rust/src/libsyntax/ext/expand.rs
bors bae091e517 auto merge of #11332 : sfackler/rust/de-at-se, r=huonw
This is necessary for #11151 to make sure dtors run before the libraries
are unloaded.
2014-01-06 07:26:48 -08:00

1528 lines
56 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use ast::{P, Block, Crate, DeclLocal, ExprMac, SyntaxContext};
use ast::{Local, Ident, mac_invoc_tt};
use ast::{item_mac, Mrk, Stmt, StmtDecl, StmtMac, StmtExpr, StmtSemi};
use ast::{token_tree};
use ast;
use ast_util::{mtwt_outer_mark, new_rename, new_mark};
use ext::build::AstBuilder;
use attr;
use attr::AttrMetaMethods;
use codemap;
use codemap::{Span, Spanned, ExpnInfo, NameAndSpan, MacroBang, MacroAttribute};
use ext::base::*;
use fold::*;
use parse;
use parse::{parse_item_from_source_str};
use parse::token;
use parse::token::{fresh_mark, fresh_name, ident_to_str, intern};
use visit;
use visit::Visitor;
use util::small_vector::SmallVector;
use std::vec;
pub fn expand_expr(e: @ast::Expr, fld: &mut MacroExpander) -> @ast::Expr {
match e.node {
// expr_mac should really be expr_ext or something; it's the
// entry-point for all syntax extensions.
ExprMac(ref mac) => {
match (*mac).node {
// it would almost certainly be cleaner to pass the whole
// macro invocation in, rather than pulling it apart and
// marking the tts and the ctxt separately. This also goes
// for the other three macro invocation chunks of code
// in this file.
// Token-tree macros:
mac_invoc_tt(ref pth, ref tts, ctxt) => {
if (pth.segments.len() > 1u) {
fld.cx.span_fatal(
pth.span,
format!("expected macro name without module \
separators"));
}
let extname = &pth.segments[0].identifier;
let extnamestr = ident_to_str(extname);
// leaving explicit deref here to highlight unbox op:
let marked_after = match fld.extsbox.find(&extname.name) {
None => {
fld.cx.span_fatal(
pth.span,
format!("macro undefined: '{}'", extnamestr))
}
Some(&NormalTT(ref expandfun, exp_span)) => {
fld.cx.bt_push(ExpnInfo {
call_site: e.span,
callee: NameAndSpan {
name: extnamestr,
format: MacroBang,
span: exp_span,
},
});
let fm = fresh_mark();
// mark before:
let marked_before = mark_tts(*tts,fm);
let marked_ctxt = new_mark(fm, ctxt);
// The span that we pass to the expanders we want to
// be the root of the call stack. That's the most
// relevant span and it's the actual invocation of
// the macro.
let mac_span = original_span(fld.cx);
let expanded = match expandfun.expand(fld.cx,
mac_span.call_site,
marked_before,
marked_ctxt) {
MRExpr(e) => e,
MRAny(any_macro) => any_macro.make_expr(),
_ => {
fld.cx.span_fatal(
pth.span,
format!(
"non-expr macro in expr pos: {}",
extnamestr
)
)
}
};
// mark after:
mark_expr(expanded,fm)
}
_ => {
fld.cx.span_fatal(
pth.span,
format!("'{}' is not a tt-style macro", extnamestr)
)
}
};
// Keep going, outside-in.
//
// XXX(pcwalton): Is it necessary to clone the
// node here?
let fully_expanded =
fld.fold_expr(marked_after).node.clone();
fld.cx.bt_pop();
@ast::Expr {
id: ast::DUMMY_NODE_ID,
node: fully_expanded,
span: e.span,
}
}
}
}
// Desugar expr_for_loop
// From: `['<ident>:] for <src_pat> in <src_expr> <src_loop_block>`
// FIXME #6993 : change type of opt_ident to Option<Name>
ast::ExprForLoop(src_pat, src_expr, src_loop_block, opt_ident) => {
// Expand any interior macros etc.
// NB: we don't fold pats yet. Curious.
let src_expr = fld.fold_expr(src_expr).clone();
let src_loop_block = fld.fold_block(src_loop_block);
let span = e.span;
// to:
//
// {
// let _i = &mut <src_expr>;
// ['<ident>:] loop {
// match i.next() {
// None => break,
// Some(<src_pat>) => <src_loop_block>
// }
// }
// }
let local_ident = token::gensym_ident("i");
let next_ident = fld.cx.ident_of("next");
let none_ident = fld.cx.ident_of("None");
let local_path = fld.cx.path_ident(span, local_ident);
let some_path = fld.cx.path_ident(span, fld.cx.ident_of("Some"));
// `let i = &mut <src_expr>`
let iter_decl_stmt = fld.cx.stmt_let(span, false, local_ident,
fld.cx.expr_mut_addr_of(span, src_expr));
// `None => break ['<ident>];`
let none_arm = {
// FIXME #6993: this map goes away:
let break_expr = fld.cx.expr(span, ast::ExprBreak(opt_ident.map(|x| x.name)));
let none_pat = fld.cx.pat_ident(span, none_ident);
fld.cx.arm(span, ~[none_pat], break_expr)
};
// `Some(<src_pat>) => <src_loop_block>`
let some_arm =
fld.cx.arm(span,
~[fld.cx.pat_enum(span, some_path, ~[src_pat])],
fld.cx.expr_block(src_loop_block));
// `match i.next() { ... }`
let match_expr = {
let next_call_expr =
fld.cx.expr_method_call(span, fld.cx.expr_path(local_path), next_ident, ~[]);
fld.cx.expr_match(span, next_call_expr, ~[none_arm, some_arm])
};
// ['ident:] loop { ... }
let loop_expr = fld.cx.expr(span,
ast::ExprLoop(fld.cx.block_expr(match_expr),
opt_ident));
// `{ let ... ; loop { ... } }`
let block = fld.cx.block(span,
~[iter_decl_stmt],
Some(loop_expr));
@ast::Expr {
id: ast::DUMMY_NODE_ID,
node: ast::ExprBlock(block),
span: span,
}
}
_ => noop_fold_expr(e, fld)
}
}
// This is a secondary mechanism for invoking syntax extensions on items:
// "decorator" attributes, such as #[auto_encode]. These are invoked by an
// attribute prefixing an item, and are interpreted by feeding the item
// through the named attribute _as a syntax extension_ and splicing in the
// resulting item vec into place in favour of the decorator. Note that
// these do _not_ work for macro extensions, just ItemDecorator ones.
//
// NB: there is some redundancy between this and expand_item, below, and
// they might benefit from some amount of semantic and language-UI merger.
pub fn expand_mod_items(module_: &ast::_mod, fld: &mut MacroExpander) -> ast::_mod {
// Fold the contents first:
let module_ = noop_fold_mod(module_, fld);
// For each item, look through the attributes. If any of them are
// decorated with "item decorators", then use that function to transform
// the item into a new set of items.
let new_items = vec::flat_map(module_.items, |item| {
item.attrs.rev_iter().fold(~[*item], |items, attr| {
let mname = attr.name();
match fld.extsbox.find(&intern(mname)) {
Some(&ItemDecorator(dec_fn)) => {
fld.cx.bt_push(ExpnInfo {
call_site: attr.span,
callee: NameAndSpan {
name: mname,
format: MacroAttribute,
span: None
}
});
let r = dec_fn(fld.cx, attr.span, attr.node.value, items);
fld.cx.bt_pop();
r
},
_ => items,
}
})
});
ast::_mod {
items: new_items,
..module_
}
}
// eval $e with a new exts frame:
macro_rules! with_exts_frame (
($extsboxexpr:expr,$macros_escape:expr,$e:expr) =>
({$extsboxexpr.push_frame();
$extsboxexpr.info().macros_escape = $macros_escape;
let result = $e;
$extsboxexpr.pop_frame();
result
})
)
// When we enter a module, record it, for the sake of `module!`
pub fn expand_item(it: @ast::item, fld: &mut MacroExpander)
-> SmallVector<@ast::item> {
match it.node {
ast::item_mac(..) => expand_item_mac(it, fld),
ast::item_mod(_) | ast::item_foreign_mod(_) => {
fld.cx.mod_push(it.ident);
let macro_escape = contains_macro_escape(it.attrs);
let result = with_exts_frame!(fld.extsbox,
macro_escape,
noop_fold_item(it, fld));
fld.cx.mod_pop();
result
},
_ => noop_fold_item(it, fld)
}
}
// does this attribute list contain "macro_escape" ?
pub fn contains_macro_escape(attrs: &[ast::Attribute]) -> bool {
attr::contains_name(attrs, "macro_escape")
}
// Support for item-position macro invocations, exactly the same
// logic as for expression-position macro invocations.
pub fn expand_item_mac(it: @ast::item, fld: &mut MacroExpander)
-> SmallVector<@ast::item> {
let (pth, tts, ctxt) = match it.node {
item_mac(codemap::Spanned {
node: mac_invoc_tt(ref pth, ref tts, ctxt),
..
}) => {
(pth, (*tts).clone(), ctxt)
}
_ => fld.cx.span_bug(it.span, "invalid item macro invocation")
};
let extname = &pth.segments[0].identifier;
let extnamestr = ident_to_str(extname);
let fm = fresh_mark();
let expanded = match fld.extsbox.find(&extname.name) {
None => fld.cx.span_fatal(pth.span,
format!("macro undefined: '{}!'", extnamestr)),
Some(&NormalTT(ref expander, span)) => {
if it.ident.name != parse::token::special_idents::invalid.name {
fld.cx.span_fatal(pth.span,
format!("macro {}! expects no ident argument, \
given '{}'", extnamestr,
ident_to_str(&it.ident)));
}
fld.cx.bt_push(ExpnInfo {
call_site: it.span,
callee: NameAndSpan {
name: extnamestr,
format: MacroBang,
span: span
}
});
// mark before expansion:
let marked_before = mark_tts(tts,fm);
let marked_ctxt = new_mark(fm,ctxt);
expander.expand(fld.cx, it.span, marked_before, marked_ctxt)
}
Some(&IdentTT(ref expander, span)) => {
if it.ident.name == parse::token::special_idents::invalid.name {
fld.cx.span_fatal(pth.span,
format!("macro {}! expects an ident argument",
extnamestr));
}
fld.cx.bt_push(ExpnInfo {
call_site: it.span,
callee: NameAndSpan {
name: extnamestr,
format: MacroBang,
span: span
}
});
// mark before expansion:
let marked_tts = mark_tts(tts,fm);
let marked_ctxt = new_mark(fm,ctxt);
expander.expand(fld.cx, it.span, it.ident, marked_tts, marked_ctxt)
}
_ => fld.cx.span_fatal(it.span,
format!("{}! is not legal in item position",
extnamestr))
};
let items = match expanded {
MRItem(it) => {
mark_item(it,fm).move_iter()
.flat_map(|i| fld.fold_item(i).move_iter())
.collect()
}
MRExpr(_) => {
fld.cx.span_fatal(pth.span, format!("expr macro in item position: {}",
extnamestr))
}
MRAny(any_macro) => {
any_macro.make_items().move_iter()
.flat_map(|i| mark_item(i, fm).move_iter())
.flat_map(|i| fld.fold_item(i).move_iter())
.collect()
}
MRDef(MacroDef { name, ext }) => {
// yikes... no idea how to apply the mark to this. I'm afraid
// we're going to have to wait-and-see on this one.
fld.extsbox.insert(intern(name), ext);
SmallVector::zero()
}
};
fld.cx.bt_pop();
return items;
}
// expand a stmt
pub fn expand_stmt(s: &Stmt, fld: &mut MacroExpander) -> SmallVector<@Stmt> {
// why the copying here and not in expand_expr?
// looks like classic changed-in-only-one-place
let (pth, tts, semi, ctxt) = match s.node {
StmtMac(ref mac, semi) => {
match mac.node {
mac_invoc_tt(ref pth, ref tts, ctxt) => {
(pth, (*tts).clone(), semi, ctxt)
}
}
}
_ => return expand_non_macro_stmt(s, fld)
};
if (pth.segments.len() > 1u) {
fld.cx.span_fatal(pth.span,
"expected macro name without module separators");
}
let extname = &pth.segments[0].identifier;
let extnamestr = ident_to_str(extname);
let marked_after = match fld.extsbox.find(&extname.name) {
None => {
fld.cx.span_fatal(pth.span, format!("macro undefined: '{}'", extnamestr))
}
Some(&NormalTT(ref expandfun, exp_span)) => {
fld.cx.bt_push(ExpnInfo {
call_site: s.span,
callee: NameAndSpan {
name: extnamestr,
format: MacroBang,
span: exp_span,
}
});
let fm = fresh_mark();
// mark before expansion:
let marked_tts = mark_tts(tts,fm);
let marked_ctxt = new_mark(fm,ctxt);
// See the comment in expand_expr for why we want the original span,
// not the current mac.span.
let mac_span = original_span(fld.cx);
let expanded = match expandfun.expand(fld.cx,
mac_span.call_site,
marked_tts,
marked_ctxt) {
MRExpr(e) => {
@codemap::Spanned {
node: StmtExpr(e, ast::DUMMY_NODE_ID),
span: e.span,
}
}
MRAny(any_macro) => any_macro.make_stmt(),
_ => fld.cx.span_fatal(
pth.span,
format!("non-stmt macro in stmt pos: {}", extnamestr))
};
mark_stmt(expanded,fm)
}
_ => {
fld.cx.span_fatal(pth.span,
format!("'{}' is not a tt-style macro",
extnamestr))
}
};
// Keep going, outside-in.
let fully_expanded = fld.fold_stmt(marked_after);
if fully_expanded.is_empty() {
fld.cx.span_fatal(pth.span,
"macro didn't expand to a statement");
}
fld.cx.bt_pop();
let fully_expanded: SmallVector<@Stmt> = fully_expanded.move_iter()
.map(|s| @Spanned { span: s.span, node: s.node.clone() })
.collect();
fully_expanded.move_iter().map(|s| {
match s.node {
StmtExpr(e, stmt_id) if semi => {
@Spanned {
span: s.span,
node: StmtSemi(e, stmt_id)
}
}
_ => s /* might already have a semi */
}
}).collect()
}
// expand a non-macro stmt. this is essentially the fallthrough for
// expand_stmt, above.
fn expand_non_macro_stmt(s: &Stmt, fld: &mut MacroExpander)
-> SmallVector<@Stmt> {
// is it a let?
match s.node {
StmtDecl(@Spanned {
node: DeclLocal(ref local),
span: stmt_span
},
node_id) => {
// take it apart:
let @Local {
ty: _,
pat: pat,
init: init,
id: id,
span: span
} = *local;
// expand the pat (it might contain exprs... #:(o)>
let expanded_pat = fld.fold_pat(pat);
// find the pat_idents in the pattern:
// oh dear heaven... this is going to include the enum names, as well....
// ... but that should be okay, as long as the new names are gensyms
// for the old ones.
let mut name_finder = new_name_finder(~[]);
name_finder.visit_pat(expanded_pat,());
// generate fresh names, push them to a new pending list
let mut new_pending_renames = ~[];
for ident in name_finder.ident_accumulator.iter() {
let new_name = fresh_name(ident);
new_pending_renames.push((*ident,new_name));
}
let rewritten_pat = {
let mut rename_fld =
renames_to_fold(&mut new_pending_renames);
// rewrite the pattern using the new names (the old ones
// have already been applied):
rename_fld.fold_pat(expanded_pat)
};
// add them to the existing pending renames:
for pr in new_pending_renames.iter() {
fld.extsbox.info().pending_renames.push(*pr)
}
// also, don't forget to expand the init:
let new_init_opt = init.map(|e| fld.fold_expr(e));
let rewritten_local =
@Local {
ty: local.ty,
pat: rewritten_pat,
init: new_init_opt,
id: id,
span: span,
};
SmallVector::one(@Spanned {
node: StmtDecl(@Spanned {
node: DeclLocal(rewritten_local),
span: stmt_span
},
node_id),
span: span
})
},
_ => noop_fold_stmt(s, fld),
}
}
// a visitor that extracts the pat_ident paths
// from a given thingy and puts them in a mutable
// array (passed in to the traversal)
#[deriving(Clone)]
struct NewNameFinderContext {
ident_accumulator: ~[ast::Ident],
}
impl Visitor<()> for NewNameFinderContext {
fn visit_pat(&mut self, pattern: &ast::Pat, _: ()) {
match *pattern {
// we found a pat_ident!
ast::Pat {
id: _,
node: ast::PatIdent(_, ref path, ref inner),
span: _
} => {
match path {
// a path of length one:
&ast::Path {
global: false,
span: _,
segments: [
ast::PathSegment {
identifier: id,
lifetimes: _,
types: _
}
]
} => self.ident_accumulator.push(id),
// I believe these must be enums...
_ => ()
}
// visit optional subpattern of pat_ident:
for subpat in inner.iter() {
self.visit_pat(*subpat, ())
}
}
// use the default traversal for non-pat_idents
_ => visit::walk_pat(self, pattern, ())
}
}
fn visit_ty(&mut self, typ: &ast::Ty, _: ()) {
visit::walk_ty(self, typ, ())
}
}
// return a visitor that extracts the pat_ident paths
// from a given thingy and puts them in a mutable
// array (passed in to the traversal)
pub fn new_name_finder(idents: ~[ast::Ident]) -> NewNameFinderContext {
NewNameFinderContext {
ident_accumulator: idents,
}
}
// expand a block. pushes a new exts_frame, then calls expand_block_elts
pub fn expand_block(blk: &Block, fld: &mut MacroExpander) -> P<Block> {
// see note below about treatment of exts table
with_exts_frame!(fld.extsbox,false,
expand_block_elts(blk, fld))
}
// expand the elements of a block.
pub fn expand_block_elts(b: &Block, fld: &mut MacroExpander) -> P<Block> {
let new_view_items = b.view_items.map(|x| fld.fold_view_item(x));
let new_stmts = b.stmts.iter()
.map(|x| {
let pending_renames = &mut fld.extsbox.info().pending_renames;
let mut rename_fld = renames_to_fold(pending_renames);
rename_fld.fold_stmt(*x).expect_one("rename_fold didn't return one value")
})
.flat_map(|x| fld.fold_stmt(x).move_iter())
.collect();
let new_expr = b.expr.map(|x| {
let expr = {
let pending_renames = &mut fld.extsbox.info().pending_renames;
let mut rename_fld = renames_to_fold(pending_renames);
rename_fld.fold_expr(x)
};
fld.fold_expr(expr)
});
P(Block {
view_items: new_view_items,
stmts: new_stmts,
expr: new_expr,
id: fld.new_id(b.id),
rules: b.rules,
span: b.span,
})
}
struct IdentRenamer<'a> {
renames: &'a mut RenameList,
}
impl<'a> ast_fold for IdentRenamer<'a> {
fn fold_ident(&mut self, id: ast::Ident) -> ast::Ident {
let new_ctxt = self.renames.iter().fold(id.ctxt, |ctxt, &(from, to)| {
new_rename(from, to, ctxt)
});
ast::Ident {
name: id.name,
ctxt: new_ctxt,
}
}
}
// given a mutable list of renames, return a tree-folder that applies those
// renames.
pub fn renames_to_fold<'a>(renames: &'a mut RenameList) -> IdentRenamer<'a> {
IdentRenamer {
renames: renames,
}
}
pub fn new_span(cx: &ExtCtxt, sp: Span) -> Span {
/* this discards information in the case of macro-defining macros */
Span {
lo: sp.lo,
hi: sp.hi,
expn_info: cx.backtrace(),
}
}
// FIXME (#2247): this is a moderately bad kludge to inject some macros into
// the default compilation environment in that it injects strings, rather than
// syntax elements.
pub fn std_macros() -> @str {
@r#"mod __std_macros {
#[macro_escape];
#[doc(hidden)];
#[allow(dead_code)];
macro_rules! ignore (($($x:tt)*) => (()))
macro_rules! log(
($lvl:expr, $($arg:tt)+) => ({
let lvl = $lvl;
if lvl <= __log_level() {
format_args!(|args| {
::std::logging::log(lvl, args)
}, $($arg)+)
}
})
)
macro_rules! error( ($($arg:tt)*) => (log!(1u32, $($arg)*)) )
macro_rules! warn ( ($($arg:tt)*) => (log!(2u32, $($arg)*)) )
macro_rules! info ( ($($arg:tt)*) => (log!(3u32, $($arg)*)) )
macro_rules! debug( ($($arg:tt)*) => (
if cfg!(not(ndebug)) { log!(4u32, $($arg)*) }
))
macro_rules! log_enabled(
($lvl:expr) => ( {
let lvl = $lvl;
lvl <= __log_level() && (lvl != 4 || cfg!(not(ndebug)))
} )
)
macro_rules! fail(
() => (
fail!("explicit failure")
);
($msg:expr) => (
::std::rt::begin_unwind($msg, file!(), line!())
);
($fmt:expr, $($arg:tt)*) => (
::std::rt::begin_unwind(format!($fmt, $($arg)*), file!(), line!())
)
)
macro_rules! assert(
($cond:expr) => {
if !$cond {
fail!("assertion failed: {:s}", stringify!($cond))
}
};
($cond:expr, $msg:expr) => {
if !$cond {
fail!($msg)
}
};
($cond:expr, $( $arg:expr ),+) => {
if !$cond {
fail!( $($arg),+ )
}
}
)
macro_rules! assert_eq (
($given:expr , $expected:expr) => (
{
let given_val = &($given);
let expected_val = &($expected);
// check both directions of equality....
if !((*given_val == *expected_val) &&
(*expected_val == *given_val)) {
fail!("assertion failed: `(left == right) && (right == left)` \
(left: `{:?}`, right: `{:?}`)", *given_val, *expected_val)
}
}
)
)
macro_rules! assert_approx_eq (
($given:expr , $expected:expr) => (
{
use std::cmp::ApproxEq;
let given_val = $given;
let expected_val = $expected;
// check both directions of equality....
if !(
given_val.approx_eq(&expected_val) &&
expected_val.approx_eq(&given_val)
) {
fail!("left: {:?} does not approximately equal right: {:?}",
given_val, expected_val);
}
}
);
($given:expr , $expected:expr , $epsilon:expr) => (
{
use std::cmp::ApproxEq;
let given_val = $given;
let expected_val = $expected;
let epsilon_val = $epsilon;
// check both directions of equality....
if !(
given_val.approx_eq_eps(&expected_val, &epsilon_val) &&
expected_val.approx_eq_eps(&given_val, &epsilon_val)
) {
fail!("left: {:?} does not approximately equal right: \
{:?} with epsilon: {:?}",
given_val, expected_val, epsilon_val);
}
}
)
)
/// A utility macro for indicating unreachable code. It will fail if
/// executed. This is occasionally useful to put after loops that never
/// terminate normally, but instead directly return from a function.
///
/// # Example
///
/// ```rust
/// fn choose_weighted_item(v: &[Item]) -> Item {
/// assert!(!v.is_empty());
/// let mut so_far = 0u;
/// for item in v.iter() {
/// so_far += item.weight;
/// if so_far > 100 {
/// return item;
/// }
/// }
/// // The above loop always returns, so we must hint to the
/// // type checker that it isn't possible to get down here
/// unreachable!();
/// }
/// ```
macro_rules! unreachable (() => (
fail!("internal error: entered unreachable code");
))
macro_rules! condition (
{ pub $c:ident: $input:ty -> $out:ty; } => {
pub mod $c {
#[allow(unused_imports)];
#[allow(non_uppercase_statics)];
#[allow(missing_doc)];
use super::*;
local_data_key!(key: @::std::condition::Handler<$input, $out>)
pub static cond :
::std::condition::Condition<$input,$out> =
::std::condition::Condition {
name: stringify!($c),
key: key
};
}
};
{ $c:ident: $input:ty -> $out:ty; } => {
mod $c {
#[allow(unused_imports)];
#[allow(non_uppercase_statics)];
#[allow(dead_code)];
use super::*;
local_data_key!(key: @::std::condition::Handler<$input, $out>)
pub static cond :
::std::condition::Condition<$input,$out> =
::std::condition::Condition {
name: stringify!($c),
key: key
};
}
}
)
macro_rules! format(($($arg:tt)*) => (
format_args!(::std::fmt::format, $($arg)*)
))
macro_rules! write(($dst:expr, $($arg:tt)*) => (
format_args!(|args| { ::std::fmt::write($dst, args) }, $($arg)*)
))
macro_rules! writeln(($dst:expr, $($arg:tt)*) => (
format_args!(|args| { ::std::fmt::writeln($dst, args) }, $($arg)*)
))
macro_rules! print (
($($arg:tt)*) => (format_args!(::std::io::stdio::print_args, $($arg)*))
)
macro_rules! println (
($($arg:tt)*) => (format_args!(::std::io::stdio::println_args, $($arg)*))
)
macro_rules! local_data_key (
($name:ident: $ty:ty) => (
static $name: ::std::local_data::Key<$ty> = &::std::local_data::Key;
);
(pub $name:ident: $ty:ty) => (
pub static $name: ::std::local_data::Key<$ty> = &::std::local_data::Key;
)
)
}"#
}
struct Injector {
sm: @ast::item,
}
impl ast_fold for Injector {
fn fold_mod(&mut self, module: &ast::_mod) -> ast::_mod {
// Just inject the standard macros at the start of the first module
// in the crate: that is, at the start of the crate file itself.
let items = vec::append(~[ self.sm ], module.items);
ast::_mod {
items: items,
..(*module).clone() // FIXME #2543: Bad copy.
}
}
}
// add a bunch of macros as though they were placed at the head of the
// program (ick). This should run before cfg stripping.
pub fn inject_std_macros(parse_sess: @parse::ParseSess,
cfg: ast::CrateConfig,
c: Crate)
-> Crate {
let sm = match parse_item_from_source_str(@"<std-macros>",
std_macros(),
cfg.clone(),
~[],
parse_sess) {
Some(item) => item,
None => fail!("expected core macros to parse correctly")
};
let mut injector = Injector {
sm: sm,
};
injector.fold_crate(c)
}
pub struct MacroExpander<'a> {
extsbox: SyntaxEnv,
cx: &'a mut ExtCtxt,
}
impl<'a> ast_fold for MacroExpander<'a> {
fn fold_expr(&mut self, expr: @ast::Expr) -> @ast::Expr {
expand_expr(expr, self)
}
fn fold_mod(&mut self, module: &ast::_mod) -> ast::_mod {
expand_mod_items(module, self)
}
fn fold_item(&mut self, item: @ast::item) -> SmallVector<@ast::item> {
expand_item(item, self)
}
fn fold_stmt(&mut self, stmt: &ast::Stmt) -> SmallVector<@ast::Stmt> {
expand_stmt(stmt, self)
}
fn fold_block(&mut self, block: P<Block>) -> P<Block> {
expand_block(block, self)
}
fn new_span(&mut self, span: Span) -> Span {
new_span(self.cx, span)
}
}
pub fn expand_crate(parse_sess: @parse::ParseSess,
cfg: ast::CrateConfig,
c: Crate) -> Crate {
let mut cx = ExtCtxt::new(parse_sess, cfg.clone());
let mut expander = MacroExpander {
extsbox: syntax_expander_table(),
cx: &mut cx,
};
let ret = expander.fold_crate(c);
parse_sess.span_diagnostic.handler().abort_if_errors();
return ret;
}
// HYGIENIC CONTEXT EXTENSION:
// all of these functions are for walking over
// ASTs and making some change to the context of every
// element that has one. a CtxtFn is a trait-ified
// version of a closure in (SyntaxContext -> SyntaxContext).
// the ones defined here include:
// Renamer - add a rename to a context
// MultiRenamer - add a set of renames to a context
// Marker - add a mark to a context
// Repainter - replace a context (maybe Replacer would be a better name?)
// a function in SyntaxContext -> SyntaxContext
pub trait CtxtFn{
fn f(&self, ast::SyntaxContext) -> ast::SyntaxContext;
}
// a renamer adds a rename to the syntax context
pub struct Renamer {
from : ast::Ident,
to : ast::Name
}
impl CtxtFn for Renamer {
fn f(&self, ctxt : ast::SyntaxContext) -> ast::SyntaxContext {
new_rename(self.from,self.to,ctxt)
}
}
// a marker adds the given mark to the syntax context
pub struct Marker { mark : Mrk }
impl CtxtFn for Marker {
fn f(&self, ctxt : ast::SyntaxContext) -> ast::SyntaxContext {
new_mark(self.mark,ctxt)
}
}
// a repainter just replaces the given context with the one it's closed over
pub struct Repainter { ctxt : SyntaxContext }
impl CtxtFn for Repainter {
fn f(&self, _ctxt : ast::SyntaxContext) -> ast::SyntaxContext {
self.ctxt
}
}
pub struct ContextWrapper {
context_function: @CtxtFn,
}
impl ast_fold for ContextWrapper {
fn fold_ident(&mut self, id: ast::Ident) -> ast::Ident {
let ast::Ident {
name,
ctxt
} = id;
ast::Ident {
name: name,
ctxt: self.context_function.f(ctxt),
}
}
fn fold_mac(&mut self, m: &ast::mac) -> ast::mac {
let macro = match m.node {
mac_invoc_tt(ref path, ref tts, ctxt) => {
mac_invoc_tt(self.fold_path(path),
fold_tts(*tts, self),
self.context_function.f(ctxt))
}
};
Spanned {
node: macro,
span: m.span,
}
}
}
// given a function from ctxts to ctxts, produce
// an ast_fold that applies that function to all ctxts:
pub fn fun_to_ctxt_folder<T : 'static + CtxtFn>(cf: @T) -> ContextWrapper {
ContextWrapper {
context_function: cf as @CtxtFn,
}
}
// just a convenience:
pub fn new_mark_folder(m: Mrk) -> ContextWrapper {
fun_to_ctxt_folder(@Marker{mark:m})
}
pub fn new_rename_folder(from: ast::Ident, to: ast::Name) -> ContextWrapper {
fun_to_ctxt_folder(@Renamer{from:from,to:to})
}
// apply a given mark to the given token trees. Used prior to expansion of a macro.
fn mark_tts(tts : &[token_tree], m : Mrk) -> ~[token_tree] {
fold_tts(tts, &mut new_mark_folder(m))
}
// apply a given mark to the given expr. Used following the expansion of a macro.
fn mark_expr(expr : @ast::Expr, m : Mrk) -> @ast::Expr {
new_mark_folder(m).fold_expr(expr)
}
// apply a given mark to the given stmt. Used following the expansion of a macro.
fn mark_stmt(expr : &ast::Stmt, m : Mrk) -> @ast::Stmt {
new_mark_folder(m).fold_stmt(expr)
.expect_one("marking a stmt didn't return a stmt")
}
// apply a given mark to the given item. Used following the expansion of a macro.
fn mark_item(expr : @ast::item, m : Mrk) -> SmallVector<@ast::item> {
new_mark_folder(m).fold_item(expr)
}
// replace all contexts in a given expr with the given mark. Used
// for capturing macros
pub fn replace_ctxts(expr : @ast::Expr, ctxt : SyntaxContext) -> @ast::Expr {
fun_to_ctxt_folder(@Repainter{ctxt:ctxt}).fold_expr(expr)
}
// take the mark from the given ctxt (that has a mark at the outside),
// and apply it to everything in the token trees, thereby cancelling
// that mark.
pub fn mtwt_cancel_outer_mark(tts: &[ast::token_tree], ctxt: ast::SyntaxContext)
-> ~[ast::token_tree] {
let outer_mark = mtwt_outer_mark(ctxt);
mark_tts(tts,outer_mark)
}
fn original_span(cx: &ExtCtxt) -> @codemap::ExpnInfo {
let mut relevant_info = cx.backtrace();
let mut einfo = relevant_info.unwrap();
loop {
match relevant_info {
None => { break }
Some(e) => {
einfo = e;
relevant_info = einfo.call_site.expn_info;
}
}
}
return einfo;
}
#[cfg(test)]
mod test {
use super::*;
use ast;
use ast::{Attribute_, AttrOuter, MetaWord, EMPTY_CTXT};
use ast_util::{get_sctable, mtwt_marksof, mtwt_resolve, new_rename};
use ast_util;
use codemap;
use codemap::Spanned;
use fold;
use parse;
use parse::token::{fresh_mark, gensym, intern, ident_to_str};
use parse::token;
use util::parser_testing::{string_to_crate, string_to_crate_and_sess};
use util::parser_testing::{string_to_pat, string_to_tts, strs_to_idents};
use visit;
use visit::Visitor;
// a visitor that extracts the paths
// from a given thingy and puts them in a mutable
// array (passed in to the traversal)
#[deriving(Clone)]
struct NewPathExprFinderContext {
path_accumulator: ~[ast::Path],
}
impl Visitor<()> for NewPathExprFinderContext {
fn visit_expr(&mut self, expr: &ast::Expr, _: ()) {
match *expr {
ast::Expr{id:_,span:_,node:ast::ExprPath(ref p)} => {
self.path_accumulator.push(p.clone());
// not calling visit_path, should be fine.
}
_ => visit::walk_expr(self,expr,())
}
}
fn visit_ty(&mut self, typ: &ast::Ty, _: ()) {
visit::walk_ty(self, typ, ())
}
}
// return a visitor that extracts the paths
// from a given pattern and puts them in a mutable
// array (passed in to the traversal)
pub fn new_path_finder(paths: ~[ast::Path]) -> NewPathExprFinderContext {
NewPathExprFinderContext {
path_accumulator: paths
}
}
// make sure that fail! is present
#[test] fn fail_exists_test () {
let src = @"fn main() { fail!(\"something appropriately gloomy\");}";
let sess = parse::new_parse_sess(None);
let crate_ast = parse::parse_crate_from_source_str(
@"<test>",
src,
~[],sess);
let crate_ast = inject_std_macros(sess, ~[], crate_ast);
// don't bother with striping, doesn't affect fail!.
expand_crate(sess,~[],crate_ast);
}
// these following tests are quite fragile, in that they don't test what
// *kind* of failure occurs.
// make sure that macros can leave scope
#[should_fail]
#[test] fn macros_cant_escape_fns_test () {
let src = @"fn bogus() {macro_rules! z (() => (3+4))}\
fn inty() -> int { z!() }";
let sess = parse::new_parse_sess(None);
let crate_ast = parse::parse_crate_from_source_str(
@"<test>",
src,
~[],sess);
// should fail:
expand_crate(sess,~[],crate_ast);
}
// make sure that macros can leave scope for modules
#[should_fail]
#[test] fn macros_cant_escape_mods_test () {
let src = @"mod foo {macro_rules! z (() => (3+4))}\
fn inty() -> int { z!() }";
let sess = parse::new_parse_sess(None);
let crate_ast = parse::parse_crate_from_source_str(
@"<test>",
src,
~[],sess);
// should fail:
expand_crate(sess,~[],crate_ast);
}
// macro_escape modules shouldn't cause macros to leave scope
#[test] fn macros_can_escape_flattened_mods_test () {
let src = @"#[macro_escape] mod foo {macro_rules! z (() => (3+4))}\
fn inty() -> int { z!() }";
let sess = parse::new_parse_sess(None);
let crate_ast = parse::parse_crate_from_source_str(
@"<test>",
src,
~[], sess);
// should fail:
expand_crate(sess,~[],crate_ast);
}
#[test] fn std_macros_must_parse () {
let src = super::std_macros();
let sess = parse::new_parse_sess(None);
let cfg = ~[];
let item_ast = parse::parse_item_from_source_str(
@"<test>",
src,
cfg,~[],sess);
match item_ast {
Some(_) => (), // success
None => fail!("expected this to parse")
}
}
#[test] fn test_contains_flatten (){
let attr1 = make_dummy_attr (@"foo");
let attr2 = make_dummy_attr (@"bar");
let escape_attr = make_dummy_attr (@"macro_escape");
let attrs1 = ~[attr1, escape_attr, attr2];
assert_eq!(contains_macro_escape (attrs1),true);
let attrs2 = ~[attr1,attr2];
assert_eq!(contains_macro_escape (attrs2),false);
}
// make a MetaWord outer attribute with the given name
fn make_dummy_attr(s: @str) -> ast::Attribute {
Spanned {
span:codemap::DUMMY_SP,
node: Attribute_ {
style: AttrOuter,
value: @Spanned {
node: MetaWord(s),
span: codemap::DUMMY_SP,
},
is_sugared_doc: false,
}
}
}
#[test] fn cancel_outer_mark_test(){
let invalid_name = token::special_idents::invalid.name;
let ident_str = @"x";
let tts = string_to_tts(ident_str);
let fm = fresh_mark();
let marked_once = fold::fold_tts(tts,&mut new_mark_folder(fm));
assert_eq!(marked_once.len(),1);
let marked_once_ctxt =
match marked_once[0] {
ast::tt_tok(_,token::IDENT(id,_)) => id.ctxt,
_ => fail!(format!("unexpected shape for marked tts: {:?}",marked_once[0]))
};
assert_eq!(mtwt_marksof(marked_once_ctxt,invalid_name),~[fm]);
let remarked = mtwt_cancel_outer_mark(marked_once,marked_once_ctxt);
assert_eq!(remarked.len(),1);
match remarked[0] {
ast::tt_tok(_,token::IDENT(id,_)) =>
assert_eq!(mtwt_marksof(id.ctxt,invalid_name),~[]),
_ => fail!(format!("unexpected shape for marked tts: {:?}",remarked[0]))
}
}
#[test]
fn renaming () {
let item_ast = string_to_crate(@"fn f() -> int { a }");
let a_name = intern("a");
let a2_name = gensym("a2");
let mut renamer = new_rename_folder(ast::Ident{name:a_name,ctxt:EMPTY_CTXT},
a2_name);
let renamed_ast = renamer.fold_crate(item_ast.clone());
let mut path_finder = new_path_finder(~[]);
visit::walk_crate(&mut path_finder, &renamed_ast, ());
match path_finder.path_accumulator {
[ast::Path{segments:[ref seg],..}] =>
assert_eq!(mtwt_resolve(seg.identifier),a2_name),
_ => assert_eq!(0,1)
}
// try a double-rename, with pending_renames.
let a3_name = gensym("a3");
// a context that renames from ("a",empty) to "a2" :
let ctxt2 = new_rename(ast::Ident::new(a_name),a2_name,EMPTY_CTXT);
let mut pending_renames = ~[
(ast::Ident::new(a_name),a2_name),
(ast::Ident{name:a_name,ctxt:ctxt2},a3_name)
];
let double_renamed = renames_to_fold(&mut pending_renames).fold_crate(item_ast);
let mut path_finder = new_path_finder(~[]);
visit::walk_crate(&mut path_finder, &double_renamed, ());
match path_finder.path_accumulator {
[ast::Path{segments:[ref seg],..}] =>
assert_eq!(mtwt_resolve(seg.identifier),a3_name),
_ => assert_eq!(0,1)
}
}
//fn fake_print_crate(crate: &ast::Crate) {
// let mut out = ~std::io::stderr() as ~std::io::Writer;
// let mut s = pprust::rust_printer(out, get_ident_interner());
// pprust::print_crate_(&mut s, crate);
//}
fn expand_crate_str(crate_str: @str) -> ast::Crate {
let (crate_ast,ps) = string_to_crate_and_sess(crate_str);
// the cfg argument actually does matter, here...
expand_crate(ps,~[],crate_ast)
}
//fn expand_and_resolve(crate_str: @str) -> ast::crate {
//let expanded_ast = expand_crate_str(crate_str);
// println(format!("expanded: {:?}\n",expanded_ast));
//mtwt_resolve_crate(expanded_ast)
//}
//fn expand_and_resolve_and_pretty_print (crate_str : @str) -> ~str {
//let resolved_ast = expand_and_resolve(crate_str);
//pprust::to_str(&resolved_ast,fake_print_crate,get_ident_interner())
//}
#[test] fn macro_tokens_should_match(){
expand_crate_str(@"macro_rules! m((a)=>(13)) fn main(){m!(a);}");
}
// renaming tests expand a crate and then check that the bindings match
// the right varrefs. The specification of the test case includes the
// text of the crate, and also an array of arrays. Each element in the
// outer array corresponds to a binding in the traversal of the AST
// induced by visit. Each of these arrays contains a list of indexes,
// interpreted as the varrefs in the varref traversal that this binding
// should match. So, for instance, in a program with two bindings and
// three varrefs, the array ~[~[1,2],~[0]] would indicate that the first
// binding should match the second two varrefs, and the second binding
// should match the first varref.
//
// The comparisons are done post-mtwt-resolve, so we're comparing renamed
// names; differences in marks don't matter any more.
//
// oog... I also want tests that check "binding-identifier-=?". That is,
// not just "do these have the same name", but "do they have the same
// name *and* the same marks"? Understanding this is really pretty painful.
// in principle, you might want to control this boolean on a per-varref basis,
// but that would make things even harder to understand, and might not be
// necessary for thorough testing.
type renaming_test = (&'static str, ~[~[uint]], bool);
#[test]
fn automatic_renaming () {
let tests : ~[renaming_test] =
~[// b & c should get new names throughout, in the expr too:
("fn a() -> int { let b = 13; let c = b; b+c }",
~[~[0,1],~[2]], false),
// both x's should be renamed (how is this causing a bug?)
("fn main () {let x : int = 13;x;}",
~[~[0]], false),
// the use of b after the + should be renamed, the other one not:
("macro_rules! f (($x:ident) => (b + $x)) fn a() -> int { let b = 13; f!(b)}",
~[~[1]], false),
// the b before the plus should not be renamed (requires marks)
("macro_rules! f (($x:ident) => ({let b=9; ($x + b)})) fn a() -> int { f!(b)}",
~[~[1]], false),
// the marks going in and out of letty should cancel, allowing that $x to
// capture the one following the semicolon.
// this was an awesome test case, and caught a *lot* of bugs.
("macro_rules! letty(($x:ident) => (let $x = 15;))
macro_rules! user(($x:ident) => ({letty!($x); $x}))
fn main() -> int {user!(z)}",
~[~[0]], false),
// no longer a fixme #8062: this test exposes a *potential* bug; our system does
// not behave exactly like MTWT, but a conversation with Matthew Flatt
// suggests that this can only occur in the presence of local-expand, which
// we have no plans to support.
// ("fn main() {let hrcoo = 19; macro_rules! getx(()=>(hrcoo)); getx!();}",
// ~[~[0]], true)
// FIXME #6994: the next string exposes the bug referred to in issue 6994, so I'm
// commenting it out.
// the z flows into and out of two macros (g & f) along one path, and one
// (just g) along the other, so the result of the whole thing should
// be "let z_123 = 3; z_123"
//"macro_rules! g (($x:ident) =>
// ({macro_rules! f(($y:ident)=>({let $y=3;$x}));f!($x)}))
// fn a(){g!(z)}"
// create a really evil test case where a $x appears inside a binding of $x
// but *shouldnt* bind because it was inserted by a different macro....
// can't write this test case until we have macro-generating macros.
];
for (idx,s) in tests.iter().enumerate() {
run_renaming_test(s,idx);
}
}
// run one of the renaming tests
fn run_renaming_test(t : &renaming_test, test_idx: uint) {
let invalid_name = token::special_idents::invalid.name;
let (teststr, bound_connections, bound_ident_check) = match *t {
(ref str,ref conns, bic) => (str.to_managed(), conns.clone(), bic)
};
let cr = expand_crate_str(teststr.to_managed());
// find the bindings:
let mut name_finder = new_name_finder(~[]);
visit::walk_crate(&mut name_finder,&cr,());
let bindings = name_finder.ident_accumulator;
// find the varrefs:
let mut path_finder = new_path_finder(~[]);
visit::walk_crate(&mut path_finder,&cr,());
let varrefs = path_finder.path_accumulator;
// must be one check clause for each binding:
assert_eq!(bindings.len(),bound_connections.len());
for (binding_idx,shouldmatch) in bound_connections.iter().enumerate() {
let binding_name = mtwt_resolve(bindings[binding_idx]);
let binding_marks = mtwt_marksof(bindings[binding_idx].ctxt,invalid_name);
// shouldmatch can't name varrefs that don't exist:
assert!((shouldmatch.len() == 0) ||
(varrefs.len() > *shouldmatch.iter().max().unwrap()));
for (idx,varref) in varrefs.iter().enumerate() {
if shouldmatch.contains(&idx) {
// it should be a path of length 1, and it should
// be free-identifier=? or bound-identifier=? to the given binding
assert_eq!(varref.segments.len(),1);
let varref_name = mtwt_resolve(varref.segments[0].identifier);
let varref_marks = mtwt_marksof(varref.segments[0].identifier.ctxt,
invalid_name);
if (!(varref_name==binding_name)){
println("uh oh, should match but doesn't:");
println!("varref: {:?}",varref);
println!("binding: {:?}", bindings[binding_idx]);
ast_util::display_sctable(get_sctable());
}
assert_eq!(varref_name,binding_name);
if (bound_ident_check) {
// we're checking bound-identifier=?, and the marks
// should be the same, too:
assert_eq!(varref_marks,binding_marks.clone());
}
} else {
let fail = (varref.segments.len() == 1)
&& (mtwt_resolve(varref.segments[0].identifier) == binding_name);
// temp debugging:
if (fail) {
println!("failure on test {}",test_idx);
println!("text of test case: \"{}\"", teststr);
println!("");
println!("uh oh, matches but shouldn't:");
println!("varref: {:?}",varref);
// good lord, you can't make a path with 0 segments, can you?
println!("varref's first segment's uint: {}, and string: \"{}\"",
varref.segments[0].identifier.name,
ident_to_str(&varref.segments[0].identifier));
println!("binding: {:?}", bindings[binding_idx]);
ast_util::display_sctable(get_sctable());
}
assert!(!fail);
}
}
}
}
#[test] fn fmt_in_macro_used_inside_module_macro() {
let crate_str = @"macro_rules! fmt_wrap(($b:expr)=>($b.to_str()))
macro_rules! foo_module (() => (mod generated { fn a() { let xx = 147; fmt_wrap!(xx);}}))
foo_module!()
";
let cr = expand_crate_str(crate_str);
// find the xx binding
let mut name_finder = new_name_finder(~[]);
visit::walk_crate(&mut name_finder, &cr, ());
let bindings = name_finder.ident_accumulator;
let cxbinds : ~[&ast::Ident] =
bindings.iter().filter(|b|{@"xx" == (ident_to_str(*b))}).collect();
let cxbind = match cxbinds {
[b] => b,
_ => fail!("expected just one binding for ext_cx")
};
let resolved_binding = mtwt_resolve(*cxbind);
// find all the xx varrefs:
let mut path_finder = new_path_finder(~[]);
visit::walk_crate(&mut path_finder, &cr, ());
let varrefs = path_finder.path_accumulator;
// the xx binding should bind all of the xx varrefs:
for (idx,v) in varrefs.iter().filter(|p|{ p.segments.len() == 1
&& (@"xx" == (ident_to_str(&p.segments[0].identifier)))
}).enumerate() {
if (mtwt_resolve(v.segments[0].identifier) != resolved_binding) {
println("uh oh, xx binding didn't match xx varref:");
println!("this is xx varref \\# {:?}",idx);
println!("binding: {:?}",cxbind);
println!("resolves to: {:?}",resolved_binding);
println!("varref: {:?}",v.segments[0].identifier);
println!("resolves to: {:?}",
mtwt_resolve(v.segments[0].identifier));
let table = get_sctable();
println("SC table:");
{
let table = table.table.borrow();
for (idx,val) in table.get().iter().enumerate() {
println!("{:4u} : {:?}",idx,val);
}
}
}
assert_eq!(mtwt_resolve(v.segments[0].identifier),resolved_binding);
};
}
#[test]
fn pat_idents(){
let pat = string_to_pat(@"(a,Foo{x:c @ (b,9),y:Bar(4,d)})");
let mut pat_idents = new_name_finder(~[]);
pat_idents.visit_pat(pat, ());
assert_eq!(pat_idents.ident_accumulator,
strs_to_idents(~["a","c","b","d"]));
}
}