502 lines
14 KiB
Rust
502 lines
14 KiB
Rust
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Utility mixins that apply to all Readers and Writers
|
|
|
|
// XXX: Not sure how this should be structured
|
|
// XXX: Iteration should probably be considered separately
|
|
|
|
use vec;
|
|
use rt::io::Reader;
|
|
use option::{Option, Some, None};
|
|
use unstable::finally::Finally;
|
|
|
|
pub trait ReaderUtil {
|
|
|
|
/// Reads a single byte. Returns `None` on EOF.
|
|
///
|
|
/// # Failure
|
|
///
|
|
/// Raises the same conditions as the `read` method. Returns
|
|
/// `None` if the condition is handled.
|
|
fn read_byte(&mut self) -> Option<u8>;
|
|
|
|
/// Reads `len` bytes and appends them to a vector.
|
|
///
|
|
/// May push fewer than the requested number of bytes on error
|
|
/// or EOF. Returns true on success, false on EOF or error.
|
|
///
|
|
/// # Failure
|
|
///
|
|
/// Raises the same conditions as `read`. Returns `false` if
|
|
/// the condition is handled.
|
|
fn push_bytes(&mut self, buf: &mut ~[u8], len: uint) -> bool;
|
|
|
|
/// Reads `len` bytes and gives you back a new vector
|
|
///
|
|
/// # Failure
|
|
///
|
|
/// Raises the same conditions as the `read` method. May return
|
|
/// less than the requested number of bytes on error or EOF.
|
|
fn read_bytes(&mut self, len: uint) -> ~[u8];
|
|
|
|
/// Reads all remaining bytes from the stream.
|
|
///
|
|
/// # Failure
|
|
///
|
|
/// Raises the same conditions as the `read` method.
|
|
fn read_to_end(&mut self) -> ~[u8];
|
|
|
|
}
|
|
|
|
impl<T: Reader> ReaderUtil for T {
|
|
fn read_byte(&mut self) -> Option<u8> {
|
|
let mut buf = [0];
|
|
match self.read(buf) {
|
|
Some(nread) if nread == 0 => {
|
|
debug!("read 0 bytes. trying again");
|
|
self.read_byte()
|
|
}
|
|
Some(nread) => Some(buf[0]),
|
|
None => None
|
|
}
|
|
}
|
|
|
|
fn push_bytes(&mut self, buf: &mut ~[u8], len: uint) -> bool {
|
|
unsafe {
|
|
let start_len = buf.len();
|
|
let mut total_read = 0;
|
|
let mut eof = false;
|
|
|
|
vec::reserve_at_least(buf, start_len + len);
|
|
vec::raw::set_len(buf, start_len + len);
|
|
|
|
do (|| {
|
|
while total_read < len {
|
|
let slice = vec::mut_slice(*buf, start_len + total_read, buf.len());
|
|
match self.read(slice) {
|
|
Some(nread) => {
|
|
total_read += nread;
|
|
}
|
|
None => {
|
|
eof = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}).finally {
|
|
vec::raw::set_len(buf, start_len + total_read);
|
|
}
|
|
|
|
return !eof;
|
|
}
|
|
}
|
|
|
|
fn read_bytes(&mut self, len: uint) -> ~[u8] {
|
|
let mut buf = vec::with_capacity(len);
|
|
self.push_bytes(&mut buf, len);
|
|
return buf;
|
|
}
|
|
|
|
fn read_to_end(&mut self) -> ~[u8] {
|
|
fail!()
|
|
}
|
|
}
|
|
|
|
pub trait ReaderByteConversions {
|
|
/// Reads `n` little-endian unsigned integer bytes.
|
|
///
|
|
/// `n` must be between 1 and 8, inclusive.
|
|
fn read_le_uint_n(&mut self, nbytes: uint) -> u64;
|
|
|
|
/// Reads `n` little-endian signed integer bytes.
|
|
///
|
|
/// `n` must be between 1 and 8, inclusive.
|
|
fn read_le_int_n(&mut self, nbytes: uint) -> i64;
|
|
|
|
/// Reads `n` big-endian unsigned integer bytes.
|
|
///
|
|
/// `n` must be between 1 and 8, inclusive.
|
|
fn read_be_uint_n(&mut self, nbytes: uint) -> u64;
|
|
|
|
/// Reads `n` big-endian signed integer bytes.
|
|
///
|
|
/// `n` must be between 1 and 8, inclusive.
|
|
fn read_be_int_n(&mut self, nbytes: uint) -> i64;
|
|
|
|
/// Reads a little-endian unsigned integer.
|
|
///
|
|
/// The number of bytes returned is system-dependant.
|
|
fn read_le_uint(&mut self) -> uint;
|
|
|
|
/// Reads a little-endian integer.
|
|
///
|
|
/// The number of bytes returned is system-dependant.
|
|
fn read_le_int(&mut self) -> int;
|
|
|
|
/// Reads a big-endian unsigned integer.
|
|
///
|
|
/// The number of bytes returned is system-dependant.
|
|
fn read_be_uint(&mut self) -> uint;
|
|
|
|
/// Reads a big-endian integer.
|
|
///
|
|
/// The number of bytes returned is system-dependant.
|
|
fn read_be_int(&mut self) -> int;
|
|
|
|
/// Reads a big-endian `u64`.
|
|
///
|
|
/// `u64`s are 8 bytes long.
|
|
fn read_be_u64(&mut self) -> u64;
|
|
|
|
/// Reads a big-endian `u32`.
|
|
///
|
|
/// `u32`s are 4 bytes long.
|
|
fn read_be_u32(&mut self) -> u32;
|
|
|
|
/// Reads a big-endian `u16`.
|
|
///
|
|
/// `u16`s are 2 bytes long.
|
|
fn read_be_u16(&mut self) -> u16;
|
|
|
|
/// Reads a big-endian `i64`.
|
|
///
|
|
/// `i64`s are 8 bytes long.
|
|
fn read_be_i64(&mut self) -> i64;
|
|
|
|
/// Reads a big-endian `i32`.
|
|
///
|
|
/// `i32`s are 4 bytes long.
|
|
fn read_be_i32(&mut self) -> i32;
|
|
|
|
/// Reads a big-endian `i16`.
|
|
///
|
|
/// `i16`s are 2 bytes long.
|
|
fn read_be_i16(&mut self) -> i16;
|
|
|
|
/// Reads a big-endian `f64`.
|
|
///
|
|
/// `f64`s are 8 byte, IEEE754 double-precision floating point numbers.
|
|
fn read_be_f64(&mut self) -> f64;
|
|
|
|
/// Reads a big-endian `f32`.
|
|
///
|
|
/// `f32`s are 4 byte, IEEE754 single-precision floating point numbers.
|
|
fn read_be_f32(&mut self) -> f32;
|
|
|
|
/// Reads a little-endian `u64`.
|
|
///
|
|
/// `u64`s are 8 bytes long.
|
|
fn read_le_u64(&mut self) -> u64;
|
|
|
|
/// Reads a little-endian `u32`.
|
|
///
|
|
/// `u32`s are 4 bytes long.
|
|
fn read_le_u32(&mut self) -> u32;
|
|
|
|
/// Reads a little-endian `u16`.
|
|
///
|
|
/// `u16`s are 2 bytes long.
|
|
fn read_le_u16(&mut self) -> u16;
|
|
|
|
/// Reads a little-endian `i64`.
|
|
///
|
|
/// `i64`s are 8 bytes long.
|
|
fn read_le_i64(&mut self) -> i64;
|
|
|
|
/// Reads a little-endian `i32`.
|
|
///
|
|
/// `i32`s are 4 bytes long.
|
|
fn read_le_i32(&mut self) -> i32;
|
|
|
|
/// Reads a little-endian `i16`.
|
|
///
|
|
/// `i16`s are 2 bytes long.
|
|
fn read_le_i16(&mut self) -> i16;
|
|
|
|
/// Reads a little-endian `f64`.
|
|
///
|
|
/// `f64`s are 8 byte, IEEE754 double-precision floating point numbers.
|
|
fn read_le_f64(&mut self) -> f64;
|
|
|
|
/// Reads a little-endian `f32`.
|
|
///
|
|
/// `f32`s are 4 byte, IEEE754 single-precision floating point numbers.
|
|
fn read_le_f32(&mut self) -> f32;
|
|
|
|
/// Read a u8.
|
|
///
|
|
/// `u8`s are 1 byte.
|
|
fn read_u8(&mut self) -> u8;
|
|
|
|
/// Read an i8.
|
|
///
|
|
/// `i8`s are 1 byte.
|
|
fn read_i8(&mut self) -> i8;
|
|
|
|
}
|
|
|
|
pub trait WriterByteConversions {
|
|
/// Write the result of passing n through `int::to_str_bytes`.
|
|
fn write_int(&mut self, n: int);
|
|
|
|
/// Write the result of passing n through `uint::to_str_bytes`.
|
|
fn write_uint(&mut self, n: uint);
|
|
|
|
/// Write a little-endian uint (number of bytes depends on system).
|
|
fn write_le_uint(&mut self, n: uint);
|
|
|
|
/// Write a little-endian int (number of bytes depends on system).
|
|
fn write_le_int(&mut self, n: int);
|
|
|
|
/// Write a big-endian uint (number of bytes depends on system).
|
|
fn write_be_uint(&mut self, n: uint);
|
|
|
|
/// Write a big-endian int (number of bytes depends on system).
|
|
fn write_be_int(&mut self, n: int);
|
|
|
|
/// Write a big-endian u64 (8 bytes).
|
|
fn write_be_u64(&mut self, n: u64);
|
|
|
|
/// Write a big-endian u32 (4 bytes).
|
|
fn write_be_u32(&mut self, n: u32);
|
|
|
|
/// Write a big-endian u16 (2 bytes).
|
|
fn write_be_u16(&mut self, n: u16);
|
|
|
|
/// Write a big-endian i64 (8 bytes).
|
|
fn write_be_i64(&mut self, n: i64);
|
|
|
|
/// Write a big-endian i32 (4 bytes).
|
|
fn write_be_i32(&mut self, n: i32);
|
|
|
|
/// Write a big-endian i16 (2 bytes).
|
|
fn write_be_i16(&mut self, n: i16);
|
|
|
|
/// Write a big-endian IEEE754 double-precision floating-point (8 bytes).
|
|
fn write_be_f64(&mut self, f: f64);
|
|
|
|
/// Write a big-endian IEEE754 single-precision floating-point (4 bytes).
|
|
fn write_be_f32(&mut self, f: f32);
|
|
|
|
/// Write a little-endian u64 (8 bytes).
|
|
fn write_le_u64(&mut self, n: u64);
|
|
|
|
/// Write a little-endian u32 (4 bytes).
|
|
fn write_le_u32(&mut self, n: u32);
|
|
|
|
/// Write a little-endian u16 (2 bytes).
|
|
fn write_le_u16(&mut self, n: u16);
|
|
|
|
/// Write a little-endian i64 (8 bytes).
|
|
fn write_le_i64(&mut self, n: i64);
|
|
|
|
/// Write a little-endian i32 (4 bytes).
|
|
fn write_le_i32(&mut self, n: i32);
|
|
|
|
/// Write a little-endian i16 (2 bytes).
|
|
fn write_le_i16(&mut self, n: i16);
|
|
|
|
/// Write a little-endian IEEE754 double-precision floating-point
|
|
/// (8 bytes).
|
|
fn write_le_f64(&mut self, f: f64);
|
|
|
|
/// Write a litten-endian IEEE754 single-precision floating-point
|
|
/// (4 bytes).
|
|
fn write_le_f32(&mut self, f: f32);
|
|
|
|
/// Write a u8 (1 byte).
|
|
fn write_u8(&mut self, n: u8);
|
|
|
|
/// Write a i8 (1 byte).
|
|
fn write_i8(&mut self, n: i8);
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use super::*;
|
|
use option::{Some, None};
|
|
use cell::Cell;
|
|
use rt::io::mem::MemReader;
|
|
use rt::io::mock::*;
|
|
use rt::io::{read_error, placeholder_error};
|
|
|
|
#[test]
|
|
fn read_byte() {
|
|
let mut reader = MemReader::new(~[10]);
|
|
let byte = reader.read_byte();
|
|
assert!(byte == Some(10));
|
|
}
|
|
|
|
#[test]
|
|
fn read_byte_0_bytes() {
|
|
let mut reader = MockReader::new();
|
|
let count = Cell(0);
|
|
reader.read = |buf| {
|
|
do count.with_mut_ref |count| {
|
|
if *count == 0 {
|
|
*count = 1;
|
|
Some(0)
|
|
} else {
|
|
buf[0] = 10;
|
|
Some(1)
|
|
}
|
|
}
|
|
};
|
|
let byte = reader.read_byte();
|
|
assert!(byte == Some(10));
|
|
}
|
|
|
|
#[test]
|
|
fn read_byte_eof() {
|
|
let mut reader = MockReader::new();
|
|
reader.read = |_| None;
|
|
let byte = reader.read_byte();
|
|
assert!(byte == None);
|
|
}
|
|
|
|
#[test]
|
|
fn read_byte_error() {
|
|
let mut reader = MockReader::new();
|
|
reader.read = |_| {
|
|
read_error::cond.raise(placeholder_error());
|
|
None
|
|
};
|
|
do read_error::cond.trap(|_| {
|
|
}).in {
|
|
let byte = reader.read_byte();
|
|
assert!(byte == None);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn read_bytes() {
|
|
let mut reader = MemReader::new(~[10, 11, 12, 13]);
|
|
let bytes = reader.read_bytes(4);
|
|
assert!(bytes == ~[10, 11, 12, 13]);
|
|
}
|
|
|
|
#[test]
|
|
fn read_bytes_partial() {
|
|
let mut reader = MockReader::new();
|
|
let count = Cell(0);
|
|
reader.read = |buf| {
|
|
do count.with_mut_ref |count| {
|
|
if *count == 0 {
|
|
*count = 1;
|
|
buf[0] = 10;
|
|
buf[1] = 11;
|
|
Some(2)
|
|
} else {
|
|
buf[0] = 12;
|
|
buf[1] = 13;
|
|
Some(2)
|
|
}
|
|
}
|
|
};
|
|
let bytes = reader.read_bytes(4);
|
|
assert!(bytes == ~[10, 11, 12, 13]);
|
|
}
|
|
|
|
#[test]
|
|
fn push_bytes() {
|
|
let mut reader = MemReader::new(~[10, 11, 12, 13]);
|
|
let mut buf = ~[8, 9];
|
|
assert!(reader.push_bytes(&mut buf, 4));
|
|
assert!(buf == ~[8, 9, 10, 11, 12, 13]);
|
|
}
|
|
|
|
#[test]
|
|
fn push_bytes_partial() {
|
|
let mut reader = MockReader::new();
|
|
let count = Cell(0);
|
|
reader.read = |buf| {
|
|
do count.with_mut_ref |count| {
|
|
if *count == 0 {
|
|
*count = 1;
|
|
buf[0] = 10;
|
|
buf[1] = 11;
|
|
Some(2)
|
|
} else {
|
|
buf[0] = 12;
|
|
buf[1] = 13;
|
|
Some(2)
|
|
}
|
|
}
|
|
};
|
|
let mut buf = ~[8, 9];
|
|
assert!(reader.push_bytes(&mut buf, 4));
|
|
assert!(buf == ~[8, 9, 10, 11, 12, 13]);
|
|
}
|
|
|
|
#[test]
|
|
fn push_bytes_eof() {
|
|
let mut reader = MemReader::new(~[10, 11]);
|
|
let mut buf = ~[8, 9];
|
|
assert!(!reader.push_bytes(&mut buf, 4));
|
|
assert!(buf == ~[8, 9, 10, 11]);
|
|
}
|
|
|
|
#[test]
|
|
fn push_bytes_error() {
|
|
let mut reader = MockReader::new();
|
|
let count = Cell(0);
|
|
reader.read = |buf| {
|
|
do count.with_mut_ref |count| {
|
|
if *count == 0 {
|
|
*count = 1;
|
|
buf[0] = 10;
|
|
Some(1)
|
|
} else {
|
|
read_error::cond.raise(placeholder_error());
|
|
None
|
|
}
|
|
}
|
|
};
|
|
let mut buf = ~[8, 9];
|
|
do read_error::cond.trap(|_| { } ).in {
|
|
assert!(!reader.push_bytes(&mut buf, 4));
|
|
}
|
|
assert!(buf == ~[8, 9, 10]);
|
|
}
|
|
|
|
#[test]
|
|
#[should_fail]
|
|
#[ignore(cfg(windows))]
|
|
fn push_bytes_fail_reset_len() {
|
|
use unstable::finally::Finally;
|
|
|
|
// push_bytes unsafely sets the vector length. This is testing that
|
|
// upon failure the length is reset correctly.
|
|
let mut reader = MockReader::new();
|
|
let count = Cell(0);
|
|
reader.read = |buf| {
|
|
do count.with_mut_ref |count| {
|
|
if *count == 0 {
|
|
*count = 1;
|
|
buf[0] = 10;
|
|
Some(1)
|
|
} else {
|
|
read_error::cond.raise(placeholder_error());
|
|
None
|
|
}
|
|
}
|
|
};
|
|
let buf = @mut ~[8, 9];
|
|
do (|| {
|
|
reader.push_bytes(&mut *buf, 4);
|
|
}).finally {
|
|
// NB: Using rtassert here to trigger abort on failure since this is a should_fail test
|
|
rtassert!(*buf == ~[8, 9, 10]);
|
|
}
|
|
}
|
|
|
|
}
|