rust/compiler/rustc_expand/src/expand.rs
Aaron Hill a93c4f05de
Implement token-based handling of attributes during expansion
This PR modifies the macro expansion infrastructure to handle attributes
in a fully token-based manner. As a result:

* Derives macros no longer lose spans when their input is modified
  by eager cfg-expansion. This is accomplished by performing eager
  cfg-expansion on the token stream that we pass to the derive
  proc-macro
* Inner attributes now preserve spans in all cases, including when we
  have multiple inner attributes in a row.

This is accomplished through the following changes:

* New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced.
  These are very similar to a normal `TokenTree`, but they also track
  the position of attributes and attribute targets within the stream.
  They are built when we collect tokens during parsing.
  An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when
  we invoke a macro.
* Token capturing and `LazyTokenStream` are modified to work with
  `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which
  is created during the parsing of a nested AST node to make the 'outer'
  AST node aware of the attributes and attribute target stored deeper in the token stream.
* When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`),
we tokenize and reparse our target, capturing additional information about the locations of
`#[cfg]` and `#[cfg_attr]` attributes at any depth within the target.
This is a performance optimization, allowing us to perform less work
in the typical case where captured tokens never have eager cfg-expansion run.
2021-04-11 01:31:36 -04:00

1691 lines
67 KiB
Rust

use crate::base::*;
use crate::config::StripUnconfigured;
use crate::configure;
use crate::hygiene::SyntaxContext;
use crate::mbe::macro_rules::annotate_err_with_kind;
use crate::module::{mod_dir_path, parse_external_mod, DirOwnership, ParsedExternalMod};
use crate::placeholders::{placeholder, PlaceholderExpander};
use rustc_ast as ast;
use rustc_ast::mut_visit::*;
use rustc_ast::ptr::P;
use rustc_ast::token;
use rustc_ast::tokenstream::TokenStream;
use rustc_ast::visit::{self, AssocCtxt, Visitor};
use rustc_ast::{AstLike, AttrItem, Block, Inline, ItemKind, LitKind, MacArgs};
use rustc_ast::{MacCallStmt, MacStmtStyle, MetaItemKind, ModKind, NestedMetaItem};
use rustc_ast::{NodeId, PatKind, Path, StmtKind, Unsafe};
use rustc_ast_pretty::pprust;
use rustc_attr::{self as attr, is_builtin_attr};
use rustc_data_structures::map_in_place::MapInPlace;
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_data_structures::sync::Lrc;
use rustc_errors::{Applicability, PResult};
use rustc_feature::Features;
use rustc_parse::parser::{AttemptLocalParseRecovery, ForceCollect, Parser, RecoverComma};
use rustc_parse::validate_attr;
use rustc_session::lint::builtin::UNUSED_DOC_COMMENTS;
use rustc_session::lint::BuiltinLintDiagnostics;
use rustc_session::parse::{feature_err, ParseSess};
use rustc_session::Limit;
use rustc_span::symbol::{sym, Ident, Symbol};
use rustc_span::{ExpnId, FileName, Span, DUMMY_SP};
use smallvec::{smallvec, SmallVec};
use std::io::ErrorKind;
use std::ops::DerefMut;
use std::path::PathBuf;
use std::rc::Rc;
use std::{iter, mem, slice};
macro_rules! ast_fragments {
(
$($Kind:ident($AstTy:ty) {
$kind_name:expr;
$(one fn $mut_visit_ast:ident; fn $visit_ast:ident;)?
$(many fn $flat_map_ast_elt:ident; fn $visit_ast_elt:ident($($args:tt)*);)?
fn $make_ast:ident;
})*
) => {
/// A fragment of AST that can be produced by a single macro expansion.
/// Can also serve as an input and intermediate result for macro expansion operations.
pub enum AstFragment {
OptExpr(Option<P<ast::Expr>>),
$($Kind($AstTy),)*
}
/// "Discriminant" of an AST fragment.
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum AstFragmentKind {
OptExpr,
$($Kind,)*
}
impl AstFragmentKind {
pub fn name(self) -> &'static str {
match self {
AstFragmentKind::OptExpr => "expression",
$(AstFragmentKind::$Kind => $kind_name,)*
}
}
fn make_from<'a>(self, result: Box<dyn MacResult + 'a>) -> Option<AstFragment> {
match self {
AstFragmentKind::OptExpr =>
result.make_expr().map(Some).map(AstFragment::OptExpr),
$(AstFragmentKind::$Kind => result.$make_ast().map(AstFragment::$Kind),)*
}
}
}
impl AstFragment {
pub fn add_placeholders(&mut self, placeholders: &[NodeId]) {
if placeholders.is_empty() {
return;
}
match self {
$($(AstFragment::$Kind(ast) => ast.extend(placeholders.iter().flat_map(|id| {
// We are repeating through arguments with `many`, to do that we have to
// mention some macro variable from those arguments even if it's not used.
macro _repeating($flat_map_ast_elt) {}
placeholder(AstFragmentKind::$Kind, *id, None).$make_ast()
})),)?)*
_ => panic!("unexpected AST fragment kind")
}
}
pub fn make_opt_expr(self) -> Option<P<ast::Expr>> {
match self {
AstFragment::OptExpr(expr) => expr,
_ => panic!("AstFragment::make_* called on the wrong kind of fragment"),
}
}
$(pub fn $make_ast(self) -> $AstTy {
match self {
AstFragment::$Kind(ast) => ast,
_ => panic!("AstFragment::make_* called on the wrong kind of fragment"),
}
})*
pub fn mut_visit_with<F: MutVisitor>(&mut self, vis: &mut F) {
match self {
AstFragment::OptExpr(opt_expr) => {
visit_clobber(opt_expr, |opt_expr| {
if let Some(expr) = opt_expr {
vis.filter_map_expr(expr)
} else {
None
}
});
}
$($(AstFragment::$Kind(ast) => vis.$mut_visit_ast(ast),)?)*
$($(AstFragment::$Kind(ast) =>
ast.flat_map_in_place(|ast| vis.$flat_map_ast_elt(ast)),)?)*
}
}
pub fn visit_with<'a, V: Visitor<'a>>(&'a self, visitor: &mut V) {
match *self {
AstFragment::OptExpr(Some(ref expr)) => visitor.visit_expr(expr),
AstFragment::OptExpr(None) => {}
$($(AstFragment::$Kind(ref ast) => visitor.$visit_ast(ast),)?)*
$($(AstFragment::$Kind(ref ast) => for ast_elt in &ast[..] {
visitor.$visit_ast_elt(ast_elt, $($args)*);
})?)*
}
}
}
impl<'a> MacResult for crate::mbe::macro_rules::ParserAnyMacro<'a> {
$(fn $make_ast(self: Box<crate::mbe::macro_rules::ParserAnyMacro<'a>>)
-> Option<$AstTy> {
Some(self.make(AstFragmentKind::$Kind).$make_ast())
})*
}
}
}
ast_fragments! {
Expr(P<ast::Expr>) { "expression"; one fn visit_expr; fn visit_expr; fn make_expr; }
Pat(P<ast::Pat>) { "pattern"; one fn visit_pat; fn visit_pat; fn make_pat; }
Ty(P<ast::Ty>) { "type"; one fn visit_ty; fn visit_ty; fn make_ty; }
Stmts(SmallVec<[ast::Stmt; 1]>) {
"statement"; many fn flat_map_stmt; fn visit_stmt(); fn make_stmts;
}
Items(SmallVec<[P<ast::Item>; 1]>) {
"item"; many fn flat_map_item; fn visit_item(); fn make_items;
}
TraitItems(SmallVec<[P<ast::AssocItem>; 1]>) {
"trait item";
many fn flat_map_trait_item;
fn visit_assoc_item(AssocCtxt::Trait);
fn make_trait_items;
}
ImplItems(SmallVec<[P<ast::AssocItem>; 1]>) {
"impl item";
many fn flat_map_impl_item;
fn visit_assoc_item(AssocCtxt::Impl);
fn make_impl_items;
}
ForeignItems(SmallVec<[P<ast::ForeignItem>; 1]>) {
"foreign item";
many fn flat_map_foreign_item;
fn visit_foreign_item();
fn make_foreign_items;
}
Arms(SmallVec<[ast::Arm; 1]>) {
"match arm"; many fn flat_map_arm; fn visit_arm(); fn make_arms;
}
Fields(SmallVec<[ast::ExprField; 1]>) {
"field expression"; many fn flat_map_expr_field; fn visit_expr_field(); fn make_expr_fields;
}
FieldPats(SmallVec<[ast::PatField; 1]>) {
"field pattern";
many fn flat_map_pat_field;
fn visit_pat_field();
fn make_pat_fields;
}
GenericParams(SmallVec<[ast::GenericParam; 1]>) {
"generic parameter";
many fn flat_map_generic_param;
fn visit_generic_param();
fn make_generic_params;
}
Params(SmallVec<[ast::Param; 1]>) {
"function parameter"; many fn flat_map_param; fn visit_param(); fn make_params;
}
StructFields(SmallVec<[ast::FieldDef; 1]>) {
"field";
many fn flat_map_field_def;
fn visit_field_def();
fn make_field_defs;
}
Variants(SmallVec<[ast::Variant; 1]>) {
"variant"; many fn flat_map_variant; fn visit_variant(); fn make_variants;
}
}
pub enum SupportsMacroExpansion {
No,
Yes { supports_inner_attrs: bool },
}
impl AstFragmentKind {
crate fn dummy(self, span: Span) -> AstFragment {
self.make_from(DummyResult::any(span)).expect("couldn't create a dummy AST fragment")
}
pub fn supports_macro_expansion(self) -> SupportsMacroExpansion {
match self {
AstFragmentKind::OptExpr
| AstFragmentKind::Expr
| AstFragmentKind::Stmts
| AstFragmentKind::Ty
| AstFragmentKind::Pat => SupportsMacroExpansion::Yes { supports_inner_attrs: false },
AstFragmentKind::Items
| AstFragmentKind::TraitItems
| AstFragmentKind::ImplItems
| AstFragmentKind::ForeignItems => {
SupportsMacroExpansion::Yes { supports_inner_attrs: true }
}
AstFragmentKind::Arms
| AstFragmentKind::Fields
| AstFragmentKind::FieldPats
| AstFragmentKind::GenericParams
| AstFragmentKind::Params
| AstFragmentKind::StructFields
| AstFragmentKind::Variants => SupportsMacroExpansion::No,
}
}
fn expect_from_annotatables<I: IntoIterator<Item = Annotatable>>(
self,
items: I,
) -> AstFragment {
let mut items = items.into_iter();
match self {
AstFragmentKind::Arms => {
AstFragment::Arms(items.map(Annotatable::expect_arm).collect())
}
AstFragmentKind::Fields => {
AstFragment::Fields(items.map(Annotatable::expect_expr_field).collect())
}
AstFragmentKind::FieldPats => {
AstFragment::FieldPats(items.map(Annotatable::expect_pat_field).collect())
}
AstFragmentKind::GenericParams => {
AstFragment::GenericParams(items.map(Annotatable::expect_generic_param).collect())
}
AstFragmentKind::Params => {
AstFragment::Params(items.map(Annotatable::expect_param).collect())
}
AstFragmentKind::StructFields => {
AstFragment::StructFields(items.map(Annotatable::expect_field_def).collect())
}
AstFragmentKind::Variants => {
AstFragment::Variants(items.map(Annotatable::expect_variant).collect())
}
AstFragmentKind::Items => {
AstFragment::Items(items.map(Annotatable::expect_item).collect())
}
AstFragmentKind::ImplItems => {
AstFragment::ImplItems(items.map(Annotatable::expect_impl_item).collect())
}
AstFragmentKind::TraitItems => {
AstFragment::TraitItems(items.map(Annotatable::expect_trait_item).collect())
}
AstFragmentKind::ForeignItems => {
AstFragment::ForeignItems(items.map(Annotatable::expect_foreign_item).collect())
}
AstFragmentKind::Stmts => {
AstFragment::Stmts(items.map(Annotatable::expect_stmt).collect())
}
AstFragmentKind::Expr => AstFragment::Expr(
items.next().expect("expected exactly one expression").expect_expr(),
),
AstFragmentKind::OptExpr => {
AstFragment::OptExpr(items.next().map(Annotatable::expect_expr))
}
AstFragmentKind::Pat | AstFragmentKind::Ty => {
panic!("patterns and types aren't annotatable")
}
}
}
}
pub struct Invocation {
pub kind: InvocationKind,
pub fragment_kind: AstFragmentKind,
pub expansion_data: ExpansionData,
}
pub enum InvocationKind {
Bang {
mac: ast::MacCall,
span: Span,
},
Attr {
attr: ast::Attribute,
// Re-insertion position for inert attributes.
pos: usize,
item: Annotatable,
// Required for resolving derive helper attributes.
derives: Vec<Path>,
},
Derive {
path: Path,
item: Annotatable,
},
}
impl InvocationKind {
fn placeholder_visibility(&self) -> Option<ast::Visibility> {
// HACK: For unnamed fields placeholders should have the same visibility as the actual
// fields because for tuple structs/variants resolve determines visibilities of their
// constructor using these field visibilities before attributes on them are are expanded.
// The assumption is that the attribute expansion cannot change field visibilities,
// and it holds because only inert attributes are supported in this position.
match self {
InvocationKind::Attr { item: Annotatable::FieldDef(field), .. }
| InvocationKind::Derive { item: Annotatable::FieldDef(field), .. }
if field.ident.is_none() =>
{
Some(field.vis.clone())
}
_ => None,
}
}
}
impl Invocation {
pub fn span(&self) -> Span {
match &self.kind {
InvocationKind::Bang { span, .. } => *span,
InvocationKind::Attr { attr, .. } => attr.span,
InvocationKind::Derive { path, .. } => path.span,
}
}
}
pub struct MacroExpander<'a, 'b> {
pub cx: &'a mut ExtCtxt<'b>,
monotonic: bool, // cf. `cx.monotonic_expander()`
}
impl<'a, 'b> MacroExpander<'a, 'b> {
pub fn new(cx: &'a mut ExtCtxt<'b>, monotonic: bool) -> Self {
MacroExpander { cx, monotonic }
}
// FIXME: Avoid visiting the crate as a `Mod` item,
// make crate a first class expansion target instead.
pub fn expand_crate(&mut self, mut krate: ast::Crate) -> ast::Crate {
let file_path = match self.cx.source_map().span_to_unmapped_path(krate.span) {
FileName::Real(name) => name.into_local_path(),
other => PathBuf::from(other.to_string()),
};
let dir_path = file_path.parent().unwrap_or(&file_path).to_owned();
self.cx.root_path = dir_path.clone();
self.cx.current_expansion.module = Rc::new(ModuleData {
mod_path: vec![Ident::from_str(&self.cx.ecfg.crate_name)],
file_path_stack: vec![file_path],
dir_path,
});
let krate_item = AstFragment::Items(smallvec![P(ast::Item {
attrs: krate.attrs,
span: krate.span,
kind: ast::ItemKind::Mod(
Unsafe::No,
ModKind::Loaded(krate.items, Inline::Yes, krate.span)
),
ident: Ident::invalid(),
id: ast::DUMMY_NODE_ID,
vis: ast::Visibility {
span: krate.span.shrink_to_lo(),
kind: ast::VisibilityKind::Public,
tokens: None,
},
tokens: None,
})]);
match self.fully_expand_fragment(krate_item).make_items().pop().map(P::into_inner) {
Some(ast::Item {
attrs,
kind: ast::ItemKind::Mod(_, ModKind::Loaded(items, ..)),
..
}) => {
krate.attrs = attrs;
krate.items = items;
}
None => {
// Resolution failed so we return an empty expansion
krate.attrs = vec![];
krate.items = vec![];
}
Some(ast::Item { span, kind, .. }) => {
krate.attrs = vec![];
krate.items = vec![];
self.cx.span_err(
span,
&format!(
"expected crate top-level item to be a module after macro expansion, found {} {}",
kind.article(), kind.descr()
),
);
}
};
self.cx.trace_macros_diag();
krate
}
// Recursively expand all macro invocations in this AST fragment.
pub fn fully_expand_fragment(&mut self, input_fragment: AstFragment) -> AstFragment {
let orig_expansion_data = self.cx.current_expansion.clone();
let orig_force_mode = self.cx.force_mode;
self.cx.current_expansion.depth = 0;
// Collect all macro invocations and replace them with placeholders.
let (mut fragment_with_placeholders, mut invocations) =
self.collect_invocations(input_fragment, &[]);
// Optimization: if we resolve all imports now,
// we'll be able to immediately resolve most of imported macros.
self.resolve_imports();
// Resolve paths in all invocations and produce output expanded fragments for them, but
// do not insert them into our input AST fragment yet, only store in `expanded_fragments`.
// The output fragments also go through expansion recursively until no invocations are left.
// Unresolved macros produce dummy outputs as a recovery measure.
invocations.reverse();
let mut expanded_fragments = Vec::new();
let mut undetermined_invocations = Vec::new();
let (mut progress, mut force) = (false, !self.monotonic);
loop {
let (invoc, ext) = if let Some(invoc) = invocations.pop() {
invoc
} else {
self.resolve_imports();
if undetermined_invocations.is_empty() {
break;
}
invocations = mem::take(&mut undetermined_invocations);
force = !mem::replace(&mut progress, false);
if force && self.monotonic {
self.cx.sess.delay_span_bug(
invocations.last().unwrap().0.span(),
"expansion entered force mode without producing any errors",
);
}
continue;
};
let ext = match ext {
Some(ext) => ext,
None => {
let eager_expansion_root = if self.monotonic {
invoc.expansion_data.id
} else {
orig_expansion_data.id
};
match self.cx.resolver.resolve_macro_invocation(
&invoc,
eager_expansion_root,
force,
) {
Ok(ext) => ext,
Err(Indeterminate) => {
// Cannot resolve, will retry this invocation later.
undetermined_invocations.push((invoc, None));
continue;
}
}
}
};
let ExpansionData { depth, id: expn_id, .. } = invoc.expansion_data;
self.cx.current_expansion = invoc.expansion_data.clone();
self.cx.force_mode = force;
let fragment_kind = invoc.fragment_kind;
let (expanded_fragment, new_invocations) = match self.expand_invoc(invoc, &ext.kind) {
ExpandResult::Ready(fragment) => {
let mut derive_invocations = Vec::new();
let derive_placeholders = self
.cx
.resolver
.take_derive_resolutions(expn_id)
.map(|derives| {
enum AnnotatableRef<'a> {
Item(&'a P<ast::Item>),
Stmt(&'a ast::Stmt),
}
let item = match &fragment {
AstFragment::Items(items) => match &items[..] {
[item] => AnnotatableRef::Item(item),
_ => unreachable!(),
},
AstFragment::Stmts(stmts) => match &stmts[..] {
[stmt] => AnnotatableRef::Stmt(stmt),
_ => unreachable!(),
},
_ => unreachable!(),
};
derive_invocations.reserve(derives.len());
derives
.into_iter()
.map(|(path, _exts)| {
// FIXME: Consider using the derive resolutions (`_exts`)
// instead of enqueuing the derives to be resolved again later.
let expn_id = ExpnId::fresh(None);
derive_invocations.push((
Invocation {
kind: InvocationKind::Derive {
path,
item: match item {
AnnotatableRef::Item(item) => {
Annotatable::Item(item.clone())
}
AnnotatableRef::Stmt(stmt) => {
Annotatable::Stmt(P(stmt.clone()))
}
},
},
fragment_kind,
expansion_data: ExpansionData {
id: expn_id,
..self.cx.current_expansion.clone()
},
},
None,
));
NodeId::placeholder_from_expn_id(expn_id)
})
.collect::<Vec<_>>()
})
.unwrap_or_default();
let (fragment, collected_invocations) =
self.collect_invocations(fragment, &derive_placeholders);
// We choose to expand any derive invocations associated with this macro invocation
// *before* any macro invocations collected from the output fragment
derive_invocations.extend(collected_invocations);
(fragment, derive_invocations)
}
ExpandResult::Retry(invoc) => {
if force {
self.cx.span_bug(
invoc.span(),
"expansion entered force mode but is still stuck",
);
} else {
// Cannot expand, will retry this invocation later.
undetermined_invocations.push((invoc, Some(ext)));
continue;
}
}
};
progress = true;
if expanded_fragments.len() < depth {
expanded_fragments.push(Vec::new());
}
expanded_fragments[depth - 1].push((expn_id, expanded_fragment));
invocations.extend(new_invocations.into_iter().rev());
}
self.cx.current_expansion = orig_expansion_data;
self.cx.force_mode = orig_force_mode;
// Finally incorporate all the expanded macros into the input AST fragment.
let mut placeholder_expander = PlaceholderExpander::new(self.cx, self.monotonic);
while let Some(expanded_fragments) = expanded_fragments.pop() {
for (expn_id, expanded_fragment) in expanded_fragments.into_iter().rev() {
placeholder_expander
.add(NodeId::placeholder_from_expn_id(expn_id), expanded_fragment);
}
}
fragment_with_placeholders.mut_visit_with(&mut placeholder_expander);
fragment_with_placeholders
}
fn resolve_imports(&mut self) {
if self.monotonic {
self.cx.resolver.resolve_imports();
}
}
/// Collects all macro invocations reachable at this time in this AST fragment, and replace
/// them with "placeholders" - dummy macro invocations with specially crafted `NodeId`s.
/// Then call into resolver that builds a skeleton ("reduced graph") of the fragment and
/// prepares data for resolving paths of macro invocations.
fn collect_invocations(
&mut self,
mut fragment: AstFragment,
extra_placeholders: &[NodeId],
) -> (AstFragment, Vec<(Invocation, Option<Lrc<SyntaxExtension>>)>) {
// Resolve `$crate`s in the fragment for pretty-printing.
self.cx.resolver.resolve_dollar_crates();
let invocations = {
let mut collector = InvocationCollector {
// Non-derive macro invocations cannot see the results of cfg expansion - they
// will either be removed along with the item, or invoked before the cfg/cfg_attr
// attribute is expanded. Therefore, we don't need to configure the tokens
// Derive macros *can* see the results of cfg-expansion - they are handled
// specially in `fully_expand_fragment`
cfg: StripUnconfigured {
sess: &self.cx.sess,
features: self.cx.ecfg.features,
config_tokens: false,
},
cx: self.cx,
invocations: Vec::new(),
monotonic: self.monotonic,
};
fragment.mut_visit_with(&mut collector);
fragment.add_placeholders(extra_placeholders);
collector.invocations
};
if self.monotonic {
self.cx
.resolver
.visit_ast_fragment_with_placeholders(self.cx.current_expansion.id, &fragment);
}
(fragment, invocations)
}
fn error_recursion_limit_reached(&mut self) {
let expn_data = self.cx.current_expansion.id.expn_data();
let suggested_limit = self.cx.ecfg.recursion_limit * 2;
self.cx
.struct_span_err(
expn_data.call_site,
&format!("recursion limit reached while expanding `{}`", expn_data.kind.descr()),
)
.help(&format!(
"consider adding a `#![recursion_limit=\"{}\"]` attribute to your crate (`{}`)",
suggested_limit, self.cx.ecfg.crate_name,
))
.emit();
self.cx.trace_macros_diag();
}
/// A macro's expansion does not fit in this fragment kind.
/// For example, a non-type macro in a type position.
fn error_wrong_fragment_kind(&mut self, kind: AstFragmentKind, mac: &ast::MacCall, span: Span) {
let msg = format!(
"non-{kind} macro in {kind} position: {path}",
kind = kind.name(),
path = pprust::path_to_string(&mac.path),
);
self.cx.span_err(span, &msg);
self.cx.trace_macros_diag();
}
fn expand_invoc(
&mut self,
invoc: Invocation,
ext: &SyntaxExtensionKind,
) -> ExpandResult<AstFragment, Invocation> {
let recursion_limit =
self.cx.reduced_recursion_limit.unwrap_or(self.cx.ecfg.recursion_limit);
if !recursion_limit.value_within_limit(self.cx.current_expansion.depth) {
if self.cx.reduced_recursion_limit.is_none() {
self.error_recursion_limit_reached();
}
// Reduce the recursion limit by half each time it triggers.
self.cx.reduced_recursion_limit = Some(recursion_limit / 2);
return ExpandResult::Ready(invoc.fragment_kind.dummy(invoc.span()));
}
let (fragment_kind, span) = (invoc.fragment_kind, invoc.span());
ExpandResult::Ready(match invoc.kind {
InvocationKind::Bang { mac, .. } => match ext {
SyntaxExtensionKind::Bang(expander) => {
let tok_result = match expander.expand(self.cx, span, mac.args.inner_tokens()) {
Err(_) => return ExpandResult::Ready(fragment_kind.dummy(span)),
Ok(ts) => ts,
};
self.parse_ast_fragment(tok_result, fragment_kind, &mac.path, span)
}
SyntaxExtensionKind::LegacyBang(expander) => {
let prev = self.cx.current_expansion.prior_type_ascription;
self.cx.current_expansion.prior_type_ascription = mac.prior_type_ascription;
let tok_result = expander.expand(self.cx, span, mac.args.inner_tokens());
let result = if let Some(result) = fragment_kind.make_from(tok_result) {
result
} else {
self.error_wrong_fragment_kind(fragment_kind, &mac, span);
fragment_kind.dummy(span)
};
self.cx.current_expansion.prior_type_ascription = prev;
result
}
_ => unreachable!(),
},
InvocationKind::Attr { attr, pos, mut item, derives } => match ext {
SyntaxExtensionKind::Attr(expander) => {
self.gate_proc_macro_input(&item);
self.gate_proc_macro_attr_item(span, &item);
let mut fake_tokens = false;
if let Annotatable::Item(item_inner) = &item {
if let ItemKind::Mod(_, mod_kind) = &item_inner.kind {
// FIXME: Collect tokens and use them instead of generating
// fake ones. These are unstable, so it needs to be
// fixed prior to stabilization
// Fake tokens when we are invoking an inner attribute, and:
fake_tokens = matches!(attr.style, ast::AttrStyle::Inner) &&
// We are invoking an attribute on the crate root, or an outline
// module
(item_inner.ident.name.is_empty() || !matches!(mod_kind, ast::ModKind::Loaded(_, Inline::Yes, _)));
}
}
let tokens = if fake_tokens {
rustc_parse::fake_token_stream(
&self.cx.sess.parse_sess,
&item.into_nonterminal(),
)
} else {
item.into_tokens(&self.cx.sess.parse_sess)
};
let attr_item = attr.unwrap_normal_item();
if let MacArgs::Eq(..) = attr_item.args {
self.cx.span_err(span, "key-value macro attributes are not supported");
}
let inner_tokens = attr_item.args.inner_tokens();
let tok_result = match expander.expand(self.cx, span, inner_tokens, tokens) {
Err(_) => return ExpandResult::Ready(fragment_kind.dummy(span)),
Ok(ts) => ts,
};
self.parse_ast_fragment(tok_result, fragment_kind, &attr_item.path, span)
}
SyntaxExtensionKind::LegacyAttr(expander) => {
match validate_attr::parse_meta(&self.cx.sess.parse_sess, &attr) {
Ok(meta) => {
let items = match expander.expand(self.cx, span, &meta, item) {
ExpandResult::Ready(items) => items,
ExpandResult::Retry(item) => {
// Reassemble the original invocation for retrying.
return ExpandResult::Retry(Invocation {
kind: InvocationKind::Attr { attr, pos, item, derives },
..invoc
});
}
};
if fragment_kind == AstFragmentKind::Expr && items.is_empty() {
let msg =
"removing an expression is not supported in this position";
self.cx.span_err(span, msg);
fragment_kind.dummy(span)
} else {
fragment_kind.expect_from_annotatables(items)
}
}
Err(mut err) => {
err.emit();
fragment_kind.dummy(span)
}
}
}
SyntaxExtensionKind::NonMacroAttr { mark_used } => {
self.cx.sess.mark_attr_known(&attr);
if *mark_used {
self.cx.sess.mark_attr_used(&attr);
}
item.visit_attrs(|attrs| attrs.insert(pos, attr));
fragment_kind.expect_from_annotatables(iter::once(item))
}
_ => unreachable!(),
},
InvocationKind::Derive { path, item } => match ext {
SyntaxExtensionKind::Derive(expander)
| SyntaxExtensionKind::LegacyDerive(expander) => {
if let SyntaxExtensionKind::Derive(..) = ext {
self.gate_proc_macro_input(&item);
}
let meta = ast::MetaItem { kind: ast::MetaItemKind::Word, span, path };
let items = match expander.expand(self.cx, span, &meta, item) {
ExpandResult::Ready(items) => items,
ExpandResult::Retry(item) => {
// Reassemble the original invocation for retrying.
return ExpandResult::Retry(Invocation {
kind: InvocationKind::Derive { path: meta.path, item },
..invoc
});
}
};
fragment_kind.expect_from_annotatables(items)
}
_ => unreachable!(),
},
})
}
fn gate_proc_macro_attr_item(&self, span: Span, item: &Annotatable) {
let kind = match item {
Annotatable::Item(_)
| Annotatable::TraitItem(_)
| Annotatable::ImplItem(_)
| Annotatable::ForeignItem(_) => return,
Annotatable::Stmt(stmt) => {
// Attributes are stable on item statements,
// but unstable on all other kinds of statements
if stmt.is_item() {
return;
}
"statements"
}
Annotatable::Expr(_) => "expressions",
Annotatable::Arm(..)
| Annotatable::ExprField(..)
| Annotatable::PatField(..)
| Annotatable::GenericParam(..)
| Annotatable::Param(..)
| Annotatable::FieldDef(..)
| Annotatable::Variant(..) => panic!("unexpected annotatable"),
};
if self.cx.ecfg.proc_macro_hygiene() {
return;
}
feature_err(
&self.cx.sess.parse_sess,
sym::proc_macro_hygiene,
span,
&format!("custom attributes cannot be applied to {}", kind),
)
.emit();
}
fn gate_proc_macro_input(&self, annotatable: &Annotatable) {
struct GateProcMacroInput<'a> {
parse_sess: &'a ParseSess,
}
impl<'ast, 'a> Visitor<'ast> for GateProcMacroInput<'a> {
fn visit_item(&mut self, item: &'ast ast::Item) {
match &item.kind {
ast::ItemKind::Mod(_, mod_kind)
if !matches!(mod_kind, ModKind::Loaded(_, Inline::Yes, _)) =>
{
feature_err(
self.parse_sess,
sym::proc_macro_hygiene,
item.span,
"non-inline modules in proc macro input are unstable",
)
.emit();
}
_ => {}
}
visit::walk_item(self, item);
}
}
if !self.cx.ecfg.proc_macro_hygiene() {
annotatable
.visit_with(&mut GateProcMacroInput { parse_sess: &self.cx.sess.parse_sess });
}
}
fn parse_ast_fragment(
&mut self,
toks: TokenStream,
kind: AstFragmentKind,
path: &Path,
span: Span,
) -> AstFragment {
let mut parser = self.cx.new_parser_from_tts(toks);
match parse_ast_fragment(&mut parser, kind) {
Ok(fragment) => {
ensure_complete_parse(&mut parser, path, kind.name(), span);
fragment
}
Err(mut err) => {
if err.span.is_dummy() {
err.set_span(span);
}
annotate_err_with_kind(&mut err, kind, span);
err.emit();
self.cx.trace_macros_diag();
kind.dummy(span)
}
}
}
}
pub fn parse_ast_fragment<'a>(
this: &mut Parser<'a>,
kind: AstFragmentKind,
) -> PResult<'a, AstFragment> {
Ok(match kind {
AstFragmentKind::Items => {
let mut items = SmallVec::new();
while let Some(item) = this.parse_item(ForceCollect::No)? {
items.push(item);
}
AstFragment::Items(items)
}
AstFragmentKind::TraitItems => {
let mut items = SmallVec::new();
while let Some(item) = this.parse_trait_item(ForceCollect::No)? {
items.extend(item);
}
AstFragment::TraitItems(items)
}
AstFragmentKind::ImplItems => {
let mut items = SmallVec::new();
while let Some(item) = this.parse_impl_item(ForceCollect::No)? {
items.extend(item);
}
AstFragment::ImplItems(items)
}
AstFragmentKind::ForeignItems => {
let mut items = SmallVec::new();
while let Some(item) = this.parse_foreign_item(ForceCollect::No)? {
items.extend(item);
}
AstFragment::ForeignItems(items)
}
AstFragmentKind::Stmts => {
let mut stmts = SmallVec::new();
// Won't make progress on a `}`.
while this.token != token::Eof && this.token != token::CloseDelim(token::Brace) {
if let Some(stmt) = this.parse_full_stmt(AttemptLocalParseRecovery::Yes)? {
stmts.push(stmt);
}
}
AstFragment::Stmts(stmts)
}
AstFragmentKind::Expr => AstFragment::Expr(this.parse_expr()?),
AstFragmentKind::OptExpr => {
if this.token != token::Eof {
AstFragment::OptExpr(Some(this.parse_expr()?))
} else {
AstFragment::OptExpr(None)
}
}
AstFragmentKind::Ty => AstFragment::Ty(this.parse_ty()?),
AstFragmentKind::Pat => {
AstFragment::Pat(this.parse_pat_allow_top_alt(None, RecoverComma::No)?)
}
AstFragmentKind::Arms
| AstFragmentKind::Fields
| AstFragmentKind::FieldPats
| AstFragmentKind::GenericParams
| AstFragmentKind::Params
| AstFragmentKind::StructFields
| AstFragmentKind::Variants => panic!("unexpected AST fragment kind"),
})
}
pub fn ensure_complete_parse<'a>(
this: &mut Parser<'a>,
macro_path: &Path,
kind_name: &str,
span: Span,
) {
if this.token != token::Eof {
let token = pprust::token_to_string(&this.token);
let msg = format!("macro expansion ignores token `{}` and any following", token);
// Avoid emitting backtrace info twice.
let def_site_span = this.token.span.with_ctxt(SyntaxContext::root());
let mut err = this.struct_span_err(def_site_span, &msg);
err.span_label(span, "caused by the macro expansion here");
let msg = format!(
"the usage of `{}!` is likely invalid in {} context",
pprust::path_to_string(macro_path),
kind_name,
);
err.note(&msg);
let semi_span = this.sess.source_map().next_point(span);
let semi_full_span = semi_span.to(this.sess.source_map().next_point(semi_span));
match this.sess.source_map().span_to_snippet(semi_full_span) {
Ok(ref snippet) if &snippet[..] != ";" && kind_name == "expression" => {
err.span_suggestion(
semi_span,
"you might be missing a semicolon here",
";".to_owned(),
Applicability::MaybeIncorrect,
);
}
_ => {}
}
err.emit();
}
}
struct InvocationCollector<'a, 'b> {
cx: &'a mut ExtCtxt<'b>,
cfg: StripUnconfigured<'a>,
invocations: Vec<(Invocation, Option<Lrc<SyntaxExtension>>)>,
monotonic: bool,
}
impl<'a, 'b> InvocationCollector<'a, 'b> {
fn collect(&mut self, fragment_kind: AstFragmentKind, kind: InvocationKind) -> AstFragment {
let expn_id = ExpnId::fresh(None);
let vis = kind.placeholder_visibility();
self.invocations.push((
Invocation {
kind,
fragment_kind,
expansion_data: ExpansionData {
id: expn_id,
depth: self.cx.current_expansion.depth + 1,
..self.cx.current_expansion.clone()
},
},
None,
));
placeholder(fragment_kind, NodeId::placeholder_from_expn_id(expn_id), vis)
}
fn collect_bang(
&mut self,
mac: ast::MacCall,
span: Span,
kind: AstFragmentKind,
) -> AstFragment {
self.collect(kind, InvocationKind::Bang { mac, span })
}
fn collect_attr(
&mut self,
(attr, pos, derives): (ast::Attribute, usize, Vec<Path>),
item: Annotatable,
kind: AstFragmentKind,
) -> AstFragment {
self.collect(kind, InvocationKind::Attr { attr, pos, item, derives })
}
/// If `item` is an attribute invocation, remove the attribute and return it together with
/// its position and derives following it. We have to collect the derives in order to resolve
/// legacy derive helpers (helpers written before derives that introduce them).
fn take_first_attr(
&mut self,
item: &mut impl AstLike,
) -> Option<(ast::Attribute, usize, Vec<Path>)> {
let mut attr = None;
item.visit_attrs(|attrs| {
attr = attrs
.iter()
.position(|a| !self.cx.sess.is_attr_known(a) && !is_builtin_attr(a))
.map(|attr_pos| {
let attr = attrs.remove(attr_pos);
let following_derives = attrs[attr_pos..]
.iter()
.filter(|a| a.has_name(sym::derive))
.flat_map(|a| a.meta_item_list().unwrap_or_default())
.filter_map(|nested_meta| match nested_meta {
NestedMetaItem::MetaItem(ast::MetaItem {
kind: MetaItemKind::Word,
path,
..
}) => Some(path),
_ => None,
})
.collect();
(attr, attr_pos, following_derives)
})
});
attr
}
fn configure<T: AstLike>(&mut self, node: T) -> Option<T> {
self.cfg.configure(node)
}
// Detect use of feature-gated or invalid attributes on macro invocations
// since they will not be detected after macro expansion.
fn check_attributes(&mut self, attrs: &[ast::Attribute]) {
let features = self.cx.ecfg.features.unwrap();
let mut attrs = attrs.iter().peekable();
let mut span: Option<Span> = None;
while let Some(attr) = attrs.next() {
rustc_ast_passes::feature_gate::check_attribute(attr, self.cx.sess, features);
validate_attr::check_meta(&self.cx.sess.parse_sess, attr);
let current_span = if let Some(sp) = span { sp.to(attr.span) } else { attr.span };
span = Some(current_span);
if attrs.peek().map_or(false, |next_attr| next_attr.doc_str().is_some()) {
continue;
}
if attr.doc_str().is_some() {
self.cx.sess.parse_sess.buffer_lint_with_diagnostic(
&UNUSED_DOC_COMMENTS,
current_span,
ast::CRATE_NODE_ID,
"unused doc comment",
BuiltinLintDiagnostics::UnusedDocComment(attr.span),
);
}
}
}
}
impl<'a, 'b> MutVisitor for InvocationCollector<'a, 'b> {
fn visit_expr(&mut self, expr: &mut P<ast::Expr>) {
self.cfg.configure_expr(expr);
visit_clobber(expr.deref_mut(), |mut expr| {
if let Some(attr) = self.take_first_attr(&mut expr) {
// Collect the invoc regardless of whether or not attributes are permitted here
// expansion will eat the attribute so it won't error later.
self.cfg.maybe_emit_expr_attr_err(&attr.0);
// AstFragmentKind::Expr requires the macro to emit an expression.
return self
.collect_attr(attr, Annotatable::Expr(P(expr)), AstFragmentKind::Expr)
.make_expr()
.into_inner();
}
if let ast::ExprKind::MacCall(mac) = expr.kind {
self.check_attributes(&expr.attrs);
self.collect_bang(mac, expr.span, AstFragmentKind::Expr).make_expr().into_inner()
} else {
ensure_sufficient_stack(|| noop_visit_expr(&mut expr, self));
expr
}
});
}
fn flat_map_arm(&mut self, arm: ast::Arm) -> SmallVec<[ast::Arm; 1]> {
let mut arm = configure!(self, arm);
if let Some(attr) = self.take_first_attr(&mut arm) {
return self
.collect_attr(attr, Annotatable::Arm(arm), AstFragmentKind::Arms)
.make_arms();
}
noop_flat_map_arm(arm, self)
}
fn flat_map_expr_field(&mut self, field: ast::ExprField) -> SmallVec<[ast::ExprField; 1]> {
let mut field = configure!(self, field);
if let Some(attr) = self.take_first_attr(&mut field) {
return self
.collect_attr(attr, Annotatable::ExprField(field), AstFragmentKind::Fields)
.make_expr_fields();
}
noop_flat_map_expr_field(field, self)
}
fn flat_map_pat_field(&mut self, fp: ast::PatField) -> SmallVec<[ast::PatField; 1]> {
let mut fp = configure!(self, fp);
if let Some(attr) = self.take_first_attr(&mut fp) {
return self
.collect_attr(attr, Annotatable::PatField(fp), AstFragmentKind::FieldPats)
.make_pat_fields();
}
noop_flat_map_pat_field(fp, self)
}
fn flat_map_param(&mut self, p: ast::Param) -> SmallVec<[ast::Param; 1]> {
let mut p = configure!(self, p);
if let Some(attr) = self.take_first_attr(&mut p) {
return self
.collect_attr(attr, Annotatable::Param(p), AstFragmentKind::Params)
.make_params();
}
noop_flat_map_param(p, self)
}
fn flat_map_field_def(&mut self, sf: ast::FieldDef) -> SmallVec<[ast::FieldDef; 1]> {
let mut sf = configure!(self, sf);
if let Some(attr) = self.take_first_attr(&mut sf) {
return self
.collect_attr(attr, Annotatable::FieldDef(sf), AstFragmentKind::StructFields)
.make_field_defs();
}
noop_flat_map_field_def(sf, self)
}
fn flat_map_variant(&mut self, variant: ast::Variant) -> SmallVec<[ast::Variant; 1]> {
let mut variant = configure!(self, variant);
if let Some(attr) = self.take_first_attr(&mut variant) {
return self
.collect_attr(attr, Annotatable::Variant(variant), AstFragmentKind::Variants)
.make_variants();
}
noop_flat_map_variant(variant, self)
}
fn filter_map_expr(&mut self, expr: P<ast::Expr>) -> Option<P<ast::Expr>> {
let expr = configure!(self, expr);
expr.filter_map(|mut expr| {
if let Some(attr) = self.take_first_attr(&mut expr) {
self.cfg.maybe_emit_expr_attr_err(&attr.0);
return self
.collect_attr(attr, Annotatable::Expr(P(expr)), AstFragmentKind::OptExpr)
.make_opt_expr()
.map(|expr| expr.into_inner());
}
if let ast::ExprKind::MacCall(mac) = expr.kind {
self.check_attributes(&expr.attrs);
self.collect_bang(mac, expr.span, AstFragmentKind::OptExpr)
.make_opt_expr()
.map(|expr| expr.into_inner())
} else {
Some({
noop_visit_expr(&mut expr, self);
expr
})
}
})
}
fn visit_pat(&mut self, pat: &mut P<ast::Pat>) {
match pat.kind {
PatKind::MacCall(_) => {}
_ => return noop_visit_pat(pat, self),
}
visit_clobber(pat, |mut pat| match mem::replace(&mut pat.kind, PatKind::Wild) {
PatKind::MacCall(mac) => {
self.collect_bang(mac, pat.span, AstFragmentKind::Pat).make_pat()
}
_ => unreachable!(),
});
}
fn flat_map_stmt(&mut self, stmt: ast::Stmt) -> SmallVec<[ast::Stmt; 1]> {
let mut stmt = configure!(self, stmt);
// we'll expand attributes on expressions separately
if !stmt.is_expr() {
if let Some(attr) = self.take_first_attr(&mut stmt) {
return self
.collect_attr(attr, Annotatable::Stmt(P(stmt)), AstFragmentKind::Stmts)
.make_stmts();
}
}
if let StmtKind::MacCall(mac) = stmt.kind {
let MacCallStmt { mac, style, attrs, tokens: _ } = mac.into_inner();
self.check_attributes(&attrs);
let mut placeholder =
self.collect_bang(mac, stmt.span, AstFragmentKind::Stmts).make_stmts();
// If this is a macro invocation with a semicolon, then apply that
// semicolon to the final statement produced by expansion.
if style == MacStmtStyle::Semicolon {
if let Some(stmt) = placeholder.pop() {
placeholder.push(stmt.add_trailing_semicolon());
}
}
return placeholder;
}
// The placeholder expander gives ids to statements, so we avoid folding the id here.
let ast::Stmt { id, kind, span } = stmt;
noop_flat_map_stmt_kind(kind, self)
.into_iter()
.map(|kind| ast::Stmt { id, kind, span })
.collect()
}
fn visit_block(&mut self, block: &mut P<Block>) {
let orig_dir_ownership = mem::replace(
&mut self.cx.current_expansion.dir_ownership,
DirOwnership::UnownedViaBlock,
);
noop_visit_block(block, self);
self.cx.current_expansion.dir_ownership = orig_dir_ownership;
}
fn flat_map_item(&mut self, item: P<ast::Item>) -> SmallVec<[P<ast::Item>; 1]> {
let mut item = configure!(self, item);
if let Some(attr) = self.take_first_attr(&mut item) {
return self
.collect_attr(attr, Annotatable::Item(item), AstFragmentKind::Items)
.make_items();
}
let mut attrs = mem::take(&mut item.attrs); // We do this to please borrowck.
let ident = item.ident;
let span = item.span;
match item.kind {
ast::ItemKind::MacCall(..) => {
item.attrs = attrs;
self.check_attributes(&item.attrs);
item.and_then(|item| match item.kind {
ItemKind::MacCall(mac) => {
self.collect_bang(mac, span, AstFragmentKind::Items).make_items()
}
_ => unreachable!(),
})
}
ast::ItemKind::Mod(_, ref mut mod_kind) if ident != Ident::invalid() => {
let (file_path, dir_path, dir_ownership) = match mod_kind {
ModKind::Loaded(_, inline, _) => {
// Inline `mod foo { ... }`, but we still need to push directories.
let (dir_path, dir_ownership) = mod_dir_path(
&self.cx.sess,
ident,
&attrs,
&self.cx.current_expansion.module,
self.cx.current_expansion.dir_ownership,
*inline,
);
item.attrs = attrs;
(None, dir_path, dir_ownership)
}
ModKind::Unloaded => {
// We have an outline `mod foo;` so we need to parse the file.
let old_attrs_len = attrs.len();
let ParsedExternalMod {
mut items,
inner_span,
file_path,
dir_path,
dir_ownership,
} = parse_external_mod(
&self.cx.sess,
ident,
span,
&self.cx.current_expansion.module,
self.cx.current_expansion.dir_ownership,
&mut attrs,
);
if let Some(extern_mod_loaded) = self.cx.extern_mod_loaded {
(attrs, items) = extern_mod_loaded(ident, attrs, items, inner_span);
}
*mod_kind = ModKind::Loaded(items, Inline::No, inner_span);
item.attrs = attrs;
if item.attrs.len() > old_attrs_len {
// If we loaded an out-of-line module and added some inner attributes,
// then we need to re-configure it and re-collect attributes for
// resolution and expansion.
item = configure!(self, item);
if let Some(attr) = self.take_first_attr(&mut item) {
return self
.collect_attr(
attr,
Annotatable::Item(item),
AstFragmentKind::Items,
)
.make_items();
}
}
(Some(file_path), dir_path, dir_ownership)
}
};
// Set the module info before we flat map.
let mut module = self.cx.current_expansion.module.with_dir_path(dir_path);
module.mod_path.push(ident);
if let Some(file_path) = file_path {
module.file_path_stack.push(file_path);
}
let orig_module =
mem::replace(&mut self.cx.current_expansion.module, Rc::new(module));
let orig_dir_ownership =
mem::replace(&mut self.cx.current_expansion.dir_ownership, dir_ownership);
let result = noop_flat_map_item(item, self);
// Restore the module info.
self.cx.current_expansion.dir_ownership = orig_dir_ownership;
self.cx.current_expansion.module = orig_module;
result
}
_ => {
item.attrs = attrs;
noop_flat_map_item(item, self)
}
}
}
fn flat_map_trait_item(&mut self, item: P<ast::AssocItem>) -> SmallVec<[P<ast::AssocItem>; 1]> {
let mut item = configure!(self, item);
if let Some(attr) = self.take_first_attr(&mut item) {
return self
.collect_attr(attr, Annotatable::TraitItem(item), AstFragmentKind::TraitItems)
.make_trait_items();
}
match item.kind {
ast::AssocItemKind::MacCall(..) => {
self.check_attributes(&item.attrs);
item.and_then(|item| match item.kind {
ast::AssocItemKind::MacCall(mac) => self
.collect_bang(mac, item.span, AstFragmentKind::TraitItems)
.make_trait_items(),
_ => unreachable!(),
})
}
_ => noop_flat_map_assoc_item(item, self),
}
}
fn flat_map_impl_item(&mut self, item: P<ast::AssocItem>) -> SmallVec<[P<ast::AssocItem>; 1]> {
let mut item = configure!(self, item);
if let Some(attr) = self.take_first_attr(&mut item) {
return self
.collect_attr(attr, Annotatable::ImplItem(item), AstFragmentKind::ImplItems)
.make_impl_items();
}
match item.kind {
ast::AssocItemKind::MacCall(..) => {
self.check_attributes(&item.attrs);
item.and_then(|item| match item.kind {
ast::AssocItemKind::MacCall(mac) => self
.collect_bang(mac, item.span, AstFragmentKind::ImplItems)
.make_impl_items(),
_ => unreachable!(),
})
}
_ => noop_flat_map_assoc_item(item, self),
}
}
fn visit_ty(&mut self, ty: &mut P<ast::Ty>) {
match ty.kind {
ast::TyKind::MacCall(_) => {}
_ => return noop_visit_ty(ty, self),
};
visit_clobber(ty, |mut ty| match mem::replace(&mut ty.kind, ast::TyKind::Err) {
ast::TyKind::MacCall(mac) => {
self.collect_bang(mac, ty.span, AstFragmentKind::Ty).make_ty()
}
_ => unreachable!(),
});
}
fn flat_map_foreign_item(
&mut self,
foreign_item: P<ast::ForeignItem>,
) -> SmallVec<[P<ast::ForeignItem>; 1]> {
let mut foreign_item = configure!(self, foreign_item);
if let Some(attr) = self.take_first_attr(&mut foreign_item) {
return self
.collect_attr(
attr,
Annotatable::ForeignItem(foreign_item),
AstFragmentKind::ForeignItems,
)
.make_foreign_items();
}
match foreign_item.kind {
ast::ForeignItemKind::MacCall(..) => {
self.check_attributes(&foreign_item.attrs);
foreign_item.and_then(|item| match item.kind {
ast::ForeignItemKind::MacCall(mac) => self
.collect_bang(mac, item.span, AstFragmentKind::ForeignItems)
.make_foreign_items(),
_ => unreachable!(),
})
}
_ => noop_flat_map_foreign_item(foreign_item, self),
}
}
fn flat_map_generic_param(
&mut self,
param: ast::GenericParam,
) -> SmallVec<[ast::GenericParam; 1]> {
let mut param = configure!(self, param);
if let Some(attr) = self.take_first_attr(&mut param) {
return self
.collect_attr(
attr,
Annotatable::GenericParam(param),
AstFragmentKind::GenericParams,
)
.make_generic_params();
}
noop_flat_map_generic_param(param, self)
}
fn visit_attribute(&mut self, at: &mut ast::Attribute) {
// turn `#[doc(include="filename")]` attributes into `#[doc(include(file="filename",
// contents="file contents")]` attributes
if !self.cx.sess.check_name(at, sym::doc) {
return noop_visit_attribute(at, self);
}
if let Some(list) = at.meta_item_list() {
if !list.iter().any(|it| it.has_name(sym::include)) {
return noop_visit_attribute(at, self);
}
let mut items = vec![];
for mut it in list {
if !it.has_name(sym::include) {
items.push({
noop_visit_meta_list_item(&mut it, self);
it
});
continue;
}
if let Some(file) = it.value_str() {
let err_count = self.cx.sess.parse_sess.span_diagnostic.err_count();
self.check_attributes(slice::from_ref(at));
if self.cx.sess.parse_sess.span_diagnostic.err_count() > err_count {
// avoid loading the file if they haven't enabled the feature
return noop_visit_attribute(at, self);
}
let filename = match self.cx.resolve_path(&*file.as_str(), it.span()) {
Ok(filename) => filename,
Err(mut err) => {
err.emit();
continue;
}
};
match self.cx.source_map().load_file(&filename) {
Ok(source_file) => {
let src = source_file
.src
.as_ref()
.expect("freshly loaded file should have a source");
let src_interned = Symbol::intern(src.as_str());
let include_info = vec![
ast::NestedMetaItem::MetaItem(attr::mk_name_value_item_str(
Ident::with_dummy_span(sym::file),
file,
DUMMY_SP,
)),
ast::NestedMetaItem::MetaItem(attr::mk_name_value_item_str(
Ident::with_dummy_span(sym::contents),
src_interned,
DUMMY_SP,
)),
];
let include_ident = Ident::with_dummy_span(sym::include);
let item = attr::mk_list_item(include_ident, include_info);
items.push(ast::NestedMetaItem::MetaItem(item));
}
Err(e) => {
let lit_span = it.name_value_literal_span().unwrap();
if e.kind() == ErrorKind::InvalidData {
self.cx
.struct_span_err(
lit_span,
&format!("{} wasn't a utf-8 file", filename.display()),
)
.span_label(lit_span, "contains invalid utf-8")
.emit();
} else {
let mut err = self.cx.struct_span_err(
lit_span,
&format!("couldn't read {}: {}", filename.display(), e),
);
err.span_label(lit_span, "couldn't read file");
err.emit();
}
}
}
} else {
let mut err = self
.cx
.struct_span_err(it.span(), "expected path to external documentation");
// Check if the user erroneously used `doc(include(...))` syntax.
let literal = it.meta_item_list().and_then(|list| {
if list.len() == 1 {
list[0].literal().map(|literal| &literal.kind)
} else {
None
}
});
let (path, applicability) = match &literal {
Some(LitKind::Str(path, ..)) => {
(path.to_string(), Applicability::MachineApplicable)
}
_ => (String::from("<path>"), Applicability::HasPlaceholders),
};
err.span_suggestion(
it.span(),
"provide a file path with `=`",
format!("include = \"{}\"", path),
applicability,
);
err.emit();
}
}
let meta = attr::mk_list_item(Ident::with_dummy_span(sym::doc), items);
*at = ast::Attribute {
kind: ast::AttrKind::Normal(
AttrItem { path: meta.path, args: meta.kind.mac_args(meta.span), tokens: None },
None,
),
span: at.span,
id: at.id,
style: at.style,
};
} else {
noop_visit_attribute(at, self)
}
}
fn visit_id(&mut self, id: &mut ast::NodeId) {
if self.monotonic {
debug_assert_eq!(*id, ast::DUMMY_NODE_ID);
*id = self.cx.resolver.next_node_id()
}
}
}
pub struct ExpansionConfig<'feat> {
pub crate_name: String,
pub features: Option<&'feat Features>,
pub recursion_limit: Limit,
pub trace_mac: bool,
pub should_test: bool, // If false, strip `#[test]` nodes
pub span_debug: bool, // If true, use verbose debugging for `proc_macro::Span`
pub proc_macro_backtrace: bool, // If true, show backtraces for proc-macro panics
}
impl<'feat> ExpansionConfig<'feat> {
pub fn default(crate_name: String) -> ExpansionConfig<'static> {
ExpansionConfig {
crate_name,
features: None,
recursion_limit: Limit::new(1024),
trace_mac: false,
should_test: false,
span_debug: false,
proc_macro_backtrace: false,
}
}
fn proc_macro_hygiene(&self) -> bool {
self.features.map_or(false, |features| features.proc_macro_hygiene)
}
}