Go to file
Corey Farwell c3ada00316 Rollup merge of #39832 - phil-opp:x86-interrupt-calling-convention, r=nagisa
Add support for the x86-interrupt calling convention

This calling convention can be used for definining interrupt handlers on 32-bit and 64-bit x86 targets. The compiler then uses `iret` instead of `ret` for returning and ensures that all registers are restored to their
original values.

Usage:

```rust
extern "x86-interrupt" fn handler(stack_frame: &ExceptionStackFrame) {…}
```

for interrupts and exceptions without error code and

```rust
extern "x86-interrupt" fn handler_with_err_code(stack_frame: &ExceptionStackFrame,
                                                error_code: u64) {…}
```

for exceptions that push an error code (e.g., page faults or general protection faults). The programmer must ensure that the correct version is used for each interrupt.

For more details see the [LLVM PR][1] and the corresponding [proposal][2].

[1]: https://reviews.llvm.org/D15567
[2]: http://lists.llvm.org/pipermail/cfe-dev/2015-September/045171.html

It is also possible to implement interrupt handlers on x86 through [naked functions](https://github.com/rust-lang/rfcs/blob/master/text/1201-naked-fns.md). In fact, almost all existing Rust OS projects for x86 use naked functions for this, including [Redox](b9793deb59/arch/x86_64/src/lib.rs (L109-L147)), [IntermezzOS](f959cc18c7/interrupts/src/lib.rs (L28-L72)), and [blog_os](844d739379/src/interrupts/mod.rs (L49-L64)). So support for the `x86-interrupt` calling convention isn't absolutely needed.

However, it has a number of benefits to naked functions:

- **No inline assembly needed**: [Inline assembly](https://doc.rust-lang.org/book/inline-assembly.html) is highly unstable and dangerous. It's pretty easy to mess things up. Also, it uses an arcane syntax and requires that the programmer knows x86 assembly.
- **Higher performance**: A naked wrapper function always saves _all_ registers before calling the Rust function. This isn't needed for a compiler supported calling convention, since the compiler knows which registers are clobbered by the interrupt handler. Thus, only these registers need to be saved and restored.
- **Safer interfaces**: We can write a `set_handler` function that takes a `extern "x86-interrupt" fn(&ExceptionStackFrame)` and the compiler ensures that we always use the right function type for all handler functions. This isn't possible with the `#[naked]` attribute.
- **More convenient**: Instead of writing [tons of assembly boilerplate](b9793deb59/arch/x86_64/src/lib.rs (L109-L147)) and desperately trying to improve things [through macros](844d739379/src/interrupts/mod.rs (L17-L92)), we can just write [code like this](e6a61f9507/src/interrupts/mod.rs (L85-L89)).
- **Naked functions are unreliable**: It is allowed to use Rust code inside a naked function, which sometimes works and sometimes not. For example, [calling a function](b9793deb59/arch/x86_64/src/lib.rs (L132)) through Rust code seems to work fine without function prologue, but [code declaring a variable](https://is.gd/NQYXqE) silently adds a prologue even though the function is naked (look at the generated assembly, there is a `movl` instruction before the `nop`).

**Edit**: See the [tracking issue](https://github.com/rust-lang/rust/issues/40180) for an updated list of issues.

Unfortunately, the implementation of the `x86-interrupt` calling convention in LLVM has some issues that make it unsuitable for 64-bit kernels at the moment:

- LLVM always tries to backup the `xmm` registers on 64-bit platforms even if the target doesn't support SSE. This leads to invalid opcode exceptions whenever an interrupt handler is invoked. I submitted a fix to LLVM in [D29959](https://reviews.llvm.org/D29959). The fix is really small (<10 lines), so maybe we could backport it to [Rust's LLVM fork](https://github.com/rust-lang/llvm)?. **Edit**: The fix was merged to LLVM trunk in [rL295347](https://reviews.llvm.org/rL295347). Backported in https://github.com/rust-lang/llvm/pull/63.

- On targets with SSE support, LLVM uses the `movaps` instruction for saving the `xmm` registers, which requires an alignment of 16. For handlers with error codes, however, the stack alignment is only 8, so a alignment exception occurs. This issue is tracked in [bug 26413](https://bugs.llvm.org/show_bug.cgi?id=26413). ~~Unfortunately, I don't know enough about LLVM to fix this.~~ **Edit**: Fix submitted in [D30049](https://reviews.llvm.org/D30049).

This PR adds experimental support for this calling convention under the `abi_x86_interrupt` feature gate. The implementation is very similar to #38465 and was surprisingly simple :).

There is no accepted RFC for this change. In fact, the [RFC for interrupt calling convention](https://github.com/rust-lang/rfcs/pull/1275) from 2015 was closed in favor of naked functions. However, the reactions to the recent [PR](https://github.com/rust-lang/rust/pull/38465) for a MSP430 interrupt calling convention were [in favor of experimental interrupt ABIs](https://github.com/rust-lang/rust/pull/38465#issuecomment-270015470).

- [x] Add compile-fail tests for the feature gate.
- [x] Create tracking issue for the `abi_x86_interrupt` feature (and link it in code). **Edit**: Tracking issue: #40180
- [x] Backport [rL295347](https://reviews.llvm.org/rL295347) to Rust's LLVM fork. **Edit**: Done in https://github.com/rust-lang/llvm/pull/63

@tari @steveklabnik @jackpot51 @ticki @hawkw @thepowersgang, you might be interested in this.
2017-03-02 14:53:41 -05:00
man Update man pages 2016-08-31 15:54:34 +02:00
src Add support for x86-interrupt calling convention 2017-03-02 19:01:15 +01:00
.gitattributes fix gitattributes for vendor 2017-02-13 13:41:13 -05:00
.gitignore include everything in the vendor directory 2017-02-13 13:41:17 -05:00
.gitmodules Set correct hoedown submodule branch 2017-02-03 11:08:20 +01:00
.mailmap Fix mailmap for @gifnksm 2017-02-09 02:10:14 +01:00
.travis.yml travis: Split Android into dist/test images 2017-02-27 21:20:23 -08:00
appveyor.yml appveyor: Use sccache on pc-windows-gnu for caching 2017-02-27 11:51:44 -08:00
configure travis: Disable source tarballs on most builders 2017-02-15 18:07:16 -08:00
CONTRIBUTING.md Replace ./configure with config.toml in README.md and CONTRIBUTING.md 2017-02-28 21:40:00 +10:30
COPYRIGHT Mention initial copyright year 2016-01-28 09:44:04 +05:30
LICENSE-APACHE
LICENSE-MIT Mention initial copyright year 2016-01-28 09:44:04 +05:30
README.md Replace ./configure with config.toml in README.md and CONTRIBUTING.md 2017-02-28 21:40:00 +10:30
RELEASES.md Update 1.15.1 relnotes 2017-02-10 00:30:02 +00:00
x.py Handle Ctrl+C in the build script 2016-12-11 15:25:31 +00:00

The Rust Programming Language

This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.

Quick Start

Read "Installing Rust" from The Book.

Building from Source

  1. Make sure you have installed the dependencies:

    • g++ 4.7 or later or clang++ 3.x
    • python 2.7 (but not 3.x)
    • GNU make 3.81 or later
    • cmake 3.4.3 or later
    • curl
    • git
  2. Clone the source with git:

    $ git clone https://github.com/rust-lang/rust.git
    $ cd rust
    
  1. Build and install:

    $ ./x.py build && sudo ./x.py dist --install
    

    Note: Install locations can be adjusted by copying the config file from ./src/bootstrap/config.toml.example to ./config.toml, and adjusting the prefix option under [install]. Various other options are also supported, and are documented in the config file.

    When complete, sudo ./x.py dist --install will place several programs into /usr/local/bin: rustc, the Rust compiler, and rustdoc, the API-documentation tool. This install does not include Cargo, Rust's package manager, which you may also want to build.

Building on Windows

There are two prominent ABIs in use on Windows: the native (MSVC) ABI used by Visual Studio, and the GNU ABI used by the GCC toolchain. Which version of Rust you need depends largely on what C/C++ libraries you want to interoperate with: for interop with software produced by Visual Studio use the MSVC build of Rust; for interop with GNU software built using the MinGW/MSYS2 toolchain use the GNU build.

MinGW

MSYS2 can be used to easily build Rust on Windows:

  1. Grab the latest MSYS2 installer and go through the installer.

  2. Run mingw32_shell.bat or mingw64_shell.bat from wherever you installed MSYS2 (i.e. C:\msys64), depending on whether you want 32-bit or 64-bit Rust. (As of the latest version of MSYS2 you have to run msys2_shell.cmd -mingw32 or msys2_shell.cmd -mingw64 from the command line instead)

  3. From this terminal, install the required tools:

    # Update package mirrors (may be needed if you have a fresh install of MSYS2)
    $ pacman -Sy pacman-mirrors
    
    # Install build tools needed for Rust. If you're building a 32-bit compiler,
    # then replace "x86_64" below with "i686". If you've already got git, python,
    # or CMake installed and in PATH you can remove them from this list. Note
    # that it is important that you do **not** use the 'python2' and 'cmake'
    # packages from the 'msys2' subsystem. The build has historically been known
    # to fail with these packages.
    $ pacman -S git \
                make \
                diffutils \
                tar \
                mingw-w64-x86_64-python2 \
                mingw-w64-x86_64-cmake \
                mingw-w64-x86_64-gcc
    
  4. Navigate to Rust's source code (or clone it), then build it:

    $ ./x.py build && ./x.py dist --install
    

MSVC

MSVC builds of Rust additionally require an installation of Visual Studio 2013 (or later) so rustc can use its linker. Make sure to check the “C++ tools” option.

With these dependencies installed, you can build the compiler in a cmd.exe shell with:

> python x.py build

Currently building Rust only works with some known versions of Visual Studio. If you have a more recent version installed the build system doesn't understand then you may need to force rustbuild to use an older version. This can be done by manually calling the appropriate vcvars file before running the bootstrap.

CALL "C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\bin\amd64\vcvars64.bat"
python x.py build

Specifying an ABI

Each specific ABI can also be used from either environment (for example, using the GNU ABI in powershell) by using an explicit build triple. The available Windows build triples are:

  • GNU ABI (using GCC)
    • i686-pc-windows-gnu
    • x86_64-pc-windows-gnu
  • The MSVC ABI
    • i686-pc-windows-msvc
    • x86_64-pc-windows-msvc

The build triple can be specified by either specifying --build=ABI when invoking x.py commands, or by copying the config.toml file (as described in Building From Source), and modifying the build option under the [build] section.

Configure and Make

While it's not the recommended build system, this project also provides a configure script and makefile (the latter of which just invokes x.py).

$ ./configure
$ make && sudo make install

When using the configure script, the generated config.mkfile may override theconfig.tomlfile. To go back to theconfig.tomlfile, delete the generatedconfig.mk` file.

Building Documentation

If youd like to build the documentation, its almost the same:

$ ./x.py doc

The generated documentation will appear in a top-level doc directory, created by the make rule.

Notes

Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier state of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.

Snapshot binaries are currently built and tested on several platforms:

Platform / Architecture x86 x86_64
Windows (7, 8, Server 2008 R2)
Linux (2.6.18 or later)
OSX (10.7 Lion or later)

You may find that other platforms work, but these are our officially supported build environments that are most likely to work.

Rust currently needs between 600MiB and 1.5GiB to build, depending on platform. If it hits swap, it will take a very long time to build.

There is more advice about hacking on Rust in CONTRIBUTING.md.

Getting Help

The Rust community congregates in a few places:

Contributing

To contribute to Rust, please see CONTRIBUTING.

Rust has an IRC culture and most real-time collaboration happens in a variety of channels on Mozilla's IRC network, irc.mozilla.org. The most popular channel is #rust, a venue for general discussion about Rust. And a good place to ask for help would be #rust-beginners.

License

Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.

See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.