rust/compiler/rustc_hir_analysis/src/constrained_generic_params.rs
2023-08-12 17:14:13 +00:00

225 lines
8.6 KiB
Rust

use rustc_data_structures::fx::FxHashSet;
use rustc_middle::ty::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor};
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_span::source_map::Span;
use std::ops::ControlFlow;
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Parameter(pub u32);
impl From<ty::ParamTy> for Parameter {
fn from(param: ty::ParamTy) -> Self {
Parameter(param.index)
}
}
impl From<ty::EarlyBoundRegion> for Parameter {
fn from(param: ty::EarlyBoundRegion) -> Self {
Parameter(param.index)
}
}
impl From<ty::ParamConst> for Parameter {
fn from(param: ty::ParamConst) -> Self {
Parameter(param.index)
}
}
/// Returns the set of parameters constrained by the impl header.
pub fn parameters_for_impl<'tcx>(
impl_self_ty: Ty<'tcx>,
impl_trait_ref: Option<ty::TraitRef<'tcx>>,
) -> FxHashSet<Parameter> {
let vec = match impl_trait_ref {
Some(tr) => parameters_for(&tr, false),
None => parameters_for(&impl_self_ty, false),
};
vec.into_iter().collect()
}
/// If `include_nonconstraining` is false, returns the list of parameters that are
/// constrained by `t` - i.e., the value of each parameter in the list is
/// uniquely determined by `t` (see RFC 447). If it is true, return the list
/// of parameters whose values are needed in order to constrain `ty` - these
/// differ, with the latter being a superset, in the presence of projections.
pub fn parameters_for<'tcx>(
t: &impl TypeVisitable<TyCtxt<'tcx>>,
include_nonconstraining: bool,
) -> Vec<Parameter> {
let mut collector = ParameterCollector { parameters: vec![], include_nonconstraining };
t.visit_with(&mut collector);
collector.parameters
}
struct ParameterCollector {
parameters: Vec<Parameter>,
include_nonconstraining: bool,
}
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ParameterCollector {
fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
match *t.kind() {
ty::Alias(..) if !self.include_nonconstraining => {
// projections are not injective
return ControlFlow::Continue(());
}
ty::Param(data) => {
self.parameters.push(Parameter::from(data));
}
_ => {}
}
t.super_visit_with(self)
}
fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
if let ty::ReEarlyBound(data) = *r {
self.parameters.push(Parameter::from(data));
}
ControlFlow::Continue(())
}
fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
match c.kind() {
ty::ConstKind::Unevaluated(..) if !self.include_nonconstraining => {
// Constant expressions are not injective
return c.ty().visit_with(self);
}
ty::ConstKind::Param(data) => {
self.parameters.push(Parameter::from(data));
}
_ => {}
}
c.super_visit_with(self)
}
}
pub fn identify_constrained_generic_params<'tcx>(
tcx: TyCtxt<'tcx>,
predicates: ty::GenericPredicates<'tcx>,
impl_trait_ref: Option<ty::TraitRef<'tcx>>,
input_parameters: &mut FxHashSet<Parameter>,
) {
let mut predicates = predicates.predicates.to_vec();
setup_constraining_predicates(tcx, &mut predicates, impl_trait_ref, input_parameters);
}
/// Order the predicates in `predicates` such that each parameter is
/// constrained before it is used, if that is possible, and add the
/// parameters so constrained to `input_parameters`. For example,
/// imagine the following impl:
/// ```ignore (illustrative)
/// impl<T: Debug, U: Iterator<Item = T>> Trait for U
/// ```
/// The impl's predicates are collected from left to right. Ignoring
/// the implicit `Sized` bounds, these are
/// * `T: Debug`
/// * `U: Iterator`
/// * `<U as Iterator>::Item = T` -- a desugared ProjectionPredicate
///
/// When we, for example, try to go over the trait-reference
/// `IntoIter<u32> as Trait`, we substitute the impl parameters with fresh
/// variables and match them with the impl trait-ref, so we know that
/// `$U = IntoIter<u32>`.
///
/// However, in order to process the `$T: Debug` predicate, we must first
/// know the value of `$T` - which is only given by processing the
/// projection. As we occasionally want to process predicates in a single
/// pass, we want the projection to come first. In fact, as projections
/// can (acyclically) depend on one another - see RFC447 for details - we
/// need to topologically sort them.
///
/// We *do* have to be somewhat careful when projection targets contain
/// projections themselves, for example in
///
/// ```ignore (illustrative)
/// impl<S,U,V,W> Trait for U where
/// /* 0 */ S: Iterator<Item = U>,
/// /* - */ U: Iterator,
/// /* 1 */ <U as Iterator>::Item: ToOwned<Owned=(W,<V as Iterator>::Item)>
/// /* 2 */ W: Iterator<Item = V>
/// /* 3 */ V: Debug
/// ```
///
/// we have to evaluate the projections in the order I wrote them:
/// `V: Debug` requires `V` to be evaluated. The only projection that
/// *determines* `V` is 2 (1 contains it, but *does not determine it*,
/// as it is only contained within a projection), but that requires `W`
/// which is determined by 1, which requires `U`, that is determined
/// by 0. I should probably pick a less tangled example, but I can't
/// think of any.
pub fn setup_constraining_predicates<'tcx>(
tcx: TyCtxt<'tcx>,
predicates: &mut [(ty::Clause<'tcx>, Span)],
impl_trait_ref: Option<ty::TraitRef<'tcx>>,
input_parameters: &mut FxHashSet<Parameter>,
) {
// The canonical way of doing the needed topological sort
// would be a DFS, but getting the graph and its ownership
// right is annoying, so I am using an in-place fixed-point iteration,
// which is `O(nt)` where `t` is the depth of type-parameter constraints,
// remembering that `t` should be less than 7 in practice.
//
// Basically, I iterate over all projections and swap every
// "ready" projection to the start of the list, such that
// all of the projections before `i` are topologically sorted
// and constrain all the parameters in `input_parameters`.
//
// In the example, `input_parameters` starts by containing `U` - which
// is constrained by the trait-ref - and so on the first pass we
// observe that `<U as Iterator>::Item = T` is a "ready" projection that
// constrains `T` and swap it to front. As it is the sole projection,
// no more swaps can take place afterwards, with the result being
// * <U as Iterator>::Item = T
// * T: Debug
// * U: Iterator
debug!(
"setup_constraining_predicates: predicates={:?} \
impl_trait_ref={:?} input_parameters={:?}",
predicates, impl_trait_ref, input_parameters
);
let mut i = 0;
let mut changed = true;
while changed {
changed = false;
for j in i..predicates.len() {
// Note that we don't have to care about binders here,
// as the impl trait ref never contains any late-bound regions.
if let ty::ClauseKind::Projection(projection) = predicates[j].0.kind().skip_binder() {
// Special case: watch out for some kind of sneaky attempt
// to project out an associated type defined by this very
// trait.
let unbound_trait_ref = projection.projection_ty.trait_ref(tcx);
if Some(unbound_trait_ref) == impl_trait_ref {
continue;
}
// A projection depends on its input types and determines its output
// type. For example, if we have
// `<<T as Bar>::Baz as Iterator>::Output = <U as Iterator>::Output`
// Then the projection only applies if `T` is known, but it still
// does not determine `U`.
let inputs = parameters_for(&projection.projection_ty, true);
let relies_only_on_inputs = inputs.iter().all(|p| input_parameters.contains(p));
if !relies_only_on_inputs {
continue;
}
input_parameters.extend(parameters_for(&projection.term, false));
} else {
continue;
}
// fancy control flow to bypass borrow checker
predicates.swap(i, j);
i += 1;
changed = true;
}
debug!(
"setup_constraining_predicates: predicates={:?} \
i={} impl_trait_ref={:?} input_parameters={:?}",
predicates, i, impl_trait_ref, input_parameters
);
}
}