942 lines
26 KiB
Rust
942 lines
26 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Optional values
|
|
//!
|
|
//! Type `Option` represents an optional value: every `Option`
|
|
//! is either `Some` and contains a value, or `None`, and
|
|
//! does not. `Option` types are very common in Rust code, as
|
|
//! they have a number of uses:
|
|
//!
|
|
//! * Initial values
|
|
//! * Return values for functions that are not defined
|
|
//! over their entire input range (partial functions)
|
|
//! * Return value for otherwise reporting simple errors, where `None` is
|
|
//! returned on error
|
|
//! * Optional struct fields
|
|
//! * Struct fields that can be loaned or "taken"
|
|
//! * Optional function arguments
|
|
//! * Nullable pointers
|
|
//! * Swapping things out of difficult situations
|
|
//!
|
|
//! Options are commonly paired with pattern matching to query the presence
|
|
//! of a value and take action, always accounting for the `None` case.
|
|
//!
|
|
//! ```
|
|
//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
|
|
//! if denominator == 0.0 {
|
|
//! None
|
|
//! } else {
|
|
//! Some(numerator / denominator)
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! // The return value of the function is an option
|
|
//! let result = divide(2.0, 3.0);
|
|
//!
|
|
//! // Pattern match to retrieve the value
|
|
//! match result {
|
|
//! // The division was valid
|
|
//! Some(x) => println!("Result: {}", x),
|
|
//! // The division was invalid
|
|
//! None => println!("Cannot divide by 0")
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//
|
|
// FIXME: Show how `Option` is used in practice, with lots of methods
|
|
//
|
|
//! # Options and pointers ("nullable" pointers)
|
|
//!
|
|
//! Rust's pointer types must always point to a valid location; there are
|
|
//! no "null" pointers. Instead, Rust has *optional* pointers, like
|
|
//! the optional owned box, `Option<Box<T>>`.
|
|
//!
|
|
//! The following example uses `Option` to create an optional box of
|
|
//! `int`. Notice that in order to use the inner `int` value first the
|
|
//! `check_optional` function needs to use pattern matching to
|
|
//! determine whether the box has a value (i.e. it is `Some(...)`) or
|
|
//! not (`None`).
|
|
//!
|
|
//! ```
|
|
//! let optional: Option<Box<int>> = None;
|
|
//! check_optional(&optional);
|
|
//!
|
|
//! let optional: Option<Box<int>> = Some(box 9000);
|
|
//! check_optional(&optional);
|
|
//!
|
|
//! fn check_optional(optional: &Option<Box<int>>) {
|
|
//! match *optional {
|
|
//! Some(ref p) => println!("have value {}", p),
|
|
//! None => println!("have no value")
|
|
//! }
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! This usage of `Option` to create safe nullable pointers is so
|
|
//! common that Rust does special optimizations to make the
|
|
//! representation of `Option<Box<T>>` a single pointer. Optional pointers
|
|
//! in Rust are stored as efficiently as any other pointer type.
|
|
//!
|
|
//! # Examples
|
|
//!
|
|
//! Basic pattern matching on `Option`:
|
|
//!
|
|
//! ```
|
|
//! let msg = Some("howdy");
|
|
//!
|
|
//! // Take a reference to the contained string
|
|
//! match msg {
|
|
//! Some(ref m) => println!("{}", *m),
|
|
//! None => ()
|
|
//! }
|
|
//!
|
|
//! // Remove the contained string, destroying the Option
|
|
//! let unwrapped_msg = match msg {
|
|
//! Some(m) => m,
|
|
//! None => "default message"
|
|
//! };
|
|
//! ```
|
|
//!
|
|
//! Initialize a result to `None` before a loop:
|
|
//!
|
|
//! ```
|
|
//! enum Kingdom { Plant(uint, &'static str), Animal(uint, &'static str) }
|
|
//!
|
|
//! // A list of data to search through.
|
|
//! let all_the_big_things = [
|
|
//! Kingdom::Plant(250, "redwood"),
|
|
//! Kingdom::Plant(230, "noble fir"),
|
|
//! Kingdom::Plant(229, "sugar pine"),
|
|
//! Kingdom::Animal(25, "blue whale"),
|
|
//! Kingdom::Animal(19, "fin whale"),
|
|
//! Kingdom::Animal(15, "north pacific right whale"),
|
|
//! ];
|
|
//!
|
|
//! // We're going to search for the name of the biggest animal,
|
|
//! // but to start with we've just got `None`.
|
|
//! let mut name_of_biggest_animal = None;
|
|
//! let mut size_of_biggest_animal = 0;
|
|
//! for big_thing in all_the_big_things.iter() {
|
|
//! match *big_thing {
|
|
//! Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
|
|
//! // Now we've found the name of some big animal
|
|
//! size_of_biggest_animal = size;
|
|
//! name_of_biggest_animal = Some(name);
|
|
//! }
|
|
//! Kingdom::Animal(..) | Kingdom::Plant(..) => ()
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! match name_of_biggest_animal {
|
|
//! Some(name) => println!("the biggest animal is {}", name),
|
|
//! None => println!("there are no animals :(")
|
|
//! }
|
|
//! ```
|
|
|
|
#![stable]
|
|
|
|
use self::Option::*;
|
|
|
|
use cmp::{Eq, Ord};
|
|
use default::Default;
|
|
use iter::{Iterator, IteratorExt, DoubleEndedIterator, FromIterator};
|
|
use iter::{ExactSizeIterator};
|
|
use mem;
|
|
use result::Result;
|
|
use result::Result::{Ok, Err};
|
|
use slice;
|
|
use slice::AsSlice;
|
|
use clone::Clone;
|
|
use ops::{Deref, FnOnce};
|
|
|
|
// Note that this is not a lang item per se, but it has a hidden dependency on
|
|
// `Iterator`, which is one. The compiler assumes that the `next` method of
|
|
// `Iterator` is an enumeration with one type parameter and two variants,
|
|
// which basically means it must be `Option`.
|
|
|
|
/// The `Option` type.
|
|
#[derive(Clone, Copy, PartialEq, PartialOrd, Eq, Ord, Show, Hash)]
|
|
#[stable]
|
|
pub enum Option<T> {
|
|
/// No value
|
|
#[stable]
|
|
None,
|
|
/// Some value `T`
|
|
#[stable]
|
|
Some(T)
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// Type implementation
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
|
|
impl<T> Option<T> {
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// Querying the contained values
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Returns `true` if the option is a `Some` value
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let x: Option<uint> = Some(2);
|
|
/// assert_eq!(x.is_some(), true);
|
|
///
|
|
/// let x: Option<uint> = None;
|
|
/// assert_eq!(x.is_some(), false);
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
pub fn is_some(&self) -> bool {
|
|
match *self {
|
|
Some(_) => true,
|
|
None => false
|
|
}
|
|
}
|
|
|
|
/// Returns `true` if the option is a `None` value
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let x: Option<uint> = Some(2);
|
|
/// assert_eq!(x.is_none(), false);
|
|
///
|
|
/// let x: Option<uint> = None;
|
|
/// assert_eq!(x.is_none(), true);
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
pub fn is_none(&self) -> bool {
|
|
!self.is_some()
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// Adapter for working with references
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Convert from `Option<T>` to `Option<&T>`
|
|
///
|
|
/// # Example
|
|
///
|
|
/// Convert an `Option<String>` into an `Option<int>`, preserving the original.
|
|
/// The `map` method takes the `self` argument by value, consuming the original,
|
|
/// so this technique uses `as_ref` to first take an `Option` to a reference
|
|
/// to the value inside the original.
|
|
///
|
|
/// ```
|
|
/// let num_as_str: Option<String> = Some("10".to_string());
|
|
/// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
|
|
/// // then consume *that* with `map`, leaving `num_as_str` on the stack.
|
|
/// let num_as_int: Option<uint> = num_as_str.as_ref().map(|n| n.len());
|
|
/// println!("still can print num_as_str: {:?}", num_as_str);
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
pub fn as_ref<'r>(&'r self) -> Option<&'r T> {
|
|
match *self {
|
|
Some(ref x) => Some(x),
|
|
None => None
|
|
}
|
|
}
|
|
|
|
/// Convert from `Option<T>` to `Option<&mut T>`
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let mut x = Some(2u);
|
|
/// match x.as_mut() {
|
|
/// Some(v) => *v = 42,
|
|
/// None => {},
|
|
/// }
|
|
/// assert_eq!(x, Some(42u));
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
pub fn as_mut<'r>(&'r mut self) -> Option<&'r mut T> {
|
|
match *self {
|
|
Some(ref mut x) => Some(x),
|
|
None => None
|
|
}
|
|
}
|
|
|
|
/// Convert from `Option<T>` to `&mut [T]` (without copying)
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let mut x = Some("Diamonds");
|
|
/// {
|
|
/// let v = x.as_mut_slice();
|
|
/// assert!(v == ["Diamonds"]);
|
|
/// v[0] = "Dirt";
|
|
/// assert!(v == ["Dirt"]);
|
|
/// }
|
|
/// assert_eq!(x, Some("Dirt"));
|
|
/// ```
|
|
#[inline]
|
|
#[unstable = "waiting for mut conventions"]
|
|
pub fn as_mut_slice<'r>(&'r mut self) -> &'r mut [T] {
|
|
match *self {
|
|
Some(ref mut x) => {
|
|
let result: &mut [T] = slice::mut_ref_slice(x);
|
|
result
|
|
}
|
|
None => {
|
|
let result: &mut [T] = &mut [];
|
|
result
|
|
}
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// Getting to contained values
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Unwraps an option, yielding the content of a `Some`
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if the value is a `None` with a custom panic message provided by
|
|
/// `msg`.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let x = Some("value");
|
|
/// assert_eq!(x.expect("the world is ending"), "value");
|
|
/// ```
|
|
///
|
|
/// ```{.should_fail}
|
|
/// let x: Option<&str> = None;
|
|
/// x.expect("the world is ending"); // panics with `world is ending`
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
pub fn expect(self, msg: &str) -> T {
|
|
match self {
|
|
Some(val) => val,
|
|
None => panic!("{}", msg),
|
|
}
|
|
}
|
|
|
|
/// Returns the inner `T` of a `Some(T)`.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if the self value equals `None`.
|
|
///
|
|
/// # Safety note
|
|
///
|
|
/// In general, because this function may panic, its use is discouraged.
|
|
/// Instead, prefer to use pattern matching and handle the `None`
|
|
/// case explicitly.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let x = Some("air");
|
|
/// assert_eq!(x.unwrap(), "air");
|
|
/// ```
|
|
///
|
|
/// ```{.should_fail}
|
|
/// let x: Option<&str> = None;
|
|
/// assert_eq!(x.unwrap(), "air"); // fails
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
pub fn unwrap(self) -> T {
|
|
match self {
|
|
Some(val) => val,
|
|
None => panic!("called `Option::unwrap()` on a `None` value"),
|
|
}
|
|
}
|
|
|
|
/// Returns the contained value or a default.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// assert_eq!(Some("car").unwrap_or("bike"), "car");
|
|
/// assert_eq!(None.unwrap_or("bike"), "bike");
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
pub fn unwrap_or(self, def: T) -> T {
|
|
match self {
|
|
Some(x) => x,
|
|
None => def
|
|
}
|
|
}
|
|
|
|
/// Returns the contained value or computes it from a closure.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let k = 10u;
|
|
/// assert_eq!(Some(4u).unwrap_or_else(|| 2 * k), 4u);
|
|
/// assert_eq!(None.unwrap_or_else(|| 2 * k), 20u);
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
pub fn unwrap_or_else<F: FnOnce() -> T>(self, f: F) -> T {
|
|
match self {
|
|
Some(x) => x,
|
|
None => f()
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// Transforming contained values
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value
|
|
///
|
|
/// # Example
|
|
///
|
|
/// Convert an `Option<String>` into an `Option<uint>`, consuming the original:
|
|
///
|
|
/// ```
|
|
/// let num_as_str: Option<String> = Some("10".to_string());
|
|
/// // `Option::map` takes self *by value*, consuming `num_as_str`
|
|
/// let num_as_int: Option<uint> = num_as_str.map(|n| n.len());
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
pub fn map<U, F: FnOnce(T) -> U>(self, f: F) -> Option<U> {
|
|
match self {
|
|
Some(x) => Some(f(x)),
|
|
None => None
|
|
}
|
|
}
|
|
|
|
/// Applies a function to the contained value or returns a default.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let x = Some("foo");
|
|
/// assert_eq!(x.map_or(42u, |v| v.len()), 3u);
|
|
///
|
|
/// let x: Option<&str> = None;
|
|
/// assert_eq!(x.map_or(42u, |v| v.len()), 42u);
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
pub fn map_or<U, F: FnOnce(T) -> U>(self, def: U, f: F) -> U {
|
|
match self {
|
|
Some(t) => f(t),
|
|
None => def
|
|
}
|
|
}
|
|
|
|
/// Applies a function to the contained value or computes a default.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let k = 21u;
|
|
///
|
|
/// let x = Some("foo");
|
|
/// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3u);
|
|
///
|
|
/// let x: Option<&str> = None;
|
|
/// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42u);
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
pub fn map_or_else<U, D: FnOnce() -> U, F: FnOnce(T) -> U>(self, def: D, f: F) -> U {
|
|
match self {
|
|
Some(t) => f(t),
|
|
None => def()
|
|
}
|
|
}
|
|
|
|
/// Transforms the `Option<T>` into a `Result<T, E>`, mapping `Some(v)` to
|
|
/// `Ok(v)` and `None` to `Err(err)`.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let x = Some("foo");
|
|
/// assert_eq!(x.ok_or(0i), Ok("foo"));
|
|
///
|
|
/// let x: Option<&str> = None;
|
|
/// assert_eq!(x.ok_or(0i), Err(0i));
|
|
/// ```
|
|
#[inline]
|
|
#[experimental]
|
|
pub fn ok_or<E>(self, err: E) -> Result<T, E> {
|
|
match self {
|
|
Some(v) => Ok(v),
|
|
None => Err(err),
|
|
}
|
|
}
|
|
|
|
/// Transforms the `Option<T>` into a `Result<T, E>`, mapping `Some(v)` to
|
|
/// `Ok(v)` and `None` to `Err(err())`.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let x = Some("foo");
|
|
/// assert_eq!(x.ok_or_else(|| 0i), Ok("foo"));
|
|
///
|
|
/// let x: Option<&str> = None;
|
|
/// assert_eq!(x.ok_or_else(|| 0i), Err(0i));
|
|
/// ```
|
|
#[inline]
|
|
#[experimental]
|
|
pub fn ok_or_else<E, F: FnOnce() -> E>(self, err: F) -> Result<T, E> {
|
|
match self {
|
|
Some(v) => Ok(v),
|
|
None => Err(err()),
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// Iterator constructors
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Returns an iterator over the possibly contained value.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let x = Some(4u);
|
|
/// assert_eq!(x.iter().next(), Some(&4));
|
|
///
|
|
/// let x: Option<uint> = None;
|
|
/// assert_eq!(x.iter().next(), None);
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
pub fn iter(&self) -> Iter<T> {
|
|
Iter { inner: Item { opt: self.as_ref() } }
|
|
}
|
|
|
|
/// Returns a mutable iterator over the possibly contained value.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let mut x = Some(4u);
|
|
/// match x.iter_mut().next() {
|
|
/// Some(&ref mut v) => *v = 42u,
|
|
/// None => {},
|
|
/// }
|
|
/// assert_eq!(x, Some(42));
|
|
///
|
|
/// let mut x: Option<uint> = None;
|
|
/// assert_eq!(x.iter_mut().next(), None);
|
|
/// ```
|
|
#[inline]
|
|
#[unstable = "waiting for iterator conventions"]
|
|
pub fn iter_mut(&mut self) -> IterMut<T> {
|
|
IterMut { inner: Item { opt: self.as_mut() } }
|
|
}
|
|
|
|
/// Returns a consuming iterator over the possibly contained value.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let x = Some("string");
|
|
/// let v: Vec<&str> = x.into_iter().collect();
|
|
/// assert_eq!(v, vec!["string"]);
|
|
///
|
|
/// let x = None;
|
|
/// let v: Vec<&str> = x.into_iter().collect();
|
|
/// assert!(v.is_empty());
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
pub fn into_iter(self) -> IntoIter<T> {
|
|
IntoIter { inner: Item { opt: self } }
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// Boolean operations on the values, eager and lazy
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Returns `None` if the option is `None`, otherwise returns `optb`.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let x = Some(2u);
|
|
/// let y: Option<&str> = None;
|
|
/// assert_eq!(x.and(y), None);
|
|
///
|
|
/// let x: Option<uint> = None;
|
|
/// let y = Some("foo");
|
|
/// assert_eq!(x.and(y), None);
|
|
///
|
|
/// let x = Some(2u);
|
|
/// let y = Some("foo");
|
|
/// assert_eq!(x.and(y), Some("foo"));
|
|
///
|
|
/// let x: Option<uint> = None;
|
|
/// let y: Option<&str> = None;
|
|
/// assert_eq!(x.and(y), None);
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
pub fn and<U>(self, optb: Option<U>) -> Option<U> {
|
|
match self {
|
|
Some(_) => optb,
|
|
None => None,
|
|
}
|
|
}
|
|
|
|
/// Returns `None` if the option is `None`, otherwise calls `f` with the
|
|
/// wrapped value and returns the result.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// fn sq(x: uint) -> Option<uint> { Some(x * x) }
|
|
/// fn nope(_: uint) -> Option<uint> { None }
|
|
///
|
|
/// assert_eq!(Some(2).and_then(sq).and_then(sq), Some(16));
|
|
/// assert_eq!(Some(2).and_then(sq).and_then(nope), None);
|
|
/// assert_eq!(Some(2).and_then(nope).and_then(sq), None);
|
|
/// assert_eq!(None.and_then(sq).and_then(sq), None);
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
pub fn and_then<U, F: FnOnce(T) -> Option<U>>(self, f: F) -> Option<U> {
|
|
match self {
|
|
Some(x) => f(x),
|
|
None => None,
|
|
}
|
|
}
|
|
|
|
/// Returns the option if it contains a value, otherwise returns `optb`.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let x = Some(2u);
|
|
/// let y = None;
|
|
/// assert_eq!(x.or(y), Some(2u));
|
|
///
|
|
/// let x = None;
|
|
/// let y = Some(100u);
|
|
/// assert_eq!(x.or(y), Some(100u));
|
|
///
|
|
/// let x = Some(2u);
|
|
/// let y = Some(100u);
|
|
/// assert_eq!(x.or(y), Some(2u));
|
|
///
|
|
/// let x: Option<uint> = None;
|
|
/// let y = None;
|
|
/// assert_eq!(x.or(y), None);
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
pub fn or(self, optb: Option<T>) -> Option<T> {
|
|
match self {
|
|
Some(_) => self,
|
|
None => optb
|
|
}
|
|
}
|
|
|
|
/// Returns the option if it contains a value, otherwise calls `f` and
|
|
/// returns the result.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// fn nobody() -> Option<&'static str> { None }
|
|
/// fn vikings() -> Option<&'static str> { Some("vikings") }
|
|
///
|
|
/// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
|
|
/// assert_eq!(None.or_else(vikings), Some("vikings"));
|
|
/// assert_eq!(None.or_else(nobody), None);
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
pub fn or_else<F: FnOnce() -> Option<T>>(self, f: F) -> Option<T> {
|
|
match self {
|
|
Some(_) => self,
|
|
None => f()
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// Misc
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Takes the value out of the option, leaving a `None` in its place.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let mut x = Some(2u);
|
|
/// x.take();
|
|
/// assert_eq!(x, None);
|
|
///
|
|
/// let mut x: Option<uint> = None;
|
|
/// x.take();
|
|
/// assert_eq!(x, None);
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
pub fn take(&mut self) -> Option<T> {
|
|
mem::replace(self, None)
|
|
}
|
|
}
|
|
|
|
impl<'a, T: Clone, D: Deref<Target=T>> Option<D> {
|
|
/// Maps an Option<D> to an Option<T> by dereffing and cloning the contents of the Option.
|
|
/// Useful for converting an Option<&T> to an Option<T>.
|
|
#[unstable = "recently added as part of collections reform"]
|
|
pub fn cloned(self) -> Option<T> {
|
|
self.map(|t| t.deref().clone())
|
|
}
|
|
}
|
|
|
|
impl<T: Default> Option<T> {
|
|
/// Returns the contained value or a default
|
|
///
|
|
/// Consumes the `self` argument then, if `Some`, returns the contained
|
|
/// value, otherwise if `None`, returns the default value for that
|
|
/// type.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// Convert a string to an integer, turning poorly-formed strings
|
|
/// into 0 (the default value for integers). `parse` converts
|
|
/// a string to any other type that implements `FromStr`, returning
|
|
/// `None` on error.
|
|
///
|
|
/// ```
|
|
/// let good_year_from_input = "1909";
|
|
/// let bad_year_from_input = "190blarg";
|
|
/// let good_year = good_year_from_input.parse().unwrap_or_default();
|
|
/// let bad_year = bad_year_from_input.parse().unwrap_or_default();
|
|
///
|
|
/// assert_eq!(1909i, good_year);
|
|
/// assert_eq!(0i, bad_year);
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
pub fn unwrap_or_default(self) -> T {
|
|
match self {
|
|
Some(x) => x,
|
|
None => Default::default()
|
|
}
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// Trait implementations
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
|
|
#[unstable = "waiting on the stability of the trait itself"]
|
|
impl<T> AsSlice<T> for Option<T> {
|
|
/// Convert from `Option<T>` to `&[T]` (without copying)
|
|
#[inline]
|
|
fn as_slice<'a>(&'a self) -> &'a [T] {
|
|
match *self {
|
|
Some(ref x) => slice::ref_slice(x),
|
|
None => {
|
|
let result: &[_] = &[];
|
|
result
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[stable]
|
|
impl<T> Default for Option<T> {
|
|
#[stable]
|
|
#[inline]
|
|
#[stable]
|
|
fn default() -> Option<T> { None }
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// The Option Iterators
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
|
|
#[derive(Clone)]
|
|
struct Item<A> {
|
|
opt: Option<A>
|
|
}
|
|
|
|
impl<A> Iterator for Item<A> {
|
|
type Item = A;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
self.opt.take()
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
match self.opt {
|
|
Some(_) => (1, Some(1)),
|
|
None => (0, Some(0)),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<A> DoubleEndedIterator for Item<A> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<A> {
|
|
self.opt.take()
|
|
}
|
|
}
|
|
|
|
impl<A> ExactSizeIterator for Item<A> {}
|
|
|
|
/// An iterator over a reference of the contained item in an Option.
|
|
#[stable]
|
|
pub struct Iter<'a, A: 'a> { inner: Item<&'a A> }
|
|
|
|
#[stable]
|
|
impl<'a, A> Iterator for Iter<'a, A> {
|
|
type Item = &'a A;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'a A> { self.inner.next() }
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) { self.inner.size_hint() }
|
|
}
|
|
|
|
#[stable]
|
|
impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<&'a A> { self.inner.next_back() }
|
|
}
|
|
|
|
#[stable]
|
|
impl<'a, A> ExactSizeIterator for Iter<'a, A> {}
|
|
|
|
#[stable]
|
|
impl<'a, A> Clone for Iter<'a, A> {
|
|
fn clone(&self) -> Iter<'a, A> {
|
|
Iter { inner: self.inner.clone() }
|
|
}
|
|
}
|
|
|
|
/// An iterator over a mutable reference of the contained item in an Option.
|
|
#[stable]
|
|
pub struct IterMut<'a, A: 'a> { inner: Item<&'a mut A> }
|
|
|
|
#[stable]
|
|
impl<'a, A> Iterator for IterMut<'a, A> {
|
|
type Item = &'a mut A;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'a mut A> { self.inner.next() }
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) { self.inner.size_hint() }
|
|
}
|
|
|
|
#[stable]
|
|
impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<&'a mut A> { self.inner.next_back() }
|
|
}
|
|
|
|
#[stable]
|
|
impl<'a, A> ExactSizeIterator for IterMut<'a, A> {}
|
|
|
|
/// An iterator over the item contained inside an Option.
|
|
#[stable]
|
|
pub struct IntoIter<A> { inner: Item<A> }
|
|
|
|
#[stable]
|
|
impl<A> Iterator for IntoIter<A> {
|
|
type Item = A;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> { self.inner.next() }
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) { self.inner.size_hint() }
|
|
}
|
|
|
|
#[stable]
|
|
impl<A> DoubleEndedIterator for IntoIter<A> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<A> { self.inner.next_back() }
|
|
}
|
|
|
|
#[stable]
|
|
impl<A> ExactSizeIterator for IntoIter<A> {}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// FromIterator
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
|
|
#[stable]
|
|
impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
|
|
/// Takes each element in the `Iterator`: if it is `None`, no further
|
|
/// elements are taken, and the `None` is returned. Should no `None` occur, a
|
|
/// container with the values of each `Option` is returned.
|
|
///
|
|
/// Here is an example which increments every integer in a vector,
|
|
/// checking for overflow:
|
|
///
|
|
/// ```rust
|
|
/// use std::uint;
|
|
///
|
|
/// let v = vec!(1u, 2u);
|
|
/// let res: Option<Vec<uint>> = v.iter().map(|&x: &uint|
|
|
/// if x == uint::MAX { None }
|
|
/// else { Some(x + 1) }
|
|
/// ).collect();
|
|
/// assert!(res == Some(vec!(2u, 3u)));
|
|
/// ```
|
|
#[inline]
|
|
#[stable]
|
|
fn from_iter<I: Iterator<Item=Option<A>>>(iter: I) -> Option<V> {
|
|
// FIXME(#11084): This could be replaced with Iterator::scan when this
|
|
// performance bug is closed.
|
|
|
|
struct Adapter<Iter> {
|
|
iter: Iter,
|
|
found_none: bool,
|
|
}
|
|
|
|
impl<T, Iter: Iterator<Item=Option<T>>> Iterator for Adapter<Iter> {
|
|
type Item = T;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<T> {
|
|
match self.iter.next() {
|
|
Some(Some(value)) => Some(value),
|
|
Some(None) => {
|
|
self.found_none = true;
|
|
None
|
|
}
|
|
None => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
let mut adapter = Adapter { iter: iter, found_none: false };
|
|
let v: V = FromIterator::from_iter(adapter.by_ref());
|
|
|
|
if adapter.found_none {
|
|
None
|
|
} else {
|
|
Some(v)
|
|
}
|
|
}
|
|
}
|