rust/src/liballoc/boxed.rs
2018-07-24 17:09:12 -04:00

1015 lines
29 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A pointer type for heap allocation.
//!
//! `Box<T>`, casually referred to as a 'box', provides the simplest form of
//! heap allocation in Rust. Boxes provide ownership for this allocation, and
//! drop their contents when they go out of scope.
//!
//! # Examples
//!
//! Creating a box:
//!
//! ```
//! let x = Box::new(5);
//! ```
//!
//! Creating a recursive data structure:
//!
//! ```
//! #[derive(Debug)]
//! enum List<T> {
//! Cons(T, Box<List<T>>),
//! Nil,
//! }
//!
//! fn main() {
//! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
//! println!("{:?}", list);
//! }
//! ```
//!
//! This will print `Cons(1, Cons(2, Nil))`.
//!
//! Recursive structures must be boxed, because if the definition of `Cons`
//! looked like this:
//!
//! ```compile_fail,E0072
//! # enum List<T> {
//! Cons(T, List<T>),
//! # }
//! ```
//!
//! It wouldn't work. This is because the size of a `List` depends on how many
//! elements are in the list, and so we don't know how much memory to allocate
//! for a `Cons`. By introducing a `Box`, which has a defined size, we know how
//! big `Cons` needs to be.
#![stable(feature = "rust1", since = "1.0.0")]
use core::any::Any;
use core::borrow;
use core::cmp::Ordering;
use core::convert::From;
use core::fmt;
use core::future::{Future, FutureObj, LocalFutureObj, UnsafeFutureObj};
use core::hash::{Hash, Hasher};
use core::iter::FusedIterator;
use core::marker::{Unpin, Unsize};
use core::mem::{self, PinMut};
use core::ops::{CoerceUnsized, Deref, DerefMut, Generator, GeneratorState};
use core::ptr::{self, NonNull, Unique};
use core::task::{Context, Poll, Executor, SpawnErrorKind, SpawnObjError};
use raw_vec::RawVec;
use str::from_boxed_utf8_unchecked;
/// A pointer type for heap allocation.
///
/// See the [module-level documentation](../../std/boxed/index.html) for more.
#[lang = "owned_box"]
#[fundamental]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Box<T: ?Sized>(Unique<T>);
impl<T> Box<T> {
/// Allocates memory on the heap and then places `x` into it.
///
/// This doesn't actually allocate if `T` is zero-sized.
///
/// # Examples
///
/// ```
/// let five = Box::new(5);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline(always)]
pub fn new(x: T) -> Box<T> {
box x
}
}
impl<T: ?Sized> Box<T> {
/// Constructs a box from a raw pointer.
///
/// After calling this function, the raw pointer is owned by the
/// resulting `Box`. Specifically, the `Box` destructor will call
/// the destructor of `T` and free the allocated memory. Since the
/// way `Box` allocates and releases memory is unspecified, the
/// only valid pointer to pass to this function is the one taken
/// from another `Box` via the [`Box::into_raw`] function.
///
/// This function is unsafe because improper use may lead to
/// memory problems. For example, a double-free may occur if the
/// function is called twice on the same raw pointer.
///
/// [`Box::into_raw`]: struct.Box.html#method.into_raw
///
/// # Examples
///
/// ```
/// let x = Box::new(5);
/// let ptr = Box::into_raw(x);
/// let x = unsafe { Box::from_raw(ptr) };
/// ```
#[stable(feature = "box_raw", since = "1.4.0")]
#[inline]
pub unsafe fn from_raw(raw: *mut T) -> Self {
Box(Unique::new_unchecked(raw))
}
/// Consumes the `Box`, returning the wrapped raw pointer.
///
/// After calling this function, the caller is responsible for the
/// memory previously managed by the `Box`. In particular, the
/// caller should properly destroy `T` and release the memory. The
/// proper way to do so is to convert the raw pointer back into a
/// `Box` with the [`Box::from_raw`] function.
///
/// Note: this is an associated function, which means that you have
/// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
/// is so that there is no conflict with a method on the inner type.
///
/// [`Box::from_raw`]: struct.Box.html#method.from_raw
///
/// # Examples
///
/// ```
/// let x = Box::new(5);
/// let ptr = Box::into_raw(x);
/// ```
#[stable(feature = "box_raw", since = "1.4.0")]
#[inline]
pub fn into_raw(b: Box<T>) -> *mut T {
Box::into_raw_non_null(b).as_ptr()
}
/// Consumes the `Box`, returning the wrapped pointer as `NonNull<T>`.
///
/// After calling this function, the caller is responsible for the
/// memory previously managed by the `Box`. In particular, the
/// caller should properly destroy `T` and release the memory. The
/// proper way to do so is to convert the `NonNull<T>` pointer
/// into a raw pointer and back into a `Box` with the [`Box::from_raw`]
/// function.
///
/// Note: this is an associated function, which means that you have
/// to call it as `Box::into_raw_non_null(b)`
/// instead of `b.into_raw_non_null()`. This
/// is so that there is no conflict with a method on the inner type.
///
/// [`Box::from_raw`]: struct.Box.html#method.from_raw
///
/// # Examples
///
/// ```
/// #![feature(box_into_raw_non_null)]
///
/// fn main() {
/// let x = Box::new(5);
/// let ptr = Box::into_raw_non_null(x);
/// }
/// ```
#[unstable(feature = "box_into_raw_non_null", issue = "47336")]
#[inline]
pub fn into_raw_non_null(b: Box<T>) -> NonNull<T> {
Box::into_unique(b).into()
}
#[unstable(feature = "ptr_internals", issue = "0", reason = "use into_raw_non_null instead")]
#[inline]
#[doc(hidden)]
pub fn into_unique(b: Box<T>) -> Unique<T> {
let unique = b.0;
mem::forget(b);
unique
}
/// Consumes and leaks the `Box`, returning a mutable reference,
/// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
/// `'a`. If the type has only static references, or none at all, then this
/// may be chosen to be `'static`.
///
/// This function is mainly useful for data that lives for the remainder of
/// the program's life. Dropping the returned reference will cause a memory
/// leak. If this is not acceptable, the reference should first be wrapped
/// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
/// then be dropped which will properly destroy `T` and release the
/// allocated memory.
///
/// Note: this is an associated function, which means that you have
/// to call it as `Box::leak(b)` instead of `b.leak()`. This
/// is so that there is no conflict with a method on the inner type.
///
/// [`Box::from_raw`]: struct.Box.html#method.from_raw
///
/// # Examples
///
/// Simple usage:
///
/// ```
/// fn main() {
/// let x = Box::new(41);
/// let static_ref: &'static mut usize = Box::leak(x);
/// *static_ref += 1;
/// assert_eq!(*static_ref, 42);
/// }
/// ```
///
/// Unsized data:
///
/// ```
/// fn main() {
/// let x = vec![1, 2, 3].into_boxed_slice();
/// let static_ref = Box::leak(x);
/// static_ref[0] = 4;
/// assert_eq!(*static_ref, [4, 2, 3]);
/// }
/// ```
#[stable(feature = "box_leak", since = "1.26.0")]
#[inline]
pub fn leak<'a>(b: Box<T>) -> &'a mut T
where
T: 'a // Technically not needed, but kept to be explicit.
{
unsafe { &mut *Box::into_raw(b) }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<#[may_dangle] T: ?Sized> Drop for Box<T> {
fn drop(&mut self) {
// FIXME: Do nothing, drop is currently performed by compiler.
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Default> Default for Box<T> {
/// Creates a `Box<T>`, with the `Default` value for T.
fn default() -> Box<T> {
box Default::default()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Default for Box<[T]> {
fn default() -> Box<[T]> {
Box::<[T; 0]>::new([])
}
}
#[stable(feature = "default_box_extra", since = "1.17.0")]
impl Default for Box<str> {
fn default() -> Box<str> {
unsafe { from_boxed_utf8_unchecked(Default::default()) }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone> Clone for Box<T> {
/// Returns a new box with a `clone()` of this box's contents.
///
/// # Examples
///
/// ```
/// let x = Box::new(5);
/// let y = x.clone();
/// ```
#[rustfmt_skip]
#[inline]
fn clone(&self) -> Box<T> {
box { (**self).clone() }
}
/// Copies `source`'s contents into `self` without creating a new allocation.
///
/// # Examples
///
/// ```
/// let x = Box::new(5);
/// let mut y = Box::new(10);
///
/// y.clone_from(&x);
///
/// assert_eq!(*y, 5);
/// ```
#[inline]
fn clone_from(&mut self, source: &Box<T>) {
(**self).clone_from(&(**source));
}
}
#[stable(feature = "box_slice_clone", since = "1.3.0")]
impl Clone for Box<str> {
fn clone(&self) -> Self {
let len = self.len();
let buf = RawVec::with_capacity(len);
unsafe {
ptr::copy_nonoverlapping(self.as_ptr(), buf.ptr(), len);
from_boxed_utf8_unchecked(buf.into_box())
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialEq> PartialEq for Box<T> {
#[inline]
fn eq(&self, other: &Box<T>) -> bool {
PartialEq::eq(&**self, &**other)
}
#[inline]
fn ne(&self, other: &Box<T>) -> bool {
PartialEq::ne(&**self, &**other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialOrd> PartialOrd for Box<T> {
#[inline]
fn partial_cmp(&self, other: &Box<T>) -> Option<Ordering> {
PartialOrd::partial_cmp(&**self, &**other)
}
#[inline]
fn lt(&self, other: &Box<T>) -> bool {
PartialOrd::lt(&**self, &**other)
}
#[inline]
fn le(&self, other: &Box<T>) -> bool {
PartialOrd::le(&**self, &**other)
}
#[inline]
fn ge(&self, other: &Box<T>) -> bool {
PartialOrd::ge(&**self, &**other)
}
#[inline]
fn gt(&self, other: &Box<T>) -> bool {
PartialOrd::gt(&**self, &**other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Ord> Ord for Box<T> {
#[inline]
fn cmp(&self, other: &Box<T>) -> Ordering {
Ord::cmp(&**self, &**other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Eq> Eq for Box<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Hash> Hash for Box<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
(**self).hash(state);
}
}
#[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
impl<T: ?Sized + Hasher> Hasher for Box<T> {
fn finish(&self) -> u64 {
(**self).finish()
}
fn write(&mut self, bytes: &[u8]) {
(**self).write(bytes)
}
fn write_u8(&mut self, i: u8) {
(**self).write_u8(i)
}
fn write_u16(&mut self, i: u16) {
(**self).write_u16(i)
}
fn write_u32(&mut self, i: u32) {
(**self).write_u32(i)
}
fn write_u64(&mut self, i: u64) {
(**self).write_u64(i)
}
fn write_u128(&mut self, i: u128) {
(**self).write_u128(i)
}
fn write_usize(&mut self, i: usize) {
(**self).write_usize(i)
}
fn write_i8(&mut self, i: i8) {
(**self).write_i8(i)
}
fn write_i16(&mut self, i: i16) {
(**self).write_i16(i)
}
fn write_i32(&mut self, i: i32) {
(**self).write_i32(i)
}
fn write_i64(&mut self, i: i64) {
(**self).write_i64(i)
}
fn write_i128(&mut self, i: i128) {
(**self).write_i128(i)
}
fn write_isize(&mut self, i: isize) {
(**self).write_isize(i)
}
}
#[stable(feature = "from_for_ptrs", since = "1.6.0")]
impl<T> From<T> for Box<T> {
fn from(t: T) -> Self {
Box::new(t)
}
}
#[stable(feature = "box_from_slice", since = "1.17.0")]
impl<'a, T: Copy> From<&'a [T]> for Box<[T]> {
fn from(slice: &'a [T]) -> Box<[T]> {
let mut boxed = unsafe { RawVec::with_capacity(slice.len()).into_box() };
boxed.copy_from_slice(slice);
boxed
}
}
#[stable(feature = "box_from_slice", since = "1.17.0")]
impl<'a> From<&'a str> for Box<str> {
#[inline]
fn from(s: &'a str) -> Box<str> {
unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) }
}
}
#[stable(feature = "boxed_str_conv", since = "1.19.0")]
impl From<Box<str>> for Box<[u8]> {
#[inline]
fn from(s: Box<str>) -> Self {
unsafe { Box::from_raw(Box::into_raw(s) as *mut [u8]) }
}
}
impl Box<dyn Any> {
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
/// Attempt to downcast the box to a concrete type.
///
/// # Examples
///
/// ```
/// use std::any::Any;
///
/// fn print_if_string(value: Box<Any>) {
/// if let Ok(string) = value.downcast::<String>() {
/// println!("String ({}): {}", string.len(), string);
/// }
/// }
///
/// fn main() {
/// let my_string = "Hello World".to_string();
/// print_if_string(Box::new(my_string));
/// print_if_string(Box::new(0i8));
/// }
/// ```
pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<dyn Any>> {
if self.is::<T>() {
unsafe {
let raw: *mut dyn Any = Box::into_raw(self);
Ok(Box::from_raw(raw as *mut T))
}
} else {
Err(self)
}
}
}
impl Box<dyn Any + Send> {
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
/// Attempt to downcast the box to a concrete type.
///
/// # Examples
///
/// ```
/// use std::any::Any;
///
/// fn print_if_string(value: Box<Any + Send>) {
/// if let Ok(string) = value.downcast::<String>() {
/// println!("String ({}): {}", string.len(), string);
/// }
/// }
///
/// fn main() {
/// let my_string = "Hello World".to_string();
/// print_if_string(Box::new(my_string));
/// print_if_string(Box::new(0i8));
/// }
/// ```
pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<dyn Any + Send>> {
<Box<dyn Any>>::downcast(self).map_err(|s| unsafe {
// reapply the Send marker
Box::from_raw(Box::into_raw(s) as *mut (dyn Any + Send))
})
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Display + ?Sized> fmt::Display for Box<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug + ?Sized> fmt::Debug for Box<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> fmt::Pointer for Box<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// It's not possible to extract the inner Uniq directly from the Box,
// instead we cast it to a *const which aliases the Unique
let ptr: *const T = &**self;
fmt::Pointer::fmt(&ptr, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Deref for Box<T> {
type Target = T;
fn deref(&self) -> &T {
&**self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> DerefMut for Box<T> {
fn deref_mut(&mut self) -> &mut T {
&mut **self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator + ?Sized> Iterator for Box<I> {
type Item = I::Item;
fn next(&mut self) -> Option<I::Item> {
(**self).next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
(**self).size_hint()
}
fn nth(&mut self, n: usize) -> Option<I::Item> {
(**self).nth(n)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for Box<I> {
fn next_back(&mut self) -> Option<I::Item> {
(**self).next_back()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: ExactSizeIterator + ?Sized> ExactSizeIterator for Box<I> {
fn len(&self) -> usize {
(**self).len()
}
fn is_empty(&self) -> bool {
(**self).is_empty()
}
}
#[stable(feature = "fused", since = "1.26.0")]
impl<I: FusedIterator + ?Sized> FusedIterator for Box<I> {}
/// `FnBox` is a version of the `FnOnce` intended for use with boxed
/// closure objects. The idea is that where one would normally store a
/// `Box<FnOnce()>` in a data structure, you should use
/// `Box<FnBox()>`. The two traits behave essentially the same, except
/// that a `FnBox` closure can only be called if it is boxed. (Note
/// that `FnBox` may be deprecated in the future if `Box<FnOnce()>`
/// closures become directly usable.)
///
/// # Examples
///
/// Here is a snippet of code which creates a hashmap full of boxed
/// once closures and then removes them one by one, calling each
/// closure as it is removed. Note that the type of the closures
/// stored in the map is `Box<FnBox() -> i32>` and not `Box<FnOnce()
/// -> i32>`.
///
/// ```
/// #![feature(fnbox)]
///
/// use std::boxed::FnBox;
/// use std::collections::HashMap;
///
/// fn make_map() -> HashMap<i32, Box<FnBox() -> i32>> {
/// let mut map: HashMap<i32, Box<FnBox() -> i32>> = HashMap::new();
/// map.insert(1, Box::new(|| 22));
/// map.insert(2, Box::new(|| 44));
/// map
/// }
///
/// fn main() {
/// let mut map = make_map();
/// for i in &[1, 2] {
/// let f = map.remove(&i).unwrap();
/// assert_eq!(f(), i * 22);
/// }
/// }
/// ```
#[rustc_paren_sugar]
#[unstable(feature = "fnbox",
reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
pub trait FnBox<A> {
type Output;
fn call_box(self: Box<Self>, args: A) -> Self::Output;
}
#[unstable(feature = "fnbox",
reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
impl<A, F> FnBox<A> for F
where F: FnOnce<A>
{
type Output = F::Output;
fn call_box(self: Box<F>, args: A) -> F::Output {
self.call_once(args)
}
}
#[unstable(feature = "fnbox",
reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
impl<'a, A, R> FnOnce<A> for Box<dyn FnBox<A, Output = R> + 'a> {
type Output = R;
extern "rust-call" fn call_once(self, args: A) -> R {
self.call_box(args)
}
}
#[unstable(feature = "fnbox",
reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
impl<'a, A, R> FnOnce<A> for Box<dyn FnBox<A, Output = R> + Send + 'a> {
type Output = R;
extern "rust-call" fn call_once(self, args: A) -> R {
self.call_box(args)
}
}
#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Box<U>> for Box<T> {}
#[stable(feature = "box_slice_clone", since = "1.3.0")]
impl<T: Clone> Clone for Box<[T]> {
fn clone(&self) -> Self {
let mut new = BoxBuilder {
data: RawVec::with_capacity(self.len()),
len: 0,
};
let mut target = new.data.ptr();
for item in self.iter() {
unsafe {
ptr::write(target, item.clone());
target = target.offset(1);
};
new.len += 1;
}
return unsafe { new.into_box() };
// Helper type for responding to panics correctly.
struct BoxBuilder<T> {
data: RawVec<T>,
len: usize,
}
impl<T> BoxBuilder<T> {
unsafe fn into_box(self) -> Box<[T]> {
let raw = ptr::read(&self.data);
mem::forget(self);
raw.into_box()
}
}
impl<T> Drop for BoxBuilder<T> {
fn drop(&mut self) {
let mut data = self.data.ptr();
let max = unsafe { data.offset(self.len as isize) };
while data != max {
unsafe {
ptr::read(data);
data = data.offset(1);
}
}
}
}
}
}
#[stable(feature = "box_borrow", since = "1.1.0")]
impl<T: ?Sized> borrow::Borrow<T> for Box<T> {
fn borrow(&self) -> &T {
&**self
}
}
#[stable(feature = "box_borrow", since = "1.1.0")]
impl<T: ?Sized> borrow::BorrowMut<T> for Box<T> {
fn borrow_mut(&mut self) -> &mut T {
&mut **self
}
}
#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
impl<T: ?Sized> AsRef<T> for Box<T> {
fn as_ref(&self) -> &T {
&**self
}
}
#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
impl<T: ?Sized> AsMut<T> for Box<T> {
fn as_mut(&mut self) -> &mut T {
&mut **self
}
}
#[unstable(feature = "generator_trait", issue = "43122")]
impl<T> Generator for Box<T>
where T: Generator + ?Sized
{
type Yield = T::Yield;
type Return = T::Return;
unsafe fn resume(&mut self) -> GeneratorState<Self::Yield, Self::Return> {
(**self).resume()
}
}
/// A pinned, heap allocated reference.
#[unstable(feature = "pin", issue = "49150")]
#[fundamental]
#[repr(transparent)]
pub struct PinBox<T: ?Sized> {
inner: Box<T>,
}
#[unstable(feature = "pin", issue = "49150")]
impl<T> PinBox<T> {
/// Allocate memory on the heap, move the data into it and pin it.
#[unstable(feature = "pin", issue = "49150")]
pub fn new(data: T) -> PinBox<T> {
PinBox { inner: Box::new(data) }
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<T: ?Sized> PinBox<T> {
/// Get a pinned reference to the data in this PinBox.
#[inline]
pub fn as_pin_mut<'a>(&'a mut self) -> PinMut<'a, T> {
unsafe { PinMut::new_unchecked(&mut *self.inner) }
}
/// Constructs a `PinBox` from a raw pointer.
///
/// After calling this function, the raw pointer is owned by the
/// resulting `PinBox`. Specifically, the `PinBox` destructor will call
/// the destructor of `T` and free the allocated memory. Since the
/// way `PinBox` allocates and releases memory is unspecified, the
/// only valid pointer to pass to this function is the one taken
/// from another `PinBox` via the [`PinBox::into_raw`] function.
///
/// This function is unsafe because improper use may lead to
/// memory problems. For example, a double-free may occur if the
/// function is called twice on the same raw pointer.
///
/// [`PinBox::into_raw`]: struct.PinBox.html#method.into_raw
///
/// # Examples
///
/// ```
/// #![feature(pin)]
/// use std::boxed::PinBox;
/// let x = PinBox::new(5);
/// let ptr = PinBox::into_raw(x);
/// let x = unsafe { PinBox::from_raw(ptr) };
/// ```
#[inline]
pub unsafe fn from_raw(raw: *mut T) -> Self {
PinBox { inner: Box::from_raw(raw) }
}
/// Consumes the `PinBox`, returning the wrapped raw pointer.
///
/// After calling this function, the caller is responsible for the
/// memory previously managed by the `PinBox`. In particular, the
/// caller should properly destroy `T` and release the memory. The
/// proper way to do so is to convert the raw pointer back into a
/// `PinBox` with the [`PinBox::from_raw`] function.
///
/// Note: this is an associated function, which means that you have
/// to call it as `PinBox::into_raw(b)` instead of `b.into_raw()`. This
/// is so that there is no conflict with a method on the inner type.
///
/// [`PinBox::from_raw`]: struct.PinBox.html#method.from_raw
///
/// # Examples
///
/// ```
/// #![feature(pin)]
/// use std::boxed::PinBox;
/// let x = PinBox::new(5);
/// let ptr = PinBox::into_raw(x);
/// ```
#[inline]
pub fn into_raw(b: PinBox<T>) -> *mut T {
Box::into_raw(b.inner)
}
/// Get a mutable reference to the data inside this PinBox.
///
/// This function is unsafe. Users must guarantee that the data is never
/// moved out of this reference.
#[inline]
pub unsafe fn get_mut<'a>(this: &'a mut PinBox<T>) -> &'a mut T {
&mut *this.inner
}
/// Convert this PinBox into an unpinned Box.
///
/// This function is unsafe. Users must guarantee that the data is never
/// moved out of the box.
#[inline]
pub unsafe fn unpin(this: PinBox<T>) -> Box<T> {
this.inner
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<T: ?Sized> From<Box<T>> for PinBox<T> {
fn from(boxed: Box<T>) -> PinBox<T> {
PinBox { inner: boxed }
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<T: Unpin + ?Sized> From<PinBox<T>> for Box<T> {
fn from(pinned: PinBox<T>) -> Box<T> {
pinned.inner
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<T: ?Sized> Deref for PinBox<T> {
type Target = T;
fn deref(&self) -> &T {
&*self.inner
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<T: Unpin + ?Sized> DerefMut for PinBox<T> {
fn deref_mut(&mut self) -> &mut T {
&mut *self.inner
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<T: fmt::Display + ?Sized> fmt::Display for PinBox<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&*self.inner, f)
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<T: fmt::Debug + ?Sized> fmt::Debug for PinBox<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&*self.inner, f)
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<T: ?Sized> fmt::Pointer for PinBox<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// It's not possible to extract the inner Uniq directly from the Box,
// instead we cast it to a *const which aliases the Unique
let ptr: *const T = &*self.inner;
fmt::Pointer::fmt(&ptr, f)
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<PinBox<U>> for PinBox<T> {}
#[unstable(feature = "pin", issue = "49150")]
impl<T: ?Sized> Unpin for PinBox<T> {}
#[unstable(feature = "futures_api", issue = "50547")]
impl<F: ?Sized + Future + Unpin> Future for Box<F> {
type Output = F::Output;
fn poll(mut self: PinMut<Self>, cx: &mut Context) -> Poll<Self::Output> {
PinMut::new(&mut **self).poll(cx)
}
}
#[unstable(feature = "futures_api", issue = "50547")]
impl<F: ?Sized + Future> Future for PinBox<F> {
type Output = F::Output;
fn poll(mut self: PinMut<Self>, cx: &mut Context) -> Poll<Self::Output> {
self.as_pin_mut().poll(cx)
}
}
#[unstable(feature = "futures_api", issue = "50547")]
unsafe impl<'a, T, F> UnsafeFutureObj<'a, T> for Box<F>
where F: Future<Output = T> + 'a
{
fn into_raw(self) -> *mut () {
Box::into_raw(self) as *mut ()
}
unsafe fn poll(ptr: *mut (), cx: &mut Context) -> Poll<T> {
let ptr = ptr as *mut F;
let pin: PinMut<F> = PinMut::new_unchecked(&mut *ptr);
pin.poll(cx)
}
unsafe fn drop(ptr: *mut ()) {
drop(Box::from_raw(ptr as *mut F))
}
}
#[unstable(feature = "futures_api", issue = "50547")]
unsafe impl<'a, T, F> UnsafeFutureObj<'a, T> for PinBox<F>
where F: Future<Output = T> + 'a
{
fn into_raw(self) -> *mut () {
PinBox::into_raw(self) as *mut ()
}
unsafe fn poll(ptr: *mut (), cx: &mut Context) -> Poll<T> {
let ptr = ptr as *mut F;
let pin: PinMut<F> = PinMut::new_unchecked(&mut *ptr);
pin.poll(cx)
}
unsafe fn drop(ptr: *mut ()) {
drop(PinBox::from_raw(ptr as *mut F))
}
}
#[unstable(feature = "futures_api", issue = "50547")]
impl<E> Executor for Box<E>
where E: Executor + ?Sized
{
fn spawn_obj(&mut self, task: FutureObj<'static, ()>) -> Result<(), SpawnObjError> {
(**self).spawn_obj(task)
}
fn status(&self) -> Result<(), SpawnErrorKind> {
(**self).status()
}
}
#[unstable(feature = "futures_api", issue = "50547")]
impl<'a, F: Future<Output = ()> + Send + 'a> From<PinBox<F>> for FutureObj<'a, ()> {
fn from(boxed: PinBox<F>) -> Self {
FutureObj::new(boxed)
}
}
#[unstable(feature = "futures_api", issue = "50547")]
impl<'a, F: Future<Output = ()> + Send + 'a> From<Box<F>> for FutureObj<'a, ()> {
fn from(boxed: Box<F>) -> Self {
FutureObj::new(boxed)
}
}
#[unstable(feature = "futures_api", issue = "50547")]
impl<'a, F: Future<Output = ()> + 'a> From<PinBox<F>> for LocalFutureObj<'a, ()> {
fn from(boxed: PinBox<F>) -> Self {
LocalFutureObj::new(boxed)
}
}
#[unstable(feature = "futures_api", issue = "50547")]
impl<'a, F: Future<Output = ()> + 'a> From<Box<F>> for LocalFutureObj<'a, ()> {
fn from(boxed: Box<F>) -> Self {
LocalFutureObj::new(boxed)
}
}