rust/src/lib.rs

493 lines
16 KiB
Rust

#![feature(
rustc_private,
catch_expr,
)]
#![cfg_attr(feature = "cargo-clippy", allow(cast_lossless))]
#[macro_use]
extern crate log;
// From rustc.
#[macro_use]
extern crate rustc;
extern crate rustc_data_structures;
extern crate rustc_mir;
extern crate rustc_target;
extern crate syntax;
use rustc::ty::{self, TyCtxt};
use rustc::ty::layout::{TyLayout, LayoutOf, Size};
use rustc::ty::subst::Subst;
use rustc::hir::def_id::DefId;
use rustc::mir;
use rustc_data_structures::fx::FxHasher;
use syntax::ast::Mutability;
use syntax::codemap::Span;
use std::marker::PhantomData;
use std::collections::{HashMap, BTreeMap};
use std::hash::{Hash, Hasher};
pub use rustc::mir::interpret::*;
pub use rustc_mir::interpret::*;
mod fn_call;
mod operator;
mod intrinsic;
mod helpers;
mod memory;
mod tls;
mod locks;
mod range_map;
use fn_call::EvalContextExt as MissingFnsEvalContextExt;
use operator::EvalContextExt as OperatorEvalContextExt;
use intrinsic::EvalContextExt as IntrinsicEvalContextExt;
use tls::EvalContextExt as TlsEvalContextExt;
use locks::LockInfo;
use range_map::RangeMap;
use helpers::{ScalarExt, FalibleScalarExt};
pub fn create_ecx<'a, 'mir: 'a, 'tcx: 'mir>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
main_id: DefId,
start_wrapper: Option<DefId>,
) -> EvalResult<'tcx, (EvalContext<'a, 'mir, 'tcx, Evaluator<'tcx>>, Option<Pointer>)> {
let mut ecx = EvalContext::new(
tcx.at(syntax::codemap::DUMMY_SP),
ty::ParamEnv::reveal_all(),
Default::default(),
MemoryData::new()
);
let main_instance = ty::Instance::mono(ecx.tcx.tcx, main_id);
let main_mir = ecx.load_mir(main_instance.def)?;
let mut cleanup_ptr = None; // Scalar to be deallocated when we are done
if !main_mir.return_ty().is_nil() || main_mir.arg_count != 0 {
return err!(Unimplemented(
"miri does not support main functions without `fn()` type signatures"
.to_owned(),
));
}
let ptr_size = ecx.memory.pointer_size();
if let Some(start_id) = start_wrapper {
let main_ret_ty = ecx.tcx.fn_sig(main_id).output();
let main_ret_ty = main_ret_ty.no_late_bound_regions().unwrap();
let start_instance = ty::Instance::resolve(
ecx.tcx.tcx,
ty::ParamEnv::reveal_all(),
start_id,
ecx.tcx.mk_substs(
::std::iter::once(ty::subst::Kind::from(main_ret_ty)))
).unwrap();
let start_mir = ecx.load_mir(start_instance.def)?;
if start_mir.arg_count != 3 {
return err!(AbiViolation(format!(
"'start' lang item should have three arguments, but has {}",
start_mir.arg_count
)));
}
// Return value
let size = ecx.tcx.data_layout.pointer_size;
let align = ecx.tcx.data_layout.pointer_align;
let ret_ptr = ecx.memory_mut().allocate(size, align, MemoryKind::Stack)?;
cleanup_ptr = Some(ret_ptr);
// Push our stack frame
ecx.push_stack_frame(
start_instance,
start_mir.span,
start_mir,
Place::from_ptr(ret_ptr, align),
StackPopCleanup::None,
)?;
let mut args = ecx.frame().mir.args_iter();
// First argument: pointer to main()
let main_ptr = ecx.memory_mut().create_fn_alloc(main_instance);
let dest = ecx.eval_place(&mir::Place::Local(args.next().unwrap()))?;
ecx.write_scalar(Scalar::Ptr(main_ptr), dest)?;
// Second argument (argc): 1
let dest = ecx.eval_place(&mir::Place::Local(args.next().unwrap()))?;
ecx.write_scalar(Scalar::from_int(1, dest.layout.size), dest)?;
// FIXME: extract main source file path
// Third argument (argv): &[b"foo"]
let dest = ecx.eval_place(&mir::Place::Local(args.next().unwrap()))?;
let foo = ecx.memory.allocate_bytes(b"foo\0");
let foo_ty = ecx.tcx.mk_imm_ptr(ecx.tcx.types.u8);
let foo_layout = ecx.layout_of(foo_ty)?;
let foo_place = ecx.allocate(foo_layout, MemoryKind::Stack)?;
ecx.write_scalar(Scalar::Ptr(foo), foo_place.into())?;
ecx.memory.mark_static_initialized(foo_place.to_ptr()?.alloc_id, Mutability::Immutable)?;
ecx.write_scalar(foo_place.ptr, dest)?;
assert!(args.next().is_none(), "start lang item has more arguments than expected");
} else {
ecx.push_stack_frame(
main_instance,
main_mir.span,
main_mir,
Place::from_scalar_ptr(Scalar::from_int(1, ptr_size).into(), ty::layout::Align::from_bytes(1, 1).unwrap()),
StackPopCleanup::None,
)?;
// No arguments
let mut args = ecx.frame().mir.args_iter();
assert!(args.next().is_none(), "main function must not have arguments");
}
Ok((ecx, cleanup_ptr))
}
pub fn eval_main<'a, 'tcx: 'a>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
main_id: DefId,
start_wrapper: Option<DefId>,
) {
let (mut ecx, cleanup_ptr) = create_ecx(tcx, main_id, start_wrapper).expect("Couldn't create ecx");
let res: EvalResult = do catch {
while ecx.step()? {}
ecx.run_tls_dtors()?;
if let Some(cleanup_ptr) = cleanup_ptr {
ecx.memory_mut().deallocate(
cleanup_ptr,
None,
MemoryKind::Stack,
)?;
}
};
match res {
Ok(()) => {
let leaks = ecx.memory().leak_report();
if leaks != 0 {
// TODO: Prevent leaks which aren't supposed to be there
//tcx.sess.err("the evaluated program leaked memory");
}
}
Err(e) => {
if let Some(frame) = ecx.stack().last() {
let block = &frame.mir.basic_blocks()[frame.block];
let span = if frame.stmt < block.statements.len() {
block.statements[frame.stmt].source_info.span
} else {
block.terminator().source_info.span
};
let e = e.to_string();
let msg = format!("constant evaluation error: {}", e);
let mut err = struct_error(ecx.tcx.tcx.at(span), msg.as_str());
let (frames, span) = ecx.generate_stacktrace(None);
err.span_label(span, e);
for FrameInfo { span, location, .. } in frames {
err.span_note(span, &format!("inside call to `{}`", location));
}
err.emit();
} else {
ecx.tcx.sess.err(&e.to_string());
}
for (i, frame) in ecx.stack().iter().enumerate() {
trace!("-------------------");
trace!("Frame {}", i);
trace!(" return: {:#?}", frame.return_place);
for (i, local) in frame.locals.iter().enumerate() {
if let Ok(local) = local.access() {
trace!(" local {}: {:?}", i, local);
}
}
}
}
}
}
#[derive(Clone, Default, PartialEq, Eq)]
pub struct Evaluator<'tcx> {
/// Environment variables set by `setenv`
/// Miri does not expose env vars from the host to the emulated program
pub(crate) env_vars: HashMap<Vec<u8>, Pointer>,
/// Use the lifetime
_dummy : PhantomData<&'tcx ()>,
}
impl<'tcx> Hash for Evaluator<'tcx> {
fn hash<H: Hasher>(&self, state: &mut H) {
let Evaluator {
env_vars,
_dummy: _,
} = self;
env_vars.iter()
.map(|(env, ptr)| {
let mut h = FxHasher::default();
env.hash(&mut h);
ptr.hash(&mut h);
h.finish()
})
.fold(0u64, |acc, hash| acc.wrapping_add(hash))
.hash(state);
}
}
pub type TlsKey = u128;
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub struct TlsEntry<'tcx> {
data: Scalar, // Will eventually become a map from thread IDs to `Scalar`s, if we ever support more than one thread.
dtor: Option<ty::Instance<'tcx>>,
}
#[derive(Clone, PartialEq, Eq)]
pub struct MemoryData<'tcx> {
/// The Key to use for the next thread-local allocation.
next_thread_local: TlsKey,
/// pthreads-style thread-local storage.
thread_local: BTreeMap<TlsKey, TlsEntry<'tcx>>,
/// Memory regions that are locked by some function
///
/// Only mutable (static mut, heap, stack) allocations have an entry in this map.
/// The entry is created when allocating the memory and deleted after deallocation.
locks: HashMap<AllocId, RangeMap<LockInfo<'tcx>>>,
statics: HashMap<GlobalId<'tcx>, AllocId>,
}
impl<'tcx> MemoryData<'tcx> {
fn new() -> Self {
MemoryData {
next_thread_local: 1, // start with 1 as we must not use 0 on Windows
thread_local: BTreeMap::new(),
locks: HashMap::new(),
statics: HashMap::new(),
}
}
}
impl<'tcx> Hash for MemoryData<'tcx> {
fn hash<H: Hasher>(&self, state: &mut H) {
let MemoryData {
next_thread_local: _,
thread_local,
locks: _,
statics: _,
} = self;
thread_local.hash(state);
}
}
impl<'mir, 'tcx: 'mir> Machine<'mir, 'tcx> for Evaluator<'tcx> {
type MemoryData = MemoryData<'tcx>;
type MemoryKinds = memory::MemoryKind;
/// Returns Ok() when the function was handled, fail otherwise
fn eval_fn_call<'a>(
ecx: &mut EvalContext<'a, 'mir, 'tcx, Self>,
instance: ty::Instance<'tcx>,
destination: Option<(PlaceTy<'tcx>, mir::BasicBlock)>,
args: &[OpTy<'tcx>],
span: Span,
) -> EvalResult<'tcx, bool> {
ecx.eval_fn_call(instance, destination, args, span)
}
fn call_intrinsic<'a>(
ecx: &mut rustc_mir::interpret::EvalContext<'a, 'mir, 'tcx, Self>,
instance: ty::Instance<'tcx>,
args: &[OpTy<'tcx>],
dest: PlaceTy<'tcx>,
target: mir::BasicBlock,
) -> EvalResult<'tcx> {
ecx.call_intrinsic(instance, args, dest, target)
}
fn try_ptr_op<'a>(
ecx: &rustc_mir::interpret::EvalContext<'a, 'mir, 'tcx, Self>,
bin_op: mir::BinOp,
left: Scalar,
left_layout: TyLayout<'tcx>,
right: Scalar,
right_layout: TyLayout<'tcx>,
) -> EvalResult<'tcx, Option<(Scalar, bool)>> {
ecx.ptr_op(bin_op, left, left_layout, right, right_layout)
}
fn mark_static_initialized<'a>(
mem: &mut Memory<'a, 'mir, 'tcx, Self>,
id: AllocId,
_mutability: Mutability,
) -> EvalResult<'tcx, bool> {
use memory::MemoryKind::*;
match mem.get_alloc_kind(id) {
// FIXME: This could be allowed, but not for env vars set during miri execution
Some(MemoryKind::Machine(Env)) => err!(Unimplemented("statics can't refer to env vars".to_owned())),
_ => Ok(false), // TODO: What does the bool mean?
}
}
fn init_static<'a>(
ecx: &mut EvalContext<'a, 'mir, 'tcx, Self>,
cid: GlobalId<'tcx>,
) -> EvalResult<'tcx, AllocId> {
// Step 1: If the static has already been evaluated return the cached version
if let Some(alloc_id) = ecx.memory.data.statics.get(&cid) {
return Ok(*alloc_id);
}
let tcx = ecx.tcx.tcx;
// Step 2: Load mir
let mut mir = ecx.load_mir(cid.instance.def)?;
if let Some(index) = cid.promoted {
mir = &mir.promoted[index];
}
assert!(mir.arg_count == 0);
// Step 3: Allocate storage
let layout = ecx.layout_of(mir.return_ty().subst(tcx, cid.instance.substs))?;
assert!(!layout.is_unsized());
let ptr = ecx.memory.allocate(
layout.size,
layout.align,
MemoryKind::Stack,
)?;
// Step 4: Cache allocation id for recursive statics
assert!(ecx.memory.data.statics.insert(cid, ptr.alloc_id).is_none());
// Step 5: Push stackframe to evaluate static
let cleanup = StackPopCleanup::None;
ecx.push_stack_frame(
cid.instance,
mir.span,
mir,
Place::from_ptr(ptr, layout.align),
cleanup,
)?;
// Step 6: Step until static has been initialized
let call_stackframe = ecx.stack().len();
while ecx.step()? && ecx.stack().len() >= call_stackframe {
if ecx.stack().len() == call_stackframe {
let cleanup = {
let frame = ecx.frame();
let bb = &frame.mir.basic_blocks()[frame.block];
bb.statements.len() == frame.stmt && !bb.is_cleanup &&
if let ::rustc::mir::TerminatorKind::Return = bb.terminator().kind { true } else { false }
};
if cleanup {
for (local, _local_decl) in mir.local_decls.iter_enumerated().skip(1) {
// Don't deallocate locals, because the return value might reference them
ecx.storage_dead(local);
}
}
}
}
// TODO: Freeze immutable statics without copying them to the global static cache
// Step 7: Return the alloc
Ok(ptr.alloc_id)
}
fn box_alloc<'a>(
ecx: &mut EvalContext<'a, 'mir, 'tcx, Self>,
dest: PlaceTy<'tcx>,
) -> EvalResult<'tcx> {
trace!("box_alloc for {:?}", dest.layout.ty);
// Call the `exchange_malloc` lang item
let malloc = ecx.tcx.lang_items().exchange_malloc_fn().unwrap();
let malloc = ty::Instance::mono(ecx.tcx.tcx, malloc);
let malloc_mir = ecx.load_mir(malloc.def)?;
ecx.push_stack_frame(
malloc,
malloc_mir.span,
malloc_mir,
*dest,
// Don't do anything when we are done. The statement() function will increment
// the old stack frame's stmt counter to the next statement, which means that when
// exchange_malloc returns, we go on evaluating exactly where we want to be.
StackPopCleanup::None,
)?;
let mut args = ecx.frame().mir.args_iter();
let layout = ecx.layout_of(dest.layout.ty.builtin_deref(false).unwrap().ty)?;
// First argument: size
// (0 is allowed here, this is expected to be handled by the lang item)
let arg = ecx.eval_place(&mir::Place::Local(args.next().unwrap()))?;
let size = layout.size.bytes();
ecx.write_scalar(Scalar::from_uint(size, arg.layout.size), arg)?;
// Second argument: align
let arg = ecx.eval_place(&mir::Place::Local(args.next().unwrap()))?;
let align = layout.align.abi();
ecx.write_scalar(Scalar::from_uint(align, arg.layout.size), arg)?;
// No more arguments
assert!(args.next().is_none(), "exchange_malloc lang item has more arguments than expected");
Ok(())
}
fn global_item_with_linkage<'a>(
_ecx: &mut EvalContext<'a, 'mir, 'tcx, Self>,
_instance: ty::Instance<'tcx>,
_mutability: Mutability,
) -> EvalResult<'tcx> {
panic!("remove this function from rustc");
}
fn check_locks<'a>(
_mem: &Memory<'a, 'mir, 'tcx, Self>,
_ptr: Pointer,
_size: Size,
_access: AccessKind,
) -> EvalResult<'tcx> {
Ok(())
}
fn add_lock<'a>(
_mem: &mut Memory<'a, 'mir, 'tcx, Self>,
_id: AllocId,
) { }
fn free_lock<'a>(
_mem: &mut Memory<'a, 'mir, 'tcx, Self>,
_id: AllocId,
_len: u64,
) -> EvalResult<'tcx> {
Ok(())
}
fn end_region<'a>(
_ecx: &mut EvalContext<'a, 'mir, 'tcx, Self>,
_reg: Option<::rustc::middle::region::Scope>,
) -> EvalResult<'tcx> {
Ok(())
}
fn validation_op<'a>(
_ecx: &mut EvalContext<'a, 'mir, 'tcx, Self>,
_op: ::rustc::mir::ValidationOp,
_operand: &::rustc::mir::ValidationOperand<'tcx, ::rustc::mir::Place<'tcx>>,
) -> EvalResult<'tcx> {
// FIXME: prevent this from ICEing
//ecx.validation_op(op, operand)
Ok(())
}
}