rust/src/libfmt_macros/lib.rs
Brian Anderson c27133e2ce Preliminary feature staging
This partially implements the feature staging described in the
[release channel RFC][rc]. It does not yet fully conform to the RFC as
written, but does accomplish its goals sufficiently for the 1.0 alpha
release.

It has three primary user-visible effects:

* On the nightly channel, use of unstable APIs generates a warning.
* On the beta channel, use of unstable APIs generates a warning.
* On the beta channel, use of feature gates generates a warning.

Code that does not trigger these warnings is considered 'stable',
modulo pre-1.0 bugs.

Disabling the warnings for unstable APIs continues to be done in the
existing (i.e. old) style, via `#[allow(...)]`, not that specified in
the RFC. I deem this marginally acceptable since any code that must do
this is not using the stable dialect of Rust.

Use of feature gates is itself gated with the new 'unstable_features'
lint, on nightly set to 'allow', and on beta 'warn'.

The attribute scheme used here corresponds to an older version of the
RFC, with the `#[staged_api]` crate attribute toggling the staging
behavior of the stability attributes, but the user impact is only
in-tree so I'm not concerned about having to make design changes later
(and I may ultimately prefer the scheme here after all, with the
`#[staged_api]` crate attribute).

Since the Rust codebase itself makes use of unstable features the
compiler and build system to a midly elaborate dance to allow it to
bootstrap while disobeying these lints (which would otherwise be
errors because Rust builds with `-D warnings`).

This patch includes one significant hack that causes a
regression. Because the `format_args!` macro emits calls to unstable
APIs it would trigger the lint.  I added a hack to the lint to make it
not trigger, but this in turn causes arguments to `println!` not to be
checked for feature gates. I don't presently understand macro
expansion well enough to fix. This is bug #20661.

Closes #16678

[rc]: https://github.com/rust-lang/rfcs/blob/master/text/0507-release-channels.md
2015-01-07 15:34:56 -08:00

651 lines
20 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Macro support for format strings
//!
//! These structures are used when parsing format strings for the compiler.
//! Parsing does not happen at runtime: structures of `std::fmt::rt` are
//! generated instead.
#![crate_name = "fmt_macros"]
#![experimental]
#![staged_api]
#![crate_type = "rlib"]
#![crate_type = "dylib"]
#![doc(html_logo_url = "http://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
html_favicon_url = "http://www.rust-lang.org/favicon.ico",
html_root_url = "http://doc.rust-lang.org/nightly/",
html_playground_url = "http://play.rust-lang.org/")]
#![feature(slicing_syntax)]
pub use self::Piece::*;
pub use self::Position::*;
pub use self::Alignment::*;
pub use self::Flag::*;
pub use self::Count::*;
use std::str;
use std::string;
/// A piece is a portion of the format string which represents the next part
/// to emit. These are emitted as a stream by the `Parser` class.
#[derive(Copy, PartialEq)]
pub enum Piece<'a> {
/// A literal string which should directly be emitted
String(&'a str),
/// This describes that formatting should process the next argument (as
/// specified inside) for emission.
NextArgument(Argument<'a>),
}
/// Representation of an argument specification.
#[derive(Copy, PartialEq)]
pub struct Argument<'a> {
/// Where to find this argument
pub position: Position<'a>,
/// How to format the argument
pub format: FormatSpec<'a>,
}
/// Specification for the formatting of an argument in the format string.
#[derive(Copy, PartialEq)]
pub struct FormatSpec<'a> {
/// Optionally specified character to fill alignment with
pub fill: Option<char>,
/// Optionally specified alignment
pub align: Alignment,
/// Packed version of various flags provided
pub flags: uint,
/// The integer precision to use
pub precision: Count<'a>,
/// The string width requested for the resulting format
pub width: Count<'a>,
/// The descriptor string representing the name of the format desired for
/// this argument, this can be empty or any number of characters, although
/// it is required to be one word.
pub ty: &'a str
}
/// Enum describing where an argument for a format can be located.
#[derive(Copy, PartialEq)]
pub enum Position<'a> {
/// The argument will be in the next position. This is the default.
ArgumentNext,
/// The argument is located at a specific index.
ArgumentIs(uint),
/// The argument has a name.
ArgumentNamed(&'a str),
}
/// Enum of alignments which are supported.
#[derive(Copy, PartialEq)]
pub enum Alignment {
/// The value will be aligned to the left.
AlignLeft,
/// The value will be aligned to the right.
AlignRight,
/// The value will be aligned in the center.
AlignCenter,
/// The value will take on a default alignment.
AlignUnknown,
}
/// Various flags which can be applied to format strings. The meaning of these
/// flags is defined by the formatters themselves.
#[derive(Copy, PartialEq)]
pub enum Flag {
/// A `+` will be used to denote positive numbers.
FlagSignPlus,
/// A `-` will be used to denote negative numbers. This is the default.
FlagSignMinus,
/// An alternate form will be used for the value. In the case of numbers,
/// this means that the number will be prefixed with the supplied string.
FlagAlternate,
/// For numbers, this means that the number will be padded with zeroes,
/// and the sign (`+` or `-`) will precede them.
FlagSignAwareZeroPad,
}
/// A count is used for the precision and width parameters of an integer, and
/// can reference either an argument or a literal integer.
#[derive(Copy, PartialEq)]
pub enum Count<'a> {
/// The count is specified explicitly.
CountIs(uint),
/// The count is specified by the argument with the given name.
CountIsName(&'a str),
/// The count is specified by the argument at the given index.
CountIsParam(uint),
/// The count is specified by the next parameter.
CountIsNextParam,
/// The count is implied and cannot be explicitly specified.
CountImplied,
}
/// The parser structure for interpreting the input format string. This is
/// modelled as an iterator over `Piece` structures to form a stream of tokens
/// being output.
///
/// This is a recursive-descent parser for the sake of simplicity, and if
/// necessary there's probably lots of room for improvement performance-wise.
pub struct Parser<'a> {
input: &'a str,
cur: str::CharIndices<'a>,
/// Error messages accumulated during parsing
pub errors: Vec<string::String>,
}
impl<'a> Iterator for Parser<'a> {
type Item = Piece<'a>;
fn next(&mut self) -> Option<Piece<'a>> {
match self.cur.clone().next() {
Some((pos, '{')) => {
self.cur.next();
if self.consume('{') {
Some(String(self.string(pos + 1)))
} else {
let ret = Some(NextArgument(self.argument()));
self.must_consume('}');
ret
}
}
Some((pos, '}')) => {
self.cur.next();
if self.consume('}') {
Some(String(self.string(pos + 1)))
} else {
self.err("unmatched `}` found");
None
}
}
Some((pos, _)) => { Some(String(self.string(pos))) }
None => None
}
}
}
impl<'a> Parser<'a> {
/// Creates a new parser for the given format string
pub fn new(s: &'a str) -> Parser<'a> {
Parser {
input: s,
cur: s.char_indices(),
errors: vec!(),
}
}
/// Notifies of an error. The message doesn't actually need to be of type
/// String, but I think it does when this eventually uses conditions so it
/// might as well start using it now.
fn err(&mut self, msg: &str) {
self.errors.push(msg.to_string());
}
/// Optionally consumes the specified character. If the character is not at
/// the current position, then the current iterator isn't moved and false is
/// returned, otherwise the character is consumed and true is returned.
fn consume(&mut self, c: char) -> bool {
match self.cur.clone().next() {
Some((_, maybe)) if c == maybe => {
self.cur.next();
true
}
Some(..) | None => false,
}
}
/// Forces consumption of the specified character. If the character is not
/// found, an error is emitted.
fn must_consume(&mut self, c: char) {
self.ws();
match self.cur.clone().next() {
Some((_, maybe)) if c == maybe => {
self.cur.next();
}
Some((_, other)) => {
self.err(format!("expected `{:?}`, found `{:?}`", c,
other).index(&FullRange));
}
None => {
self.err(format!("expected `{:?}` but string was terminated",
c).index(&FullRange));
}
}
}
/// Consumes all whitespace characters until the first non-whitespace
/// character
fn ws(&mut self) {
loop {
match self.cur.clone().next() {
Some((_, c)) if c.is_whitespace() => { self.cur.next(); }
Some(..) | None => { return }
}
}
}
/// Parses all of a string which is to be considered a "raw literal" in a
/// format string. This is everything outside of the braces.
fn string(&mut self, start: uint) -> &'a str {
loop {
// we may not consume the character, so clone the iterator
match self.cur.clone().next() {
Some((pos, '}')) | Some((pos, '{')) => {
return self.input.index(&(start..pos));
}
Some(..) => { self.cur.next(); }
None => {
self.cur.next();
return self.input.index(&(start..self.input.len()));
}
}
}
}
/// Parses an Argument structure, or what's contained within braces inside
/// the format string
fn argument(&mut self) -> Argument<'a> {
Argument {
position: self.position(),
format: self.format(),
}
}
/// Parses a positional argument for a format. This could either be an
/// integer index of an argument, a named argument, or a blank string.
fn position(&mut self) -> Position<'a> {
match self.integer() {
Some(i) => { ArgumentIs(i) }
None => {
match self.cur.clone().next() {
Some((_, c)) if c.is_alphabetic() => {
ArgumentNamed(self.word())
}
_ => ArgumentNext
}
}
}
}
/// Parses a format specifier at the current position, returning all of the
/// relevant information in the FormatSpec struct.
fn format(&mut self) -> FormatSpec<'a> {
let mut spec = FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: self.input.index(&(0..0)),
};
if !self.consume(':') { return spec }
// fill character
match self.cur.clone().next() {
Some((_, c)) => {
match self.cur.clone().skip(1).next() {
Some((_, '>')) | Some((_, '<')) | Some((_, '^')) => {
spec.fill = Some(c);
self.cur.next();
}
Some(..) | None => {}
}
}
None => {}
}
// Alignment
if self.consume('<') {
spec.align = AlignLeft;
} else if self.consume('>') {
spec.align = AlignRight;
} else if self.consume('^') {
spec.align = AlignCenter;
}
// Sign flags
if self.consume('+') {
spec.flags |= 1 << (FlagSignPlus as uint);
} else if self.consume('-') {
spec.flags |= 1 << (FlagSignMinus as uint);
}
// Alternate marker
if self.consume('#') {
spec.flags |= 1 << (FlagAlternate as uint);
}
// Width and precision
let mut havewidth = false;
if self.consume('0') {
// small ambiguity with '0$' as a format string. In theory this is a
// '0' flag and then an ill-formatted format string with just a '$'
// and no count, but this is better if we instead interpret this as
// no '0' flag and '0$' as the width instead.
if self.consume('$') {
spec.width = CountIsParam(0);
havewidth = true;
} else {
spec.flags |= 1 << (FlagSignAwareZeroPad as uint);
}
}
if !havewidth {
spec.width = self.count();
}
if self.consume('.') {
if self.consume('*') {
spec.precision = CountIsNextParam;
} else {
spec.precision = self.count();
}
}
// Finally the actual format specifier
if self.consume('?') {
spec.ty = "?";
} else {
spec.ty = self.word();
}
return spec;
}
/// Parses a Count parameter at the current position. This does not check
/// for 'CountIsNextParam' because that is only used in precision, not
/// width.
fn count(&mut self) -> Count<'a> {
match self.integer() {
Some(i) => {
if self.consume('$') {
CountIsParam(i)
} else {
CountIs(i)
}
}
None => {
let tmp = self.cur.clone();
match self.word() {
word if word.len() > 0 => {
if self.consume('$') {
CountIsName(word)
} else {
self.cur = tmp;
CountImplied
}
}
_ => {
self.cur = tmp;
CountImplied
}
}
}
}
}
/// Parses a word starting at the current position. A word is considered to
/// be an alphabetic character followed by any number of alphanumeric
/// characters.
fn word(&mut self) -> &'a str {
let start = match self.cur.clone().next() {
Some((pos, c)) if c.is_xid_start() => {
self.cur.next();
pos
}
Some(..) | None => { return self.input.index(&(0..0)); }
};
let mut end;
loop {
match self.cur.clone().next() {
Some((_, c)) if c.is_xid_continue() => {
self.cur.next();
}
Some((pos, _)) => { end = pos; break }
None => { end = self.input.len(); break }
}
}
self.input.index(&(start..end))
}
/// Optionally parses an integer at the current position. This doesn't deal
/// with overflow at all, it's just accumulating digits.
fn integer(&mut self) -> Option<uint> {
let mut cur = 0;
let mut found = false;
loop {
match self.cur.clone().next() {
Some((_, c)) => {
match c.to_digit(10) {
Some(i) => {
cur = cur * 10 + i;
found = true;
self.cur.next();
}
None => { break }
}
}
None => { break }
}
}
if found {
return Some(cur);
} else {
return None;
}
}
}
#[cfg(test)]
mod tests {
use super::*;
fn same(fmt: &'static str, p: &[Piece<'static>]) {
let mut parser = Parser::new(fmt);
assert!(p == parser.collect::<Vec<Piece<'static>>>());
}
fn fmtdflt() -> FormatSpec<'static> {
return FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: "",
}
}
fn musterr(s: &str) {
let mut p = Parser::new(s);
p.next();
assert!(p.errors.len() != 0);
}
#[test]
fn simple() {
same("asdf", &[String("asdf")]);
same("a{{b", &[String("a"), String("{b")]);
same("a}}b", &[String("a"), String("}b")]);
same("a}}", &[String("a"), String("}")]);
same("}}", &[String("}")]);
same("\\}}", &[String("\\"), String("}")]);
}
#[test] fn invalid01() { musterr("{") }
#[test] fn invalid02() { musterr("}") }
#[test] fn invalid04() { musterr("{3a}") }
#[test] fn invalid05() { musterr("{:|}") }
#[test] fn invalid06() { musterr("{:>>>}") }
#[test]
fn format_nothing() {
same("{}", &[NextArgument(Argument {
position: ArgumentNext,
format: fmtdflt(),
})]);
}
#[test]
fn format_position() {
same("{3}", &[NextArgument(Argument {
position: ArgumentIs(3),
format: fmtdflt(),
})]);
}
#[test]
fn format_position_nothing_else() {
same("{3:}", &[NextArgument(Argument {
position: ArgumentIs(3),
format: fmtdflt(),
})]);
}
#[test]
fn format_type() {
same("{3:a}", &[NextArgument(Argument {
position: ArgumentIs(3),
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: "a",
},
})]);
}
#[test]
fn format_align_fill() {
same("{3:>}", &[NextArgument(Argument {
position: ArgumentIs(3),
format: FormatSpec {
fill: None,
align: AlignRight,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: "",
},
})]);
same("{3:0<}", &[NextArgument(Argument {
position: ArgumentIs(3),
format: FormatSpec {
fill: Some('0'),
align: AlignLeft,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: "",
},
})]);
same("{3:*<abcd}", &[NextArgument(Argument {
position: ArgumentIs(3),
format: FormatSpec {
fill: Some('*'),
align: AlignLeft,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: "abcd",
},
})]);
}
#[test]
fn format_counts() {
same("{:10s}", &[NextArgument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountIs(10),
ty: "s",
},
})]);
same("{:10$.10s}", &[NextArgument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountIs(10),
width: CountIsParam(10),
ty: "s",
},
})]);
same("{:.*s}", &[NextArgument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountIsNextParam,
width: CountImplied,
ty: "s",
},
})]);
same("{:.10$s}", &[NextArgument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountIsParam(10),
width: CountImplied,
ty: "s",
},
})]);
same("{:a$.b$s}", &[NextArgument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountIsName("b"),
width: CountIsName("a"),
ty: "s",
},
})]);
}
#[test]
fn format_flags() {
same("{:-}", &[NextArgument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: (1 << FlagSignMinus as uint),
precision: CountImplied,
width: CountImplied,
ty: "",
},
})]);
same("{:+#}", &[NextArgument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: (1 << FlagSignPlus as uint) | (1 << FlagAlternate as uint),
precision: CountImplied,
width: CountImplied,
ty: "",
},
})]);
}
#[test]
fn format_mixture() {
same("abcd {3:a} efg", &[String("abcd "), NextArgument(Argument {
position: ArgumentIs(3),
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: "a",
},
}), String(" efg")]);
}
}