eq!((1 as $T).abs_sub(&(-1 as $T)), 2 as $T);
|
|
}
|
|
|
|
#[test]
|
|
fn test_signum() {
|
|
assert_eq!((1 as $T).signum(), 1 as $T);
|
|
assert_eq!((0 as $T).signum(), 0 as $T);
|
|
assert_eq!((-0 as $T).signum(), 0 as $T);
|
|
assert_eq!((-1 as $T).signum(), -1 as $T);
|
|
}
|
|
|
|
#[test]
|
|
fn test_is_positive() {
|
|
assert!((1 as $T).is_positive());
|
|
assert!(!(0 as $T).is_positive());
|
|
assert!(!(-0 as $T).is_positive());
|
|
assert!(!(-1 as $T).is_positive());
|
|
}
|
|
|
|
#[test]
|
|
fn test_is_negative() {
|
|
assert!(!(1 as $T).is_negative());
|
|
assert!(!(0 as $T).is_negative());
|
|
assert!(!(-0 as $T).is_negative());
|
|
assert!((-1 as $T).is_negative());
|
|
}
|
|
|
|
///
|
|
/// Checks that the division rule holds for:
|
|
///
|
|
/// - `n`: numerator (dividend)
|
|
/// - `d`: denominator (divisor)
|
|
/// - `qr`: quotient and remainder
|
|
///
|
|
#[cfg(test)]
|
|
fn test_division_rule((n,d): ($T,$T), (q,r): ($T,$T)) {
|
|
assert_eq!(d * q + r, n);
|
|
}
|
|
|
|
#[test]
|
|
fn test_div_rem() {
|
|
fn test_nd_dr(nd: ($T,$T), qr: ($T,$T)) {
|
|
let (n,d) = nd;
|
|
let separate_div_rem = (n / d, n % d);
|
|
let combined_div_rem = n.div_rem(&d);
|
|
|
|
assert_eq!(separate_div_rem, qr);
|
|
assert_eq!(combined_div_rem, qr);
|
|
|
|
test_division_rule(nd, separate_div_rem);
|
|
test_division_rule(nd, combined_div_rem);
|
|
}
|
|
|
|
test_nd_dr(( 8, 3), ( 2, 2));
|
|
test_nd_dr(( 8, -3), (-2, 2));
|
|
test_nd_dr((-8, 3), (-2, -2));
|
|
test_nd_dr((-8, -3), ( 2, -2));
|
|
|
|
test_nd_dr(( 1, 2), ( 0, 1));
|
|
test_nd_dr(( 1, -2), ( 0, 1));
|
|
test_nd_dr((-1, 2), ( 0, -1));
|
|
test_nd_dr((-1, -2), ( 0, -1));
|
|
}
|
|
|
|
#[test]
|
|
fn test_div_mod_floor() {
|
|
fn test_nd_dm(nd: ($T,$T), dm: ($T,$T)) {
|
|
let (n,d) = nd;
|
|
let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d));
|
|
let combined_div_mod_floor = n.div_mod_floor(&d);
|
|
|
|
assert_eq!(separate_div_mod_floor, dm);
|
|
assert_eq!(combined_div_mod_floor, dm);
|
|
|
|
test_division_rule(nd, separate_div_mod_floor);
|
|
test_division_rule(nd, combined_div_mod_floor);
|
|
}
|
|
|
|
test_nd_dm(( 8, 3), ( 2, 2));
|
|
test_nd_dm(( 8, -3), (-3, -1));
|
|
test_nd_dm((-8, 3), (-3, 1));
|
|
test_nd_dm((-8, -3), ( 2, -2));
|
|
|
|
test_nd_dm(( 1, 2), ( 0, 1));
|
|
test_nd_dm(( 1, -2), (-1, -1));
|
|
test_nd_dm((-1, 2), (-1, 1));
|
|
test_nd_dm((-1, -2), ( 0, -1));
|
|
}
|
|
|
|
#[test]
|
|
fn test_gcd() {
|
|
assert_eq!((10 as $T).gcd(&2), 2 as $T);
|
|
assert_eq!((10 as $T).gcd(&3), 1 as $T);
|
|
assert_eq!((0 as $T).gcd(&3), 3 as $T);
|
|
assert_eq!((3 as $T).gcd(&3), 3 as $T);
|
|
assert_eq!((56 as $T).gcd(&42), 14 as $T);
|
|
assert_eq!((3 as $T).gcd(&-3), 3 as $T);
|
|
assert_eq!((-6 as $T).gcd(&3), 3 as $T);
|
|
assert_eq!((-4 as $T).gcd(&-2), 2 as $T);
|
|
}
|
|
|
|
#[test]
|
|
fn test_lcm() {
|
|
assert_eq!((1 as $T).lcm(&0), 0 as $T);
|
|
assert_eq!((0 as $T).lcm(&1), 0 as $T);
|
|
assert_eq!((1 as $T).lcm(&1), 1 as $T);
|
|
assert_eq!((-1 as $T).lcm(&1), 1 as $T);
|
|
assert_eq!((1 as $T).lcm(&-1), 1 as $T);
|
|
assert_eq!((-1 as $T).lcm(&-1), 1 as $T);
|
|
assert_eq!((8 as $T).lcm(&9), 72 as $T);
|
|
assert_eq!((11 as $T).lcm(&5), 55 as $T);
|
|
}
|
|
|
|
#[test]
|
|
fn test_bitwise() {
|
|
assert_eq!(0b1110 as $T, (0b1100 as $T).bitor(&(0b1010 as $T)));
|
|
assert_eq!(0b1000 as $T, (0b1100 as $T).bitand(&(0b1010 as $T)));
|
|
assert_eq!(0b0110 as $T, (0b1100 as $T).bitxor(&(0b1010 as $T)));
|
|
assert_eq!(0b1110 as $T, (0b0111 as $T).shl(&(1 as $T)));
|
|
assert_eq!(0b0111 as $T, (0b1110 as $T).shr(&(1 as $T)));
|
|
assert_eq!(-(0b11 as $T) - (1 as $T), (0b11 as $T).not());
|
|
}
|
|
|
|
#[test]
|
|
fn test_multiple_of() {
|
|
assert!((6 as $T).is_multiple_of(&(6 as $T)));
|
|
assert!((6 as $T).is_multiple_of(&(3 as $T)));
|
|
assert!((6 as $T).is_multiple_of(&(1 as $T)));
|
|
assert!((-8 as $T).is_multiple_of(&(4 as $T)));
|
|
assert!((8 as $T).is_multiple_of(&(-1 as $T)));
|
|
assert!((-8 as $T).is_multiple_of(&(-2 as $T)));
|
|
}
|
|
|
|
#[test]
|
|
fn test_even() {
|
|
assert_eq!((-4 as $T).is_even(), true);
|
|
assert_eq!((-3 as $T).is_even(), false);
|
|
assert_eq!((-2 as $T).is_even(), true);
|
|
assert_eq!((-1 as $T).is_even(), false);
|
|
assert_eq!((0 as $T).is_even(), true);
|
|
assert_eq!((1 as $T).is_even(), false);
|
|
assert_eq!((2 as $T).is_even(), true);
|
|
assert_eq!((3 as $T).is_even(), false);
|
|
assert_eq!((4 as $T).is_even(), true);
|
|
}
|
|
|
|
#[test]
|
|
fn test_odd() {
|
|
assert_eq!((-4 as $T).is_odd(), false);
|
|
assert_eq!((-3 as $T).is_odd(), true);
|
|
assert_eq!((-2 as $T).is_odd(), false);
|
|
assert_eq!((-1 as $T).is_odd(), true);
|
|
assert_eq!((0 as $T).is_odd(), false);
|
|
assert_eq!((1 as $T).is_odd(), true);
|
|
assert_eq!((2 as $T).is_odd(), false);
|
|
assert_eq!((3 as $T).is_odd(), true);
|
|
assert_eq!((4 as $T).is_odd(), false);
|
|
}
|
|
|
|
#[test]
|
|
fn test_bitcount() {
|
|
assert_eq!((0b010101 as $T).population_count(), 3);
|
|
}
|
|
|
|
#[test]
|
|
fn test_primitive() {
|
|
let none: Option<$T> = None;
|
|
assert_eq!(Primitive::bits(none), sys::size_of::<$T>() * 8);
|
|
assert_eq!(Primitive::bytes(none), sys::size_of::<$T>());
|
|
}
|
|
|
|
#[test]
|
|
fn test_from_str() {
|
|
assert_eq!(from_str("0"), Some(0 as $T));
|
|
assert_eq!(from_str("3"), Some(3 as $T));
|
|
assert_eq!(from_str("10"), Some(10 as $T));
|
|
assert_eq!(i32::from_str("123456789"), Some(123456789 as i32));
|
|
assert_eq!(from_str("00100"), Some(100 as $T));
|
|
|
|
assert_eq!(from_str("-1"), Some(-1 as $T));
|
|
assert_eq!(from_str("-3"), Some(-3 as $T));
|
|
assert_eq!(from_str("-10"), Some(-10 as $T));
|
|
assert_eq!(i32::from_str("-123456789"), Some(-123456789 as i32));
|
|
assert_eq!(from_str("-00100"), Some(-100 as $T));
|
|
|
|
assert!(from_str(" ").is_none());
|
|
assert!(from_str("x").is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_parse_bytes() {
|
|
use str::StrSlice;
|
|
assert_eq!(parse_bytes("123".as_bytes(), 10u), Some(123 as $T));
|
|
assert_eq!(parse_bytes("1001".as_bytes(), 2u), Some(9 as $T));
|
|
assert_eq!(parse_bytes("123".as_bytes(), 8u), Some(83 as $T));
|
|
assert_eq!(i32::parse_bytes("123".as_bytes(), 16u), Some(291 as i32));
|
|
assert_eq!(i32::parse_bytes("ffff".as_bytes(), 16u), Some(65535 as i32));
|
|
assert_eq!(i32::parse_bytes("FFFF".as_bytes(), 16u), Some(65535 as i32));
|
|
assert_eq!(parse_bytes("z".as_bytes(), 36u), Some(35 as $T));
|
|
assert_eq!(parse_bytes("Z".as_bytes(), 36u), Some(35 as $T));
|
|
|
|
assert_eq!(parse_bytes("-123".as_bytes(), 10u), Some(-123 as $T));
|
|
assert_eq!(parse_bytes("-1001".as_bytes(), 2u), Some(-9 as $T));
|
|
assert_eq!(parse_bytes("-123".as_bytes(), 8u), Some(-83 as $T));
|
|
assert_eq!(i32::parse_bytes("-123".as_bytes(), 16u), Some(-291 as i32));
|
|
assert_eq!(i32::parse_bytes("-ffff".as_bytes(), 16u), Some(-65535 as i32));
|
|
assert_eq!(i32::parse_bytes("-FFFF".as_bytes(), 16u), Some(-65535 as i32));
|
|
assert_eq!(parse_bytes("-z".as_bytes(), 36u), Some(-35 as $T));
|
|
assert_eq!(parse_bytes("-Z".as_bytes(), 36u), Some(-35 as $T));
|
|
|
|
assert!(parse_bytes("Z".as_bytes(), 35u).is_none());
|
|
assert!(parse_bytes("-9".as_bytes(), 2u).is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_to_str() {
|
|
assert_eq!((0 as $T).to_str_radix(10u), ~"0");
|
|
assert_eq!((1 as $T).to_str_radix(10u), ~"1");
|
|
assert_eq!((-1 as $T).to_str_radix(10u), ~"-1");
|
|
assert_eq!((127 as $T).to_str_radix(16u), ~"7f");
|
|
assert_eq!((100 as $T).to_str_radix(10u), ~"100");
|
|
|
|
}
|
|
|
|
#[test]
|
|
fn test_int_to_str_overflow() {
|
|
let mut i8_val: i8 = 127_i8;
|
|
assert_eq!(i8_val.to_str(), ~"127");
|
|
|
|
i8_val += 1 as i8;
|
|
assert_eq!(i8_val.to_str(), ~"-128");
|
|
|
|
let mut i16_val: i16 = 32_767_i16;
|
|
assert_eq!(i16_val.to_str(), ~"32767");
|
|
|
|
i16_val += 1 as i16;
|
|
assert_eq!(i16_val.to_str(), ~"-32768");
|
|
|
|
let mut i32_val: i32 = 2_147_483_647_i32;
|
|
assert_eq!(i32_val.to_str(), ~"2147483647");
|
|
|
|
i32_val += 1 as i32;
|
|
assert_eq!(i32_val.to_str(), ~"-2147483648");
|
|
|
|
let mut i64_val: i64 = 9_223_372_036_854_775_807_i64;
|
|
assert_eq!(i64_val.to_str(), ~"9223372036854775807");
|
|
|
|
i64_val += 1 as i64;
|
|
assert_eq!(i64_val.to_str(), ~"-9223372036854775808");
|
|
}
|
|
|
|
#[test]
|
|
fn test_int_from_str_overflow() {
|
|
let mut i8_val: i8 = 127_i8;
|
|
assert_eq!(i8::from_str("127"), Some(i8_val));
|
|
assert!(i8::from_str("128").is_none());
|
|
|
|
i8_val += 1 as i8;
|
|
assert_eq!(i8::from_str("-128"), Some(i8_val));
|
|
assert!(i8::from_str("-129").is_none());
|
|
|
|
let mut i16_val: i16 = 32_767_i16;
|
|
assert_eq!(i16::from_str("32767"), Some(i16_val));
|
|
assert!(i16::from_str("32768").is_none());
|
|
|
|
i16_val += 1 as i16;
|
|
assert_eq!(i16::from_str("-32768"), Some(i16_val));
|
|
assert!(i16::from_str("-32769").is_none());
|
|
|
|
let mut i32_val: i32 = 2_147_483_647_i32;
|
|
assert_eq!(i32::from_str("2147483647"), Some(i32_val));
|
|
assert!(i32::from_str("2147483648").is_none());
|
|
|
|
i32_val += 1 as i32;
|
|
assert_eq!(i32::from_str("-2147483648"), Some(i32_val));
|
|
assert!(i32::from_str("-2147483649").is_none());
|
|
|
|
let mut i64_val: i64 = 9_223_372_036_854_775_807_i64;
|
|
assert_eq!(i64::from_str("9223372036854775807"), Some(i64_val));
|
|
assert!(i64::from_str("9223372036854775808").is_none());
|
|
|
|
i64_val += 1 as i64;
|
|
assert_eq!(i64::from_str("-9223372036854775808"), Some(i64_val));
|
|
assert!(i64::from_str("-9223372036854775809").is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_ranges() {
|
|
let mut l = ~[];
|
|
|
|
do range_step(20,26,2) |i| {
|
|
l.push(i);
|
|
true
|
|
};
|
|
do range_step(36,30,-2) |i| {
|
|
l.push(i);
|
|
true
|
|
};
|
|
do range_step(max_value - 2, max_value, 2) |i| {
|
|
l.push(i);
|
|
true
|
|
};
|
|
do range_step(max_value - 3, max_value, 2) |i| {
|
|
l.push(i);
|
|
true
|
|
};
|
|
do range_step(min_value + 2, min_value, -2) |i| {
|
|
l.push(i);
|
|
true
|
|
};
|
|
do range_step(min_value + 3, min_value, -2) |i| {
|
|
l.push(i);
|
|
true
|
|
};
|
|
assert_eq!(l, ~[20,22,24,
|
|
36,34,32,
|
|
max_value-2,
|
|
max_value-3,max_value-1,
|
|
min_value+2,
|
|
min_value+3,min_value+1]);
|
|
|
|
// None of the `fail`s should execute.
|
|
do range_step(10,0,1) |_i| {
|
|
fail!(~"unreachable");
|
|
};
|
|
do range_step(0,10,-1) |_i| {
|
|
fail!(~"unreachable");
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[should_fail]
|
|
fn test_range_step_zero_step() {
|
|
do range_step(0,10,0) |_i| { true };
|
|
}
|
|
|
|
#[test]
|
|
fn test_signed_checked_div() {
|
|
assert_eq!(10i.checked_div(&2), Some(5));
|
|
assert_eq!(5i.checked_div(&0), None);
|
|
assert_eq!(int::min_value.checked_div(&-1), None);
|
|
}
|
|
}
|
|
|
|
}))
|