Daniel Micay d2e9912aea vec: remove BaseIter implementation
I removed the `static-method-test.rs` test because it was heavily based
on `BaseIter` and there are plenty of other more complex uses of static
methods anyway.
2013-06-23 02:05:20 -04:00

594 lines
21 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use back::abi;
use lib;
use lib::llvm::{llvm, ValueRef};
use middle::trans::base;
use middle::trans::base::*;
use middle::trans::build::*;
use middle::trans::callee;
use middle::trans::common::*;
use middle::trans::datum::*;
use middle::trans::expr::{Dest, Ignore, SaveIn};
use middle::trans::expr;
use middle::trans::glue;
use middle::trans::machine::{llsize_of, nonzero_llsize_of};
use middle::trans::type_of;
use middle::ty;
use util::common::indenter;
use util::ppaux::ty_to_str;
use middle::trans::type_::Type;
use core::option::None;
use syntax::ast;
use syntax::codemap;
// Boxed vector types are in some sense currently a "shorthand" for a box
// containing an unboxed vector. This expands a boxed vector type into such an
// expanded type. It doesn't respect mutability, but that doesn't matter at
// this point.
pub fn expand_boxed_vec_ty(tcx: ty::ctxt, t: ty::t) -> ty::t {
let unit_ty = ty::sequence_element_type(tcx, t);
let unboxed_vec_ty = ty::mk_mut_unboxed_vec(tcx, unit_ty);
match ty::get(t).sty {
ty::ty_estr(ty::vstore_uniq) | ty::ty_evec(_, ty::vstore_uniq) => {
ty::mk_imm_uniq(tcx, unboxed_vec_ty)
}
ty::ty_estr(ty::vstore_box) | ty::ty_evec(_, ty::vstore_box) => {
ty::mk_imm_box(tcx, unboxed_vec_ty)
}
_ => tcx.sess.bug("non boxed-vec type \
in tvec::expand_boxed_vec_ty")
}
}
pub fn get_fill(bcx: block, vptr: ValueRef) -> ValueRef {
let _icx = push_ctxt("tvec::get_fill");
Load(bcx, GEPi(bcx, vptr, [0u, abi::vec_elt_fill]))
}
pub fn set_fill(bcx: block, vptr: ValueRef, fill: ValueRef) {
Store(bcx, fill, GEPi(bcx, vptr, [0u, abi::vec_elt_fill]));
}
pub fn get_alloc(bcx: block, vptr: ValueRef) -> ValueRef {
Load(bcx, GEPi(bcx, vptr, [0u, abi::vec_elt_alloc]))
}
pub fn get_bodyptr(bcx: block, vptr: ValueRef) -> ValueRef {
GEPi(bcx, vptr, [0u, abi::box_field_body])
}
pub fn get_dataptr(bcx: block, vptr: ValueRef) -> ValueRef {
let _icx = push_ctxt("tvec::get_dataptr");
GEPi(bcx, vptr, [0u, abi::vec_elt_elems, 0u])
}
pub fn pointer_add(bcx: block, ptr: ValueRef, bytes: ValueRef) -> ValueRef {
let _icx = push_ctxt("tvec::pointer_add");
let old_ty = val_ty(ptr);
let bptr = PointerCast(bcx, ptr, Type::i8p());
return PointerCast(bcx, InBoundsGEP(bcx, bptr, [bytes]), old_ty);
}
pub fn alloc_raw(bcx: block, unit_ty: ty::t,
fill: ValueRef, alloc: ValueRef, heap: heap) -> Result {
let _icx = push_ctxt("tvec::alloc_uniq");
let ccx = bcx.ccx();
let vecbodyty = ty::mk_mut_unboxed_vec(bcx.tcx(), unit_ty);
let vecsize = Add(bcx, alloc, llsize_of(ccx, ccx.opaque_vec_type));
let base::MallocResult {bcx, box: bx, body} =
base::malloc_general_dyn(bcx, vecbodyty, heap, vecsize);
Store(bcx, fill, GEPi(bcx, body, [0u, abi::vec_elt_fill]));
Store(bcx, alloc, GEPi(bcx, body, [0u, abi::vec_elt_alloc]));
base::maybe_set_managed_unique_rc(bcx, bx, heap);
return rslt(bcx, bx);
}
pub fn alloc_uniq_raw(bcx: block, unit_ty: ty::t,
fill: ValueRef, alloc: ValueRef) -> Result {
alloc_raw(bcx, unit_ty, fill, alloc, base::heap_for_unique(bcx, unit_ty))
}
pub fn alloc_vec(bcx: block,
unit_ty: ty::t,
elts: uint,
heap: heap)
-> Result {
let _icx = push_ctxt("tvec::alloc_uniq");
let ccx = bcx.ccx();
let llunitty = type_of::type_of(ccx, unit_ty);
let unit_sz = nonzero_llsize_of(ccx, llunitty);
let fill = Mul(bcx, C_uint(ccx, elts), unit_sz);
let alloc = if elts < 4u { Mul(bcx, C_int(ccx, 4), unit_sz) }
else { fill };
let Result {bcx: bcx, val: vptr} =
alloc_raw(bcx, unit_ty, fill, alloc, heap);
return rslt(bcx, vptr);
}
pub fn duplicate_uniq(bcx: block, vptr: ValueRef, vec_ty: ty::t) -> Result {
let _icx = push_ctxt("tvec::duplicate_uniq");
let fill = get_fill(bcx, get_bodyptr(bcx, vptr));
let unit_ty = ty::sequence_element_type(bcx.tcx(), vec_ty);
let Result {bcx, val: newptr} = alloc_uniq_raw(bcx, unit_ty, fill, fill);
let data_ptr = get_dataptr(bcx, get_bodyptr(bcx, vptr));
let new_data_ptr = get_dataptr(bcx, get_bodyptr(bcx, newptr));
base::call_memcpy(bcx, new_data_ptr, data_ptr, fill, 1);
let bcx = if ty::type_needs_drop(bcx.tcx(), unit_ty) {
iter_vec_raw(bcx, new_data_ptr, vec_ty, fill, glue::take_ty)
} else { bcx };
return rslt(bcx, newptr);
}
pub fn make_drop_glue_unboxed(bcx: block, vptr: ValueRef, vec_ty: ty::t) ->
block {
let _icx = push_ctxt("tvec::make_drop_glue_unboxed");
let tcx = bcx.tcx();
let unit_ty = ty::sequence_element_type(tcx, vec_ty);
if ty::type_needs_drop(tcx, unit_ty) {
iter_vec_unboxed(bcx, vptr, vec_ty, glue::drop_ty)
} else { bcx }
}
pub struct VecTypes {
vec_ty: ty::t,
unit_ty: ty::t,
llunit_ty: Type,
llunit_size: ValueRef
}
impl VecTypes {
pub fn to_str(&self, ccx: &CrateContext) -> ~str {
fmt!("VecTypes {vec_ty=%s, unit_ty=%s, llunit_ty=%s, llunit_size=%s}",
ty_to_str(ccx.tcx, self.vec_ty),
ty_to_str(ccx.tcx, self.unit_ty),
ccx.tn.type_to_str(self.llunit_ty),
ccx.tn.val_to_str(self.llunit_size))
}
}
pub fn trans_fixed_vstore(bcx: block,
vstore_expr: @ast::expr,
content_expr: @ast::expr,
dest: expr::Dest)
-> block {
//!
//
// [...] allocates a fixed-size array and moves it around "by value".
// In this case, it means that the caller has already given us a location
// to store the array of the suitable size, so all we have to do is
// generate the content.
debug!("trans_fixed_vstore(vstore_expr=%s, dest=%?)",
bcx.expr_to_str(vstore_expr), dest.to_str(bcx.ccx()));
let _indenter = indenter();
let vt = vec_types_from_expr(bcx, vstore_expr);
return match dest {
Ignore => write_content(bcx, &vt, vstore_expr, content_expr, dest),
SaveIn(lldest) => {
// lldest will have type *[T x N], but we want the type *T,
// so use GEP to convert:
let lldest = GEPi(bcx, lldest, [0, 0]);
write_content(bcx, &vt, vstore_expr, content_expr, SaveIn(lldest))
}
};
}
pub fn trans_slice_vstore(bcx: block,
vstore_expr: @ast::expr,
content_expr: @ast::expr,
dest: expr::Dest)
-> block {
//!
//
// &[...] allocates memory on the stack and writes the values into it,
// returning a slice (pair of ptr, len). &"..." is similar except that
// the memory can be statically allocated.
let ccx = bcx.ccx();
debug!("trans_slice_vstore(vstore_expr=%s, dest=%s)",
bcx.expr_to_str(vstore_expr), dest.to_str(ccx));
let _indenter = indenter();
// Handle the &"..." case:
match content_expr.node {
ast::expr_lit(@codemap::spanned {node: ast::lit_str(s), span: _}) => {
return trans_lit_str(bcx, content_expr, s, dest);
}
_ => {}
}
// Handle the &[...] case:
let vt = vec_types_from_expr(bcx, vstore_expr);
let count = elements_required(bcx, content_expr);
debug!("vt=%s, count=%?", vt.to_str(ccx), count);
// Make a fixed-length backing array and allocate it on the stack.
let llcount = C_uint(ccx, count);
let llfixed = base::arrayalloca(bcx, vt.llunit_ty, llcount);
// Arrange for the backing array to be cleaned up.
let fixed_ty = ty::mk_evec(bcx.tcx(),
ty::mt {ty: vt.unit_ty, mutbl: ast::m_mutbl},
ty::vstore_fixed(count));
let llfixed_ty = type_of::type_of(bcx.ccx(), fixed_ty).ptr_to();
let llfixed_casted = BitCast(bcx, llfixed, llfixed_ty);
add_clean(bcx, llfixed_casted, fixed_ty);
// Generate the content into the backing array.
let bcx = write_content(bcx, &vt, vstore_expr,
content_expr, SaveIn(llfixed));
// Finally, create the slice pair itself.
match dest {
Ignore => {}
SaveIn(lldest) => {
Store(bcx, llfixed, GEPi(bcx, lldest, [0u, abi::slice_elt_base]));
let lllen = Mul(bcx, llcount, vt.llunit_size);
Store(bcx, lllen, GEPi(bcx, lldest, [0u, abi::slice_elt_len]));
}
}
return bcx;
}
pub fn trans_lit_str(bcx: block,
lit_expr: @ast::expr,
str_lit: @str,
dest: Dest)
-> block {
//!
//
// Literal strings translate to slices into static memory. This is
// different from trans_slice_vstore() above because it does need to copy
// the content anywhere.
debug!("trans_lit_str(lit_expr=%s, dest=%s)",
bcx.expr_to_str(lit_expr),
dest.to_str(bcx.ccx()));
let _indenter = indenter();
match dest {
Ignore => bcx,
SaveIn(lldest) => {
unsafe {
let bytes = str_lit.len() + 1; // count null-terminator too
let llbytes = C_uint(bcx.ccx(), bytes);
let llcstr = C_cstr(bcx.ccx(), str_lit);
let llcstr = llvm::LLVMConstPointerCast(llcstr, Type::i8p().to_ref());
Store(bcx, llcstr,
GEPi(bcx, lldest, [0u, abi::slice_elt_base]));
Store(bcx, llbytes,
GEPi(bcx, lldest, [0u, abi::slice_elt_len]));
bcx
}
}
}
}
pub fn trans_uniq_or_managed_vstore(bcx: block, heap: heap, vstore_expr: @ast::expr,
content_expr: @ast::expr) -> DatumBlock {
//!
//
// @[...] or ~[...] (also @"..." or ~"...") allocate boxes in the
// appropriate heap and write the array elements into them.
debug!("trans_uniq_or_managed_vstore(vstore_expr=%s, heap=%?)",
bcx.expr_to_str(vstore_expr), heap);
let _indenter = indenter();
// Handle ~"".
match heap {
heap_exchange => {
match content_expr.node {
ast::expr_lit(@codemap::spanned {
node: ast::lit_str(s), _
}) => {
let llptrval = C_cstr(bcx.ccx(), s);
let llptrval = PointerCast(bcx, llptrval, Type::i8p());
let llsizeval = C_uint(bcx.ccx(), s.len());
let typ = ty::mk_estr(bcx.tcx(), ty::vstore_uniq);
let lldestval = scratch_datum(bcx, typ, false);
let bcx = callee::trans_lang_call(
bcx,
bcx.tcx().lang_items.strdup_uniq_fn(),
[ llptrval, llsizeval ],
expr::SaveIn(lldestval.to_ref_llval(bcx)));
return DatumBlock {
bcx: bcx,
datum: lldestval
};
}
_ => {}
}
}
heap_managed | heap_managed_unique => {}
}
let vt = vec_types_from_expr(bcx, vstore_expr);
let count = elements_required(bcx, content_expr);
let Result {bcx, val} = alloc_vec(bcx, vt.unit_ty, count, heap);
add_clean_free(bcx, val, heap);
let dataptr = get_dataptr(bcx, get_bodyptr(bcx, val));
debug!("alloc_vec() returned val=%s, dataptr=%s",
bcx.val_to_str(val), bcx.val_to_str(dataptr));
let bcx = write_content(bcx, &vt, vstore_expr,
content_expr, SaveIn(dataptr));
revoke_clean(bcx, val);
return immediate_rvalue_bcx(bcx, val, vt.vec_ty);
}
pub fn write_content(bcx: block,
vt: &VecTypes,
vstore_expr: @ast::expr,
content_expr: @ast::expr,
dest: Dest)
-> block {
let _icx = push_ctxt("tvec::write_content");
let mut bcx = bcx;
debug!("write_content(vt=%s, dest=%s, vstore_expr=%?)",
vt.to_str(bcx.ccx()),
dest.to_str(bcx.ccx()),
bcx.expr_to_str(vstore_expr));
let _indenter = indenter();
match content_expr.node {
ast::expr_lit(@codemap::spanned { node: ast::lit_str(s), _ }) => {
match dest {
Ignore => {
return bcx;
}
SaveIn(lldest) => {
let bytes = s.len() + 1; // copy null-terminator too
let llbytes = C_uint(bcx.ccx(), bytes);
let llcstr = C_cstr(bcx.ccx(), s);
base::call_memcpy(bcx, lldest, llcstr, llbytes, 1);
return bcx;
}
}
}
ast::expr_vec(ref elements, _) => {
match dest {
Ignore => {
for elements.iter().advance |element| {
bcx = expr::trans_into(bcx, *element, Ignore);
}
}
SaveIn(lldest) => {
let mut temp_cleanups = ~[];
for elements.iter().enumerate().advance |(i, element)| {
let lleltptr = GEPi(bcx, lldest, [i]);
debug!("writing index %? with lleltptr=%?",
i, bcx.val_to_str(lleltptr));
bcx = expr::trans_into(bcx, *element,
SaveIn(lleltptr));
add_clean_temp_mem(bcx, lleltptr, vt.unit_ty);
temp_cleanups.push(lleltptr);
}
for temp_cleanups.iter().advance |cleanup| {
revoke_clean(bcx, *cleanup);
}
}
}
return bcx;
}
ast::expr_repeat(element, count_expr, _) => {
match dest {
Ignore => {
return expr::trans_into(bcx, element, Ignore);
}
SaveIn(lldest) => {
let count = ty::eval_repeat_count(bcx.tcx(), count_expr);
if count == 0 {
return bcx;
}
// Some cleanup would be required in the case in which failure happens
// during a copy. But given that copy constructors are not overridable,
// this can only happen as a result of OOM. So we just skip out on the
// cleanup since things would *probably* be broken at that point anyways.
let elem = unpack_datum!(bcx, {
expr::trans_to_datum(bcx, element)
});
let next_bcx = sub_block(bcx, "expr_repeat: while next");
let loop_bcx = loop_scope_block(bcx, next_bcx, None, "expr_repeat", None);
let cond_bcx = scope_block(loop_bcx, None, "expr_repeat: loop cond");
let set_bcx = scope_block(loop_bcx, None, "expr_repeat: body: set");
let inc_bcx = scope_block(loop_bcx, None, "expr_repeat: body: inc");
Br(bcx, loop_bcx.llbb);
let loop_counter = {
// i = 0
let i = alloca(loop_bcx, bcx.ccx().int_type);
Store(loop_bcx, C_uint(bcx.ccx(), 0), i);
Br(loop_bcx, cond_bcx.llbb);
i
};
{ // i < count
let lhs = Load(cond_bcx, loop_counter);
let rhs = C_uint(bcx.ccx(), count);
let cond_val = ICmp(cond_bcx, lib::llvm::IntULT, lhs, rhs);
CondBr(cond_bcx, cond_val, set_bcx.llbb, next_bcx.llbb);
}
{ // v[i] = elem
let i = Load(set_bcx, loop_counter);
let lleltptr = InBoundsGEP(set_bcx, lldest, [i]);
let set_bcx = elem.copy_to(set_bcx, INIT, lleltptr);
Br(set_bcx, inc_bcx.llbb);
}
{ // i += 1
let i = Load(inc_bcx, loop_counter);
let plusone = Add(inc_bcx, i, C_uint(bcx.ccx(), 1));
Store(inc_bcx, plusone, loop_counter);
Br(inc_bcx, cond_bcx.llbb);
}
return next_bcx;
}
}
}
_ => {
bcx.tcx().sess.span_bug(content_expr.span,
"Unexpected evec content");
}
}
}
pub fn vec_types_from_expr(bcx: block, vec_expr: @ast::expr) -> VecTypes {
let vec_ty = node_id_type(bcx, vec_expr.id);
vec_types(bcx, vec_ty)
}
pub fn vec_types(bcx: block, vec_ty: ty::t) -> VecTypes {
let ccx = bcx.ccx();
let unit_ty = ty::sequence_element_type(bcx.tcx(), vec_ty);
let llunit_ty = type_of::type_of(ccx, unit_ty);
let llunit_size = nonzero_llsize_of(ccx, llunit_ty);
VecTypes {vec_ty: vec_ty,
unit_ty: unit_ty,
llunit_ty: llunit_ty,
llunit_size: llunit_size}
}
pub fn elements_required(bcx: block, content_expr: @ast::expr) -> uint {
//! Figure out the number of elements we need to store this content
match content_expr.node {
ast::expr_lit(@codemap::spanned { node: ast::lit_str(s), _ }) => {
s.len() + 1
},
ast::expr_vec(ref es, _) => es.len(),
ast::expr_repeat(_, count_expr, _) => {
ty::eval_repeat_count(bcx.tcx(), count_expr)
}
_ => bcx.tcx().sess.span_bug(content_expr.span,
"Unexpected evec content")
}
}
pub fn get_base_and_len(bcx: block,
llval: ValueRef,
vec_ty: ty::t) -> (ValueRef, ValueRef) {
//!
//
// Converts a vector into the slice pair. The vector should be stored in
// `llval` which should be either immediate or by-ref as appropriate for
// the vector type. If you have a datum, you would probably prefer to
// call `Datum::get_base_and_len()` which will handle any conversions for
// you.
let ccx = bcx.ccx();
let vt = vec_types(bcx, vec_ty);
let vstore = match ty::get(vt.vec_ty).sty {
ty::ty_estr(vst) | ty::ty_evec(_, vst) => vst,
_ => ty::vstore_uniq
};
match vstore {
ty::vstore_fixed(n) => {
let base = GEPi(bcx, llval, [0u, 0u]);
let n = if ty::type_is_str(vec_ty) { n + 1u } else { n };
let len = Mul(bcx, C_uint(ccx, n), vt.llunit_size);
(base, len)
}
ty::vstore_slice(_) => {
let base = Load(bcx, GEPi(bcx, llval, [0u, abi::slice_elt_base]));
let len = Load(bcx, GEPi(bcx, llval, [0u, abi::slice_elt_len]));
(base, len)
}
ty::vstore_uniq | ty::vstore_box => {
let body = get_bodyptr(bcx, llval);
(get_dataptr(bcx, body), get_fill(bcx, body))
}
}
}
pub type val_and_ty_fn = @fn(block, ValueRef, ty::t) -> Result;
pub type iter_vec_block<'self> = &'self fn(block, ValueRef, ty::t) -> block;
pub fn iter_vec_raw(bcx: block, data_ptr: ValueRef, vec_ty: ty::t,
fill: ValueRef, f: iter_vec_block) -> block {
let _icx = push_ctxt("tvec::iter_vec_raw");
let unit_ty = ty::sequence_element_type(bcx.tcx(), vec_ty);
// Calculate the last pointer address we want to handle.
// FIXME (#3729): Optimize this when the size of the unit type is
// statically known to not use pointer casts, which tend to confuse
// LLVM.
let data_end_ptr = pointer_add(bcx, data_ptr, fill);
// Now perform the iteration.
let header_bcx = base::sub_block(bcx, "iter_vec_loop_header");
Br(bcx, header_bcx.llbb);
let data_ptr =
Phi(header_bcx, val_ty(data_ptr), [data_ptr], [bcx.llbb]);
let not_yet_at_end =
ICmp(header_bcx, lib::llvm::IntULT, data_ptr, data_end_ptr);
let body_bcx = base::sub_block(header_bcx, "iter_vec_loop_body");
let next_bcx = base::sub_block(header_bcx, "iter_vec_next");
CondBr(header_bcx, not_yet_at_end, body_bcx.llbb, next_bcx.llbb);
let body_bcx = f(body_bcx, data_ptr, unit_ty);
AddIncomingToPhi(data_ptr, InBoundsGEP(body_bcx, data_ptr,
[C_int(bcx.ccx(), 1)]),
body_bcx.llbb);
Br(body_bcx, header_bcx.llbb);
return next_bcx;
}
pub fn iter_vec_uniq(bcx: block, vptr: ValueRef, vec_ty: ty::t,
fill: ValueRef, f: iter_vec_block) -> block {
let _icx = push_ctxt("tvec::iter_vec_uniq");
let data_ptr = get_dataptr(bcx, get_bodyptr(bcx, vptr));
iter_vec_raw(bcx, data_ptr, vec_ty, fill, f)
}
pub fn iter_vec_unboxed(bcx: block, body_ptr: ValueRef, vec_ty: ty::t,
f: iter_vec_block) -> block {
let _icx = push_ctxt("tvec::iter_vec_unboxed");
let fill = get_fill(bcx, body_ptr);
let dataptr = get_dataptr(bcx, body_ptr);
return iter_vec_raw(bcx, dataptr, vec_ty, fill, f);
}