rust/src/librustc/middle/astencode.rs
2015-08-24 05:35:34 -04:00

1626 lines
61 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(non_camel_case_types)]
// FIXME: remove this after snapshot, and Results are handled
#![allow(unused_must_use)]
use ast_map;
use metadata::common as c;
use metadata::cstore as cstore;
use session::Session;
use metadata::decoder;
use metadata::encoder as e;
use metadata::inline::{InlinedItem, InlinedItemRef};
use metadata::tydecode;
use metadata::tydecode::{DefIdSource, NominalType, TypeWithId};
use metadata::tydecode::{RegionParameter, ClosureSource};
use metadata::tyencode;
use middle::cast;
use middle::check_const::ConstQualif;
use middle::def;
use middle::def_id::{DefId, LOCAL_CRATE};
use middle::privacy::{AllPublic, LastMod};
use middle::region;
use middle::subst;
use middle::subst::VecPerParamSpace;
use middle::ty::{self, Ty};
use syntax::{ast, ast_util, codemap, fold};
use syntax::codemap::Span;
use syntax::fold::Folder;
use syntax::ptr::P;
use syntax;
use std::cell::Cell;
use std::io::SeekFrom;
use std::io::prelude::*;
use std::fmt::Debug;
use rbml::reader;
use rbml::writer::Encoder;
use rbml;
use serialize;
use serialize::{Decodable, Decoder, DecoderHelpers, Encodable};
use serialize::EncoderHelpers;
#[cfg(test)] use std::io::Cursor;
#[cfg(test)] use syntax::parse;
#[cfg(test)] use syntax::print::pprust;
struct DecodeContext<'a, 'b, 'tcx: 'a> {
tcx: &'a ty::ctxt<'tcx>,
cdata: &'b cstore::crate_metadata,
from_id_range: ast_util::IdRange,
to_id_range: ast_util::IdRange,
// Cache the last used filemap for translating spans as an optimization.
last_filemap_index: Cell<usize>,
}
trait tr {
fn tr(&self, dcx: &DecodeContext) -> Self;
}
trait tr_intern {
fn tr_intern(&self, dcx: &DecodeContext) -> DefId;
}
// ______________________________________________________________________
// Top-level methods.
pub fn encode_inlined_item(ecx: &e::EncodeContext,
rbml_w: &mut Encoder,
ii: InlinedItemRef) {
let id = match ii {
InlinedItemRef::Item(i) => i.id,
InlinedItemRef::Foreign(i) => i.id,
InlinedItemRef::TraitItem(_, ti) => ti.id,
InlinedItemRef::ImplItem(_, ii) => ii.id,
};
debug!("> Encoding inlined item: {} ({:?})",
ecx.tcx.map.path_to_string(id),
rbml_w.writer.seek(SeekFrom::Current(0)));
// Folding could be avoided with a smarter encoder.
let ii = simplify_ast(ii);
let id_range = ii.compute_id_range();
rbml_w.start_tag(c::tag_ast as usize);
id_range.encode(rbml_w);
encode_ast(rbml_w, &ii);
encode_side_tables_for_ii(ecx, rbml_w, &ii);
rbml_w.end_tag();
debug!("< Encoded inlined fn: {} ({:?})",
ecx.tcx.map.path_to_string(id),
rbml_w.writer.seek(SeekFrom::Current(0)));
}
impl<'a, 'b, 'c, 'tcx> ast_map::FoldOps for &'a DecodeContext<'b, 'c, 'tcx> {
fn new_id(&self, id: ast::NodeId) -> ast::NodeId {
if id == ast::DUMMY_NODE_ID {
// Used by ast_map to map the NodeInlinedParent.
self.tcx.sess.next_node_id()
} else {
self.tr_id(id)
}
}
fn new_def_id(&self, def_id: DefId) -> DefId {
self.tr_def_id(def_id)
}
fn new_span(&self, span: Span) -> Span {
self.tr_span(span)
}
}
/// Decodes an item from its AST in the cdata's metadata and adds it to the
/// ast-map.
pub fn decode_inlined_item<'tcx>(cdata: &cstore::crate_metadata,
tcx: &ty::ctxt<'tcx>,
path: Vec<ast_map::PathElem>,
par_doc: rbml::Doc)
-> Result<&'tcx InlinedItem, Vec<ast_map::PathElem>> {
match par_doc.opt_child(c::tag_ast) {
None => Err(path),
Some(ast_doc) => {
let mut path_as_str = None;
debug!("> Decoding inlined fn: {:?}::?",
{
// Do an Option dance to use the path after it is moved below.
let s = ast_map::path_to_string(path.iter().cloned());
path_as_str = Some(s);
path_as_str.as_ref().map(|x| &x[..])
});
let mut ast_dsr = reader::Decoder::new(ast_doc);
let from_id_range = Decodable::decode(&mut ast_dsr).unwrap();
let to_id_range = reserve_id_range(&tcx.sess, from_id_range);
let dcx = &DecodeContext {
cdata: cdata,
tcx: tcx,
from_id_range: from_id_range,
to_id_range: to_id_range,
last_filemap_index: Cell::new(0)
};
let raw_ii = decode_ast(ast_doc);
let ii = ast_map::map_decoded_item(&dcx.tcx.map, path, raw_ii, dcx);
let ident = match *ii {
InlinedItem::Item(ref i) => i.ident,
InlinedItem::Foreign(ref i) => i.ident,
InlinedItem::TraitItem(_, ref ti) => ti.ident,
InlinedItem::ImplItem(_, ref ii) => ii.ident
};
debug!("Fn named: {}", ident);
debug!("< Decoded inlined fn: {}::{}",
path_as_str.unwrap(),
ident);
region::resolve_inlined_item(&tcx.sess, &tcx.region_maps, ii);
decode_side_tables(dcx, ast_doc);
match *ii {
InlinedItem::Item(ref i) => {
debug!(">>> DECODED ITEM >>>\n{}\n<<< DECODED ITEM <<<",
syntax::print::pprust::item_to_string(&**i));
}
_ => { }
}
Ok(ii)
}
}
}
// ______________________________________________________________________
// Enumerating the IDs which appear in an AST
fn reserve_id_range(sess: &Session,
from_id_range: ast_util::IdRange) -> ast_util::IdRange {
// Handle the case of an empty range:
if from_id_range.empty() { return from_id_range; }
let cnt = from_id_range.max - from_id_range.min;
let to_id_min = sess.reserve_node_ids(cnt);
let to_id_max = to_id_min + cnt;
ast_util::IdRange { min: to_id_min, max: to_id_max }
}
impl<'a, 'b, 'tcx> DecodeContext<'a, 'b, 'tcx> {
/// Translates an internal id, meaning a node id that is known to refer to some part of the
/// item currently being inlined, such as a local variable or argument. All naked node-ids
/// that appear in types have this property, since if something might refer to an external item
/// we would use a def-id to allow for the possibility that the item resides in another crate.
pub fn tr_id(&self, id: ast::NodeId) -> ast::NodeId {
// from_id_range should be non-empty
assert!(!self.from_id_range.empty());
// Use wrapping arithmetic because otherwise it introduces control flow.
// Maybe we should just have the control flow? -- aatch
(id.wrapping_sub(self.from_id_range.min).wrapping_add(self.to_id_range.min))
}
/// Translates an EXTERNAL def-id, converting the crate number from the one used in the encoded
/// data to the current crate numbers.. By external, I mean that it be translated to a
/// reference to the item in its original crate, as opposed to being translated to a reference
/// to the inlined version of the item. This is typically, but not always, what you want,
/// because most def-ids refer to external things like types or other fns that may or may not
/// be inlined. Note that even when the inlined function is referencing itself recursively, we
/// would want `tr_def_id` for that reference--- conceptually the function calls the original,
/// non-inlined version, and trans deals with linking that recursive call to the inlined copy.
///
/// However, there are a *few* cases where def-ids are used but we know that the thing being
/// referenced is in fact *internal* to the item being inlined. In those cases, you should use
/// `tr_intern_def_id()` below.
pub fn tr_def_id(&self, did: DefId) -> DefId {
decoder::translate_def_id(self.cdata, did)
}
/// Translates an INTERNAL def-id, meaning a def-id that is
/// known to refer to some part of the item currently being
/// inlined. In that case, we want to convert the def-id to
/// refer to the current crate and to the new, inlined node-id.
pub fn tr_intern_def_id(&self, did: DefId) -> DefId {
assert_eq!(did.krate, LOCAL_CRATE);
DefId { krate: LOCAL_CRATE, node: self.tr_id(did.node) }
}
/// Translates a `Span` from an extern crate to the corresponding `Span`
/// within the local crate's codemap. `creader::import_codemap()` will
/// already have allocated any additionally needed FileMaps in the local
/// codemap as a side-effect of creating the crate_metadata's
/// `codemap_import_info`.
pub fn tr_span(&self, span: Span) -> Span {
let span = if span.lo > span.hi {
// Currently macro expansion sometimes produces invalid Span values
// where lo > hi. In order not to crash the compiler when trying to
// translate these values, let's transform them into something we
// can handle (and which will produce useful debug locations at
// least some of the time).
// This workaround is only necessary as long as macro expansion is
// not fixed. FIXME(#23480)
codemap::mk_sp(span.lo, span.lo)
} else {
span
};
let imported_filemaps = self.cdata.imported_filemaps(self.tcx.sess.codemap());
let filemap = {
// Optimize for the case that most spans within a translated item
// originate from the same filemap.
let last_filemap_index = self.last_filemap_index.get();
let last_filemap = &imported_filemaps[last_filemap_index];
if span.lo >= last_filemap.original_start_pos &&
span.lo <= last_filemap.original_end_pos &&
span.hi >= last_filemap.original_start_pos &&
span.hi <= last_filemap.original_end_pos {
last_filemap
} else {
let mut a = 0;
let mut b = imported_filemaps.len();
while b - a > 1 {
let m = (a + b) / 2;
if imported_filemaps[m].original_start_pos > span.lo {
b = m;
} else {
a = m;
}
}
self.last_filemap_index.set(a);
&imported_filemaps[a]
}
};
let lo = (span.lo - filemap.original_start_pos) +
filemap.translated_filemap.start_pos;
let hi = (span.hi - filemap.original_start_pos) +
filemap.translated_filemap.start_pos;
codemap::mk_sp(lo, hi)
}
}
impl tr_intern for DefId {
fn tr_intern(&self, dcx: &DecodeContext) -> DefId {
dcx.tr_intern_def_id(*self)
}
}
impl tr for DefId {
fn tr(&self, dcx: &DecodeContext) -> DefId {
dcx.tr_def_id(*self)
}
}
impl tr for Option<DefId> {
fn tr(&self, dcx: &DecodeContext) -> Option<DefId> {
self.map(|d| dcx.tr_def_id(d))
}
}
impl tr for Span {
fn tr(&self, dcx: &DecodeContext) -> Span {
dcx.tr_span(*self)
}
}
trait def_id_encoder_helpers {
fn emit_def_id(&mut self, did: DefId);
}
impl<S:serialize::Encoder> def_id_encoder_helpers for S
where <S as serialize::serialize::Encoder>::Error: Debug
{
fn emit_def_id(&mut self, did: DefId) {
did.encode(self).unwrap()
}
}
trait def_id_decoder_helpers {
fn read_def_id(&mut self, dcx: &DecodeContext) -> DefId;
fn read_def_id_nodcx(&mut self,
cdata: &cstore::crate_metadata) -> DefId;
}
impl<D:serialize::Decoder> def_id_decoder_helpers for D
where <D as serialize::serialize::Decoder>::Error: Debug
{
fn read_def_id(&mut self, dcx: &DecodeContext) -> DefId {
let did: DefId = Decodable::decode(self).unwrap();
did.tr(dcx)
}
fn read_def_id_nodcx(&mut self,
cdata: &cstore::crate_metadata)
-> DefId {
let did: DefId = Decodable::decode(self).unwrap();
decoder::translate_def_id(cdata, did)
}
}
// ______________________________________________________________________
// Encoding and decoding the AST itself
//
// When decoding, we have to renumber the AST so that the node ids that
// appear within are disjoint from the node ids in our existing ASTs.
// We also have to adjust the spans: for now we just insert a dummy span,
// but eventually we should add entries to the local codemap as required.
fn encode_ast(rbml_w: &mut Encoder, item: &InlinedItem) {
rbml_w.start_tag(c::tag_tree as usize);
item.encode(rbml_w);
rbml_w.end_tag();
}
struct NestedItemsDropper;
impl Folder for NestedItemsDropper {
fn fold_block(&mut self, blk: P<ast::Block>) -> P<ast::Block> {
blk.and_then(|ast::Block {id, stmts, expr, rules, span, ..}| {
let stmts_sans_items = stmts.into_iter().filter_map(|stmt| {
let use_stmt = match stmt.node {
ast::StmtExpr(_, _) | ast::StmtSemi(_, _) => true,
ast::StmtDecl(ref decl, _) => {
match decl.node {
ast::DeclLocal(_) => true,
ast::DeclItem(_) => false,
}
}
ast::StmtMac(..) => panic!("unexpanded macro in astencode")
};
if use_stmt {
Some(stmt)
} else {
None
}
}).collect();
let blk_sans_items = P(ast::Block {
stmts: stmts_sans_items,
expr: expr,
id: id,
rules: rules,
span: span,
});
fold::noop_fold_block(blk_sans_items, self)
})
}
}
// Produces a simplified copy of the AST which does not include things
// that we do not need to or do not want to export. For example, we
// do not include any nested items: if these nested items are to be
// inlined, their AST will be exported separately (this only makes
// sense because, in Rust, nested items are independent except for
// their visibility).
//
// As it happens, trans relies on the fact that we do not export
// nested items, as otherwise it would get confused when translating
// inlined items.
fn simplify_ast(ii: InlinedItemRef) -> InlinedItem {
let mut fld = NestedItemsDropper;
match ii {
// HACK we're not dropping items.
InlinedItemRef::Item(i) => {
InlinedItem::Item(fold::noop_fold_item(P(i.clone()), &mut fld)
.expect_one("expected one item"))
}
InlinedItemRef::TraitItem(d, ti) => {
InlinedItem::TraitItem(d,
fold::noop_fold_trait_item(P(ti.clone()), &mut fld)
.expect_one("noop_fold_trait_item must produce \
exactly one trait item"))
}
InlinedItemRef::ImplItem(d, ii) => {
InlinedItem::ImplItem(d,
fold::noop_fold_impl_item(P(ii.clone()), &mut fld)
.expect_one("noop_fold_impl_item must produce \
exactly one impl item"))
}
InlinedItemRef::Foreign(i) => {
InlinedItem::Foreign(fold::noop_fold_foreign_item(P(i.clone()), &mut fld))
}
}
}
fn decode_ast(par_doc: rbml::Doc) -> InlinedItem {
let chi_doc = par_doc.get(c::tag_tree as usize);
let mut d = reader::Decoder::new(chi_doc);
Decodable::decode(&mut d).unwrap()
}
// ______________________________________________________________________
// Encoding and decoding of ast::def
fn decode_def(dcx: &DecodeContext, dsr: &mut reader::Decoder) -> def::Def {
let def: def::Def = Decodable::decode(dsr).unwrap();
def.tr(dcx)
}
impl tr for def::Def {
fn tr(&self, dcx: &DecodeContext) -> def::Def {
match *self {
def::DefFn(did, is_ctor) => def::DefFn(did.tr(dcx), is_ctor),
def::DefMethod(did) => def::DefMethod(did.tr(dcx)),
def::DefSelfTy(opt_did, impl_ids) => { def::DefSelfTy(opt_did.map(|did| did.tr(dcx)),
impl_ids.map(|(nid1, nid2)| {
(dcx.tr_id(nid1),
dcx.tr_id(nid2))
})) }
def::DefMod(did) => { def::DefMod(did.tr(dcx)) }
def::DefForeignMod(did) => { def::DefForeignMod(did.tr(dcx)) }
def::DefStatic(did, m) => { def::DefStatic(did.tr(dcx), m) }
def::DefConst(did) => { def::DefConst(did.tr(dcx)) }
def::DefAssociatedConst(did) => def::DefAssociatedConst(did.tr(dcx)),
def::DefLocal(nid) => { def::DefLocal(dcx.tr_id(nid)) }
def::DefVariant(e_did, v_did, is_s) => {
def::DefVariant(e_did.tr(dcx), v_did.tr(dcx), is_s)
},
def::DefTrait(did) => def::DefTrait(did.tr(dcx)),
def::DefTy(did, is_enum) => def::DefTy(did.tr(dcx), is_enum),
def::DefAssociatedTy(trait_did, did) =>
def::DefAssociatedTy(trait_did.tr(dcx), did.tr(dcx)),
def::DefPrimTy(p) => def::DefPrimTy(p),
def::DefTyParam(s, index, def_id, n) => def::DefTyParam(s, index, def_id.tr(dcx), n),
def::DefUse(did) => def::DefUse(did.tr(dcx)),
def::DefUpvar(nid1, nid2) => {
def::DefUpvar(dcx.tr_id(nid1), dcx.tr_id(nid2))
}
def::DefStruct(did) => def::DefStruct(did.tr(dcx)),
def::DefRegion(nid) => def::DefRegion(dcx.tr_id(nid)),
def::DefLabel(nid) => def::DefLabel(dcx.tr_id(nid))
}
}
}
// ______________________________________________________________________
// Encoding and decoding of ancillary information
impl tr for ty::Region {
fn tr(&self, dcx: &DecodeContext) -> ty::Region {
match *self {
ty::ReLateBound(debruijn, br) => {
ty::ReLateBound(debruijn, br.tr(dcx))
}
ty::ReEarlyBound(data) => {
ty::ReEarlyBound(ty::EarlyBoundRegion {
param_id: dcx.tr_id(data.param_id),
space: data.space,
index: data.index,
name: data.name,
})
}
ty::ReScope(scope) => {
ty::ReScope(scope.tr(dcx))
}
ty::ReEmpty | ty::ReStatic | ty::ReInfer(..) => {
*self
}
ty::ReFree(ref fr) => {
ty::ReFree(fr.tr(dcx))
}
}
}
}
impl tr for ty::FreeRegion {
fn tr(&self, dcx: &DecodeContext) -> ty::FreeRegion {
ty::FreeRegion { scope: self.scope.tr(dcx),
bound_region: self.bound_region.tr(dcx) }
}
}
impl tr for region::CodeExtent {
fn tr(&self, dcx: &DecodeContext) -> region::CodeExtent {
self.map_id(|id| dcx.tr_id(id))
}
}
impl tr for region::DestructionScopeData {
fn tr(&self, dcx: &DecodeContext) -> region::DestructionScopeData {
region::DestructionScopeData { node_id: dcx.tr_id(self.node_id) }
}
}
impl tr for ty::BoundRegion {
fn tr(&self, dcx: &DecodeContext) -> ty::BoundRegion {
match *self {
ty::BrAnon(_) |
ty::BrFresh(_) |
ty::BrEnv => *self,
ty::BrNamed(id, ident) => ty::BrNamed(dcx.tr_def_id(id),
ident),
}
}
}
// ______________________________________________________________________
// Encoding and decoding of freevar information
fn encode_freevar_entry(rbml_w: &mut Encoder, fv: &ty::Freevar) {
(*fv).encode(rbml_w).unwrap();
}
trait rbml_decoder_helper {
fn read_freevar_entry(&mut self, dcx: &DecodeContext)
-> ty::Freevar;
fn read_capture_mode(&mut self) -> ast::CaptureClause;
}
impl<'a> rbml_decoder_helper for reader::Decoder<'a> {
fn read_freevar_entry(&mut self, dcx: &DecodeContext)
-> ty::Freevar {
let fv: ty::Freevar = Decodable::decode(self).unwrap();
fv.tr(dcx)
}
fn read_capture_mode(&mut self) -> ast::CaptureClause {
let cm: ast::CaptureClause = Decodable::decode(self).unwrap();
cm
}
}
impl tr for ty::Freevar {
fn tr(&self, dcx: &DecodeContext) -> ty::Freevar {
ty::Freevar {
def: self.def.tr(dcx),
span: self.span.tr(dcx),
}
}
}
impl tr for ty::UpvarBorrow {
fn tr(&self, dcx: &DecodeContext) -> ty::UpvarBorrow {
ty::UpvarBorrow {
kind: self.kind,
region: self.region.tr(dcx)
}
}
}
impl tr for ty::UpvarCapture {
fn tr(&self, dcx: &DecodeContext) -> ty::UpvarCapture {
match *self {
ty::UpvarCapture::ByValue => ty::UpvarCapture::ByValue,
ty::UpvarCapture::ByRef(ref data) => ty::UpvarCapture::ByRef(data.tr(dcx)),
}
}
}
// ______________________________________________________________________
// Encoding and decoding of MethodCallee
trait read_method_callee_helper<'tcx> {
fn read_method_callee<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> (u32, ty::MethodCallee<'tcx>);
}
fn encode_method_callee<'a, 'tcx>(ecx: &e::EncodeContext<'a, 'tcx>,
rbml_w: &mut Encoder,
autoderef: u32,
method: &ty::MethodCallee<'tcx>) {
use serialize::Encoder;
rbml_w.emit_struct("MethodCallee", 4, |rbml_w| {
rbml_w.emit_struct_field("autoderef", 0, |rbml_w| {
autoderef.encode(rbml_w)
});
rbml_w.emit_struct_field("def_id", 1, |rbml_w| {
Ok(rbml_w.emit_def_id(method.def_id))
});
rbml_w.emit_struct_field("ty", 2, |rbml_w| {
Ok(rbml_w.emit_ty(ecx, method.ty))
});
rbml_w.emit_struct_field("substs", 3, |rbml_w| {
Ok(rbml_w.emit_substs(ecx, &method.substs))
})
}).unwrap();
}
impl<'a, 'tcx> read_method_callee_helper<'tcx> for reader::Decoder<'a> {
fn read_method_callee<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> (u32, ty::MethodCallee<'tcx>) {
self.read_struct("MethodCallee", 4, |this| {
let autoderef = this.read_struct_field("autoderef", 0,
Decodable::decode).unwrap();
Ok((autoderef, ty::MethodCallee {
def_id: this.read_struct_field("def_id", 1, |this| {
Ok(this.read_def_id(dcx))
}).unwrap(),
ty: this.read_struct_field("ty", 2, |this| {
Ok(this.read_ty(dcx))
}).unwrap(),
substs: this.read_struct_field("substs", 3, |this| {
Ok(dcx.tcx.mk_substs(this.read_substs(dcx)))
}).unwrap()
}))
}).unwrap()
}
}
pub fn encode_closure_kind(ebml_w: &mut Encoder, kind: ty::ClosureKind) {
kind.encode(ebml_w).unwrap();
}
pub fn encode_cast_kind(ebml_w: &mut Encoder, kind: cast::CastKind) {
kind.encode(ebml_w).unwrap();
}
pub trait vtable_decoder_helpers<'tcx> {
fn read_vec_per_param_space<T, F>(&mut self, f: F) -> VecPerParamSpace<T> where
F: FnMut(&mut Self) -> T;
}
impl<'tcx, 'a> vtable_decoder_helpers<'tcx> for reader::Decoder<'a> {
fn read_vec_per_param_space<T, F>(&mut self, mut f: F) -> VecPerParamSpace<T> where
F: FnMut(&mut reader::Decoder<'a>) -> T,
{
let types = self.read_to_vec(|this| Ok(f(this))).unwrap();
let selfs = self.read_to_vec(|this| Ok(f(this))).unwrap();
let fns = self.read_to_vec(|this| Ok(f(this))).unwrap();
VecPerParamSpace::new(types, selfs, fns)
}
}
// ___________________________________________________________________________
//
fn encode_vec_per_param_space<T, F>(rbml_w: &mut Encoder,
v: &subst::VecPerParamSpace<T>,
mut f: F) where
F: FnMut(&mut Encoder, &T),
{
for &space in &subst::ParamSpace::all() {
rbml_w.emit_from_vec(v.get_slice(space),
|rbml_w, n| Ok(f(rbml_w, n))).unwrap();
}
}
// ______________________________________________________________________
// Encoding and decoding the side tables
trait get_ty_str_ctxt<'tcx> {
fn ty_str_ctxt<'a>(&'a self) -> tyencode::ctxt<'a, 'tcx>;
}
impl<'a, 'tcx> get_ty_str_ctxt<'tcx> for e::EncodeContext<'a, 'tcx> {
fn ty_str_ctxt<'b>(&'b self) -> tyencode::ctxt<'b, 'tcx> {
tyencode::ctxt {
diag: self.tcx.sess.diagnostic(),
ds: e::def_to_string,
tcx: self.tcx,
abbrevs: &self.type_abbrevs
}
}
}
trait rbml_writer_helpers<'tcx> {
fn emit_closure_type<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
closure_type: &ty::ClosureTy<'tcx>);
fn emit_ty<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, ty: Ty<'tcx>);
fn emit_tys<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, tys: &[Ty<'tcx>]);
fn emit_type_param_def<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
type_param_def: &ty::TypeParameterDef<'tcx>);
fn emit_predicate<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
predicate: &ty::Predicate<'tcx>);
fn emit_trait_ref<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
ty: &ty::TraitRef<'tcx>);
fn emit_type_scheme<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
type_scheme: ty::TypeScheme<'tcx>);
fn emit_substs<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
substs: &subst::Substs<'tcx>);
fn emit_existential_bounds<'b>(&mut self, ecx: &e::EncodeContext<'b,'tcx>,
bounds: &ty::ExistentialBounds<'tcx>);
fn emit_builtin_bounds(&mut self, ecx: &e::EncodeContext, bounds: &ty::BuiltinBounds);
fn emit_auto_adjustment<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
adj: &ty::AutoAdjustment<'tcx>);
fn emit_autoref<'a>(&mut self, autoref: &ty::AutoRef<'tcx>);
fn emit_auto_deref_ref<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
auto_deref_ref: &ty::AutoDerefRef<'tcx>);
}
impl<'a, 'tcx> rbml_writer_helpers<'tcx> for Encoder<'a> {
fn emit_closure_type<'b>(&mut self,
ecx: &e::EncodeContext<'b, 'tcx>,
closure_type: &ty::ClosureTy<'tcx>) {
self.emit_opaque(|this| {
Ok(e::write_closure_type(ecx, this, closure_type))
});
}
fn emit_ty<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, ty: Ty<'tcx>) {
self.emit_opaque(|this| Ok(e::write_type(ecx, this, ty)));
}
fn emit_tys<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, tys: &[Ty<'tcx>]) {
self.emit_from_vec(tys, |this, ty| Ok(this.emit_ty(ecx, *ty)));
}
fn emit_trait_ref<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
trait_ref: &ty::TraitRef<'tcx>) {
self.emit_opaque(|this| Ok(e::write_trait_ref(ecx, this, trait_ref)));
}
fn emit_type_param_def<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
type_param_def: &ty::TypeParameterDef<'tcx>) {
self.emit_opaque(|this| {
Ok(tyencode::enc_type_param_def(this,
&ecx.ty_str_ctxt(),
type_param_def))
});
}
fn emit_predicate<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
predicate: &ty::Predicate<'tcx>) {
self.emit_opaque(|this| {
Ok(tyencode::enc_predicate(this,
&ecx.ty_str_ctxt(),
predicate))
});
}
fn emit_type_scheme<'b>(&mut self,
ecx: &e::EncodeContext<'b, 'tcx>,
type_scheme: ty::TypeScheme<'tcx>) {
use serialize::Encoder;
self.emit_struct("TypeScheme", 2, |this| {
this.emit_struct_field("generics", 0, |this| {
this.emit_struct("Generics", 2, |this| {
this.emit_struct_field("types", 0, |this| {
Ok(encode_vec_per_param_space(
this, &type_scheme.generics.types,
|this, def| this.emit_type_param_def(ecx, def)))
});
this.emit_struct_field("regions", 1, |this| {
Ok(encode_vec_per_param_space(
this, &type_scheme.generics.regions,
|this, def| def.encode(this).unwrap()))
})
})
});
this.emit_struct_field("ty", 1, |this| {
Ok(this.emit_ty(ecx, type_scheme.ty))
})
});
}
fn emit_existential_bounds<'b>(&mut self, ecx: &e::EncodeContext<'b,'tcx>,
bounds: &ty::ExistentialBounds<'tcx>) {
self.emit_opaque(|this| Ok(tyencode::enc_existential_bounds(this,
&ecx.ty_str_ctxt(),
bounds)));
}
fn emit_builtin_bounds(&mut self, ecx: &e::EncodeContext, bounds: &ty::BuiltinBounds) {
self.emit_opaque(|this| Ok(tyencode::enc_builtin_bounds(this,
&ecx.ty_str_ctxt(),
bounds)));
}
fn emit_substs<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
substs: &subst::Substs<'tcx>) {
self.emit_opaque(|this| Ok(tyencode::enc_substs(this,
&ecx.ty_str_ctxt(),
substs)));
}
fn emit_auto_adjustment<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
adj: &ty::AutoAdjustment<'tcx>) {
use serialize::Encoder;
self.emit_enum("AutoAdjustment", |this| {
match *adj {
ty::AdjustReifyFnPointer=> {
this.emit_enum_variant("AdjustReifyFnPointer", 1, 0, |_| Ok(()))
}
ty::AdjustUnsafeFnPointer => {
this.emit_enum_variant("AdjustUnsafeFnPointer", 2, 0, |_| {
Ok(())
})
}
ty::AdjustDerefRef(ref auto_deref_ref) => {
this.emit_enum_variant("AdjustDerefRef", 3, 2, |this| {
this.emit_enum_variant_arg(0,
|this| Ok(this.emit_auto_deref_ref(ecx, auto_deref_ref)))
})
}
}
});
}
fn emit_autoref<'b>(&mut self, autoref: &ty::AutoRef<'tcx>) {
use serialize::Encoder;
self.emit_enum("AutoRef", |this| {
match autoref {
&ty::AutoPtr(r, m) => {
this.emit_enum_variant("AutoPtr", 0, 2, |this| {
this.emit_enum_variant_arg(0, |this| r.encode(this));
this.emit_enum_variant_arg(1, |this| m.encode(this))
})
}
&ty::AutoUnsafe(m) => {
this.emit_enum_variant("AutoUnsafe", 1, 1, |this| {
this.emit_enum_variant_arg(0, |this| m.encode(this))
})
}
}
});
}
fn emit_auto_deref_ref<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
auto_deref_ref: &ty::AutoDerefRef<'tcx>) {
use serialize::Encoder;
self.emit_struct("AutoDerefRef", 2, |this| {
this.emit_struct_field("autoderefs", 0, |this| auto_deref_ref.autoderefs.encode(this));
this.emit_struct_field("autoref", 1, |this| {
this.emit_option(|this| {
match auto_deref_ref.autoref {
None => this.emit_option_none(),
Some(ref a) => this.emit_option_some(|this| Ok(this.emit_autoref(a))),
}
})
});
this.emit_struct_field("unsize", 2, |this| {
this.emit_option(|this| {
match auto_deref_ref.unsize {
None => this.emit_option_none(),
Some(target) => this.emit_option_some(|this| {
Ok(this.emit_ty(ecx, target))
})
}
})
})
});
}
}
trait write_tag_and_id {
fn tag<F>(&mut self, tag_id: c::astencode_tag, f: F) where F: FnOnce(&mut Self);
fn id(&mut self, id: ast::NodeId);
}
impl<'a> write_tag_and_id for Encoder<'a> {
fn tag<F>(&mut self,
tag_id: c::astencode_tag,
f: F) where
F: FnOnce(&mut Encoder<'a>),
{
self.start_tag(tag_id as usize);
f(self);
self.end_tag();
}
fn id(&mut self, id: ast::NodeId) {
id.encode(self).unwrap();
}
}
struct SideTableEncodingIdVisitor<'a, 'b:'a, 'c:'a, 'tcx:'c> {
ecx: &'a e::EncodeContext<'c, 'tcx>,
rbml_w: &'a mut Encoder<'b>,
}
impl<'a, 'b, 'c, 'tcx> ast_util::IdVisitingOperation for
SideTableEncodingIdVisitor<'a, 'b, 'c, 'tcx> {
fn visit_id(&mut self, id: ast::NodeId) {
encode_side_tables_for_id(self.ecx, self.rbml_w, id)
}
}
fn encode_side_tables_for_ii(ecx: &e::EncodeContext,
rbml_w: &mut Encoder,
ii: &InlinedItem) {
rbml_w.start_tag(c::tag_table as usize);
ii.visit_ids(&mut SideTableEncodingIdVisitor {
ecx: ecx,
rbml_w: rbml_w
});
rbml_w.end_tag();
}
fn encode_side_tables_for_id(ecx: &e::EncodeContext,
rbml_w: &mut Encoder,
id: ast::NodeId) {
let tcx = ecx.tcx;
debug!("Encoding side tables for id {}", id);
if let Some(def) = tcx.def_map.borrow().get(&id).map(|d| d.full_def()) {
rbml_w.tag(c::tag_table_def, |rbml_w| {
rbml_w.id(id);
def.encode(rbml_w).unwrap();
})
}
if let Some(ty) = tcx.node_types().get(&id) {
rbml_w.tag(c::tag_table_node_type, |rbml_w| {
rbml_w.id(id);
rbml_w.emit_ty(ecx, *ty);
})
}
if let Some(item_substs) = tcx.tables.borrow().item_substs.get(&id) {
rbml_w.tag(c::tag_table_item_subst, |rbml_w| {
rbml_w.id(id);
rbml_w.emit_substs(ecx, &item_substs.substs);
})
}
if let Some(fv) = tcx.freevars.borrow().get(&id) {
rbml_w.tag(c::tag_table_freevars, |rbml_w| {
rbml_w.id(id);
rbml_w.emit_from_vec(fv, |rbml_w, fv_entry| {
Ok(encode_freevar_entry(rbml_w, fv_entry))
});
});
for freevar in fv {
rbml_w.tag(c::tag_table_upvar_capture_map, |rbml_w| {
rbml_w.id(id);
let var_id = freevar.def.def_id().node;
let upvar_id = ty::UpvarId {
var_id: var_id,
closure_expr_id: id
};
let upvar_capture = tcx.tables
.borrow()
.upvar_capture_map
.get(&upvar_id)
.unwrap()
.clone();
var_id.encode(rbml_w);
upvar_capture.encode(rbml_w);
})
}
}
let lid = DefId { krate: LOCAL_CRATE, node: id };
if let Some(type_scheme) = tcx.tcache.borrow().get(&lid) {
rbml_w.tag(c::tag_table_tcache, |rbml_w| {
rbml_w.id(id);
rbml_w.emit_type_scheme(ecx, type_scheme.clone());
})
}
if let Some(type_param_def) = tcx.ty_param_defs.borrow().get(&id) {
rbml_w.tag(c::tag_table_param_defs, |rbml_w| {
rbml_w.id(id);
rbml_w.emit_type_param_def(ecx, type_param_def)
})
}
let method_call = ty::MethodCall::expr(id);
if let Some(method) = tcx.tables.borrow().method_map.get(&method_call) {
rbml_w.tag(c::tag_table_method_map, |rbml_w| {
rbml_w.id(id);
encode_method_callee(ecx, rbml_w, method_call.autoderef, method)
})
}
if let Some(adjustment) = tcx.tables.borrow().adjustments.get(&id) {
match *adjustment {
ty::AdjustDerefRef(ref adj) => {
for autoderef in 0..adj.autoderefs {
let method_call = ty::MethodCall::autoderef(id, autoderef as u32);
if let Some(method) = tcx.tables.borrow().method_map.get(&method_call) {
rbml_w.tag(c::tag_table_method_map, |rbml_w| {
rbml_w.id(id);
encode_method_callee(ecx, rbml_w,
method_call.autoderef, method)
})
}
}
}
_ => {}
}
rbml_w.tag(c::tag_table_adjustments, |rbml_w| {
rbml_w.id(id);
rbml_w.emit_auto_adjustment(ecx, adjustment);
})
}
if let Some(closure_type) = tcx.tables.borrow().closure_tys.get(&DefId::local(id)) {
rbml_w.tag(c::tag_table_closure_tys, |rbml_w| {
rbml_w.id(id);
rbml_w.emit_closure_type(ecx, closure_type);
})
}
if let Some(closure_kind) = tcx.tables.borrow().closure_kinds.get(&DefId::local(id)) {
rbml_w.tag(c::tag_table_closure_kinds, |rbml_w| {
rbml_w.id(id);
encode_closure_kind(rbml_w, *closure_kind)
})
}
if let Some(cast_kind) = tcx.cast_kinds.borrow().get(&id) {
rbml_w.tag(c::tag_table_cast_kinds, |rbml_w| {
rbml_w.id(id);
encode_cast_kind(rbml_w, *cast_kind)
})
}
if let Some(qualif) = tcx.const_qualif_map.borrow().get(&id) {
rbml_w.tag(c::tag_table_const_qualif, |rbml_w| {
rbml_w.id(id);
qualif.encode(rbml_w).unwrap()
})
}
}
trait doc_decoder_helpers: Sized {
fn as_int(&self) -> isize;
fn opt_child(&self, tag: c::astencode_tag) -> Option<Self>;
}
impl<'a> doc_decoder_helpers for rbml::Doc<'a> {
fn as_int(&self) -> isize { reader::doc_as_u64(*self) as isize }
fn opt_child(&self, tag: c::astencode_tag) -> Option<rbml::Doc<'a>> {
reader::maybe_get_doc(*self, tag as usize)
}
}
trait rbml_decoder_decoder_helpers<'tcx> {
fn read_ty_encoded<'a, 'b, F, R>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>,
f: F) -> R
where F: for<'x> FnOnce(&mut tydecode::TyDecoder<'x, 'tcx>) -> R;
fn read_ty<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> Ty<'tcx>;
fn read_tys<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> Vec<Ty<'tcx>>;
fn read_trait_ref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::TraitRef<'tcx>;
fn read_poly_trait_ref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::PolyTraitRef<'tcx>;
fn read_type_param_def<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::TypeParameterDef<'tcx>;
fn read_predicate<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::Predicate<'tcx>;
fn read_type_scheme<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::TypeScheme<'tcx>;
fn read_existential_bounds<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::ExistentialBounds<'tcx>;
fn read_substs<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> subst::Substs<'tcx>;
fn read_auto_adjustment<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::AutoAdjustment<'tcx>;
fn read_cast_kind<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> cast::CastKind;
fn read_closure_kind<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::ClosureKind;
fn read_closure_ty<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::ClosureTy<'tcx>;
fn read_auto_deref_ref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::AutoDerefRef<'tcx>;
fn read_autoref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::AutoRef<'tcx>;
fn convert_def_id(&mut self,
dcx: &DecodeContext,
source: DefIdSource,
did: DefId)
-> DefId;
// Versions of the type reading functions that don't need the full
// DecodeContext.
fn read_ty_nodcx(&mut self,
tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata) -> Ty<'tcx>;
fn read_tys_nodcx(&mut self,
tcx: &ty::ctxt<'tcx>,
cdata: &cstore::crate_metadata) -> Vec<Ty<'tcx>>;
fn read_substs_nodcx(&mut self, tcx: &ty::ctxt<'tcx>,
cdata: &cstore::crate_metadata)
-> subst::Substs<'tcx>;
}
impl<'a, 'tcx> rbml_decoder_decoder_helpers<'tcx> for reader::Decoder<'a> {
fn read_ty_nodcx(&mut self,
tcx: &ty::ctxt<'tcx>,
cdata: &cstore::crate_metadata)
-> Ty<'tcx> {
self.read_opaque(|_, doc| {
Ok(
tydecode::TyDecoder::with_doc(tcx, cdata.cnum, doc,
&mut |_, id| decoder::translate_def_id(cdata, id))
.parse_ty())
}).unwrap()
}
fn read_tys_nodcx(&mut self,
tcx: &ty::ctxt<'tcx>,
cdata: &cstore::crate_metadata) -> Vec<Ty<'tcx>> {
self.read_to_vec(|this| Ok(this.read_ty_nodcx(tcx, cdata)) )
.unwrap()
.into_iter()
.collect()
}
fn read_substs_nodcx(&mut self,
tcx: &ty::ctxt<'tcx>,
cdata: &cstore::crate_metadata)
-> subst::Substs<'tcx>
{
self.read_opaque(|_, doc| {
Ok(
tydecode::TyDecoder::with_doc(tcx, cdata.cnum, doc,
&mut |_, id| decoder::translate_def_id(cdata, id))
.parse_substs())
}).unwrap()
}
fn read_ty_encoded<'b, 'c, F, R>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>, op: F) -> R
where F: for<'x> FnOnce(&mut tydecode::TyDecoder<'x,'tcx>) -> R
{
return self.read_opaque(|this, doc| {
debug!("read_ty_encoded({})", type_string(doc));
Ok(op(
&mut tydecode::TyDecoder::with_doc(
dcx.tcx, dcx.cdata.cnum, doc,
&mut |s, a| this.convert_def_id(dcx, s, a))))
}).unwrap();
fn type_string(doc: rbml::Doc) -> String {
let mut str = String::new();
for i in doc.start..doc.end {
str.push(doc.data[i] as char);
}
str
}
}
fn read_ty<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> Ty<'tcx> {
// Note: regions types embed local node ids. In principle, we
// should translate these node ids into the new decode
// context. However, we do not bother, because region types
// are not used during trans.
return self.read_ty_encoded(dcx, |decoder| decoder.parse_ty());
}
fn read_tys<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> Vec<Ty<'tcx>> {
self.read_to_vec(|this| Ok(this.read_ty(dcx))).unwrap().into_iter().collect()
}
fn read_trait_ref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::TraitRef<'tcx> {
self.read_ty_encoded(dcx, |decoder| decoder.parse_trait_ref())
}
fn read_poly_trait_ref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::PolyTraitRef<'tcx> {
ty::Binder(self.read_ty_encoded(dcx, |decoder| decoder.parse_trait_ref()))
}
fn read_type_param_def<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::TypeParameterDef<'tcx> {
self.read_ty_encoded(dcx, |decoder| decoder.parse_type_param_def())
}
fn read_predicate<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::Predicate<'tcx>
{
self.read_ty_encoded(dcx, |decoder| decoder.parse_predicate())
}
fn read_type_scheme<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::TypeScheme<'tcx> {
self.read_struct("TypeScheme", 3, |this| {
Ok(ty::TypeScheme {
generics: this.read_struct_field("generics", 0, |this| {
this.read_struct("Generics", 2, |this| {
Ok(ty::Generics {
types:
this.read_struct_field("types", 0, |this| {
Ok(this.read_vec_per_param_space(
|this| this.read_type_param_def(dcx)))
}).unwrap(),
regions:
this.read_struct_field("regions", 1, |this| {
Ok(this.read_vec_per_param_space(
|this| Decodable::decode(this).unwrap()))
}).unwrap(),
})
})
}).unwrap(),
ty: this.read_struct_field("ty", 1, |this| {
Ok(this.read_ty(dcx))
}).unwrap()
})
}).unwrap()
}
fn read_existential_bounds<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::ExistentialBounds<'tcx>
{
self.read_ty_encoded(dcx, |decoder| decoder.parse_existential_bounds())
}
fn read_substs<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> subst::Substs<'tcx> {
self.read_opaque(|this, doc| {
Ok(tydecode::TyDecoder::with_doc(dcx.tcx, dcx.cdata.cnum, doc,
&mut |s, a| this.convert_def_id(dcx, s, a))
.parse_substs())
}).unwrap()
}
fn read_auto_adjustment<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::AutoAdjustment<'tcx> {
self.read_enum("AutoAdjustment", |this| {
let variants = ["AdjustReifyFnPointer", "AdjustUnsafeFnPointer", "AdjustDerefRef"];
this.read_enum_variant(&variants, |this, i| {
Ok(match i {
1 => ty::AdjustReifyFnPointer,
2 => ty::AdjustUnsafeFnPointer,
3 => {
let auto_deref_ref: ty::AutoDerefRef =
this.read_enum_variant_arg(0,
|this| Ok(this.read_auto_deref_ref(dcx))).unwrap();
ty::AdjustDerefRef(auto_deref_ref)
}
_ => panic!("bad enum variant for ty::AutoAdjustment")
})
})
}).unwrap()
}
fn read_auto_deref_ref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::AutoDerefRef<'tcx> {
self.read_struct("AutoDerefRef", 2, |this| {
Ok(ty::AutoDerefRef {
autoderefs: this.read_struct_field("autoderefs", 0, |this| {
Decodable::decode(this)
}).unwrap(),
autoref: this.read_struct_field("autoref", 1, |this| {
this.read_option(|this, b| {
if b {
Ok(Some(this.read_autoref(dcx)))
} else {
Ok(None)
}
})
}).unwrap(),
unsize: this.read_struct_field("unsize", 2, |this| {
this.read_option(|this, b| {
if b {
Ok(Some(this.read_ty(dcx)))
} else {
Ok(None)
}
})
}).unwrap(),
})
}).unwrap()
}
fn read_autoref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::AutoRef<'tcx> {
self.read_enum("AutoRef", |this| {
let variants = ["AutoPtr", "AutoUnsafe"];
this.read_enum_variant(&variants, |this, i| {
Ok(match i {
0 => {
let r: ty::Region =
this.read_enum_variant_arg(0, |this| Decodable::decode(this)).unwrap();
let m: ast::Mutability =
this.read_enum_variant_arg(1, |this| Decodable::decode(this)).unwrap();
ty::AutoPtr(dcx.tcx.mk_region(r.tr(dcx)), m)
}
1 => {
let m: ast::Mutability =
this.read_enum_variant_arg(0, |this| Decodable::decode(this)).unwrap();
ty::AutoUnsafe(m)
}
_ => panic!("bad enum variant for ty::AutoRef")
})
})
}).unwrap()
}
fn read_cast_kind<'b, 'c>(&mut self, _dcx: &DecodeContext<'b, 'c, 'tcx>)
-> cast::CastKind
{
Decodable::decode(self).unwrap()
}
fn read_closure_kind<'b, 'c>(&mut self, _dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::ClosureKind
{
Decodable::decode(self).unwrap()
}
fn read_closure_ty<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::ClosureTy<'tcx>
{
self.read_ty_encoded(dcx, |decoder| decoder.parse_closure_ty())
}
/// Converts a def-id that appears in a type. The correct
/// translation will depend on what kind of def-id this is.
/// This is a subtle point: type definitions are not
/// inlined into the current crate, so if the def-id names
/// a nominal type or type alias, then it should be
/// translated to refer to the source crate.
///
/// However, *type parameters* are cloned along with the function
/// they are attached to. So we should translate those def-ids
/// to refer to the new, cloned copy of the type parameter.
/// We only see references to free type parameters in the body of
/// an inlined function. In such cases, we need the def-id to
/// be a local id so that the TypeContents code is able to lookup
/// the relevant info in the ty_param_defs table.
///
/// *Region parameters*, unfortunately, are another kettle of fish.
/// In such cases, def_id's can appear in types to distinguish
/// shadowed bound regions and so forth. It doesn't actually
/// matter so much what we do to these, since regions are erased
/// at trans time, but it's good to keep them consistent just in
/// case. We translate them with `tr_def_id()` which will map
/// the crate numbers back to the original source crate.
///
/// Unboxed closures are cloned along with the function being
/// inlined, and all side tables use interned node IDs, so we
/// translate their def IDs accordingly.
///
/// It'd be really nice to refactor the type repr to not include
/// def-ids so that all these distinctions were unnecessary.
fn convert_def_id(&mut self,
dcx: &DecodeContext,
source: tydecode::DefIdSource,
did: DefId)
-> DefId {
let r = match source {
NominalType | TypeWithId | RegionParameter => dcx.tr_def_id(did),
ClosureSource => dcx.tr_intern_def_id(did)
};
debug!("convert_def_id(source={:?}, did={:?})={:?}", source, did, r);
return r;
}
}
fn decode_side_tables(dcx: &DecodeContext,
ast_doc: rbml::Doc) {
let tbl_doc = ast_doc.get(c::tag_table as usize);
for (tag, entry_doc) in reader::docs(tbl_doc) {
let mut entry_dsr = reader::Decoder::new(entry_doc);
let id0: ast::NodeId = Decodable::decode(&mut entry_dsr).unwrap();
let id = dcx.tr_id(id0);
debug!(">> Side table document with tag 0x{:x} \
found for id {} (orig {})",
tag, id, id0);
let tag = tag as u32;
let decoded_tag: Option<c::astencode_tag> = c::astencode_tag::from_u32(tag);
match decoded_tag {
None => {
dcx.tcx.sess.bug(
&format!("unknown tag found in side tables: {:x}",
tag));
}
Some(value) => {
let val_dsr = &mut entry_dsr;
match value {
c::tag_table_def => {
let def = decode_def(dcx, val_dsr);
dcx.tcx.def_map.borrow_mut().insert(id, def::PathResolution {
base_def: def,
// This doesn't matter cross-crate.
last_private: LastMod(AllPublic),
depth: 0
});
}
c::tag_table_node_type => {
let ty = val_dsr.read_ty(dcx);
debug!("inserting ty for node {}: {:?}",
id, ty);
dcx.tcx.node_type_insert(id, ty);
}
c::tag_table_item_subst => {
let item_substs = ty::ItemSubsts {
substs: val_dsr.read_substs(dcx)
};
dcx.tcx.tables.borrow_mut().item_substs.insert(
id, item_substs);
}
c::tag_table_freevars => {
let fv_info = val_dsr.read_to_vec(|val_dsr| {
Ok(val_dsr.read_freevar_entry(dcx))
}).unwrap().into_iter().collect();
dcx.tcx.freevars.borrow_mut().insert(id, fv_info);
}
c::tag_table_upvar_capture_map => {
let var_id: ast::NodeId = Decodable::decode(val_dsr).unwrap();
let upvar_id = ty::UpvarId {
var_id: dcx.tr_id(var_id),
closure_expr_id: id
};
let ub: ty::UpvarCapture = Decodable::decode(val_dsr).unwrap();
dcx.tcx.tables.borrow_mut().upvar_capture_map.insert(upvar_id, ub.tr(dcx));
}
c::tag_table_tcache => {
let type_scheme = val_dsr.read_type_scheme(dcx);
let lid = DefId { krate: LOCAL_CRATE, node: id };
dcx.tcx.register_item_type(lid, type_scheme);
}
c::tag_table_param_defs => {
let bounds = val_dsr.read_type_param_def(dcx);
dcx.tcx.ty_param_defs.borrow_mut().insert(id, bounds);
}
c::tag_table_method_map => {
let (autoderef, method) = val_dsr.read_method_callee(dcx);
let method_call = ty::MethodCall {
expr_id: id,
autoderef: autoderef
};
dcx.tcx.tables.borrow_mut().method_map.insert(method_call, method);
}
c::tag_table_adjustments => {
let adj: ty::AutoAdjustment = val_dsr.read_auto_adjustment(dcx);
dcx.tcx.tables.borrow_mut().adjustments.insert(id, adj);
}
c::tag_table_closure_tys => {
let closure_ty =
val_dsr.read_closure_ty(dcx);
dcx.tcx.tables.borrow_mut().closure_tys.insert(DefId::local(id),
closure_ty);
}
c::tag_table_closure_kinds => {
let closure_kind =
val_dsr.read_closure_kind(dcx);
dcx.tcx.tables.borrow_mut().closure_kinds.insert(DefId::local(id),
closure_kind);
}
c::tag_table_cast_kinds => {
let cast_kind =
val_dsr.read_cast_kind(dcx);
dcx.tcx.cast_kinds.borrow_mut().insert(id, cast_kind);
}
c::tag_table_const_qualif => {
let qualif: ConstQualif = Decodable::decode(val_dsr).unwrap();
dcx.tcx.const_qualif_map.borrow_mut().insert(id, qualif);
}
_ => {
dcx.tcx.sess.bug(
&format!("unknown tag found in side tables: {:x}",
tag));
}
}
}
}
debug!(">< Side table doc loaded");
}
}
// ______________________________________________________________________
// Testing of astencode_gen
#[cfg(test)]
fn encode_item_ast(rbml_w: &mut Encoder, item: &ast::Item) {
rbml_w.start_tag(c::tag_tree as usize);
(*item).encode(rbml_w);
rbml_w.end_tag();
}
#[cfg(test)]
fn decode_item_ast(par_doc: rbml::Doc) -> ast::Item {
let chi_doc = par_doc.get(c::tag_tree as usize);
let mut d = reader::Decoder::new(chi_doc);
Decodable::decode(&mut d).unwrap()
}
#[cfg(test)]
trait FakeExtCtxt {
fn call_site(&self) -> codemap::Span;
fn cfg(&self) -> ast::CrateConfig;
fn ident_of(&self, st: &str) -> ast::Ident;
fn name_of(&self, st: &str) -> ast::Name;
fn parse_sess(&self) -> &parse::ParseSess;
}
#[cfg(test)]
impl FakeExtCtxt for parse::ParseSess {
fn call_site(&self) -> codemap::Span {
codemap::Span {
lo: codemap::BytePos(0),
hi: codemap::BytePos(0),
expn_id: codemap::NO_EXPANSION,
}
}
fn cfg(&self) -> ast::CrateConfig { Vec::new() }
fn ident_of(&self, st: &str) -> ast::Ident {
parse::token::str_to_ident(st)
}
fn name_of(&self, st: &str) -> ast::Name {
parse::token::intern(st)
}
fn parse_sess(&self) -> &parse::ParseSess { self }
}
#[cfg(test)]
fn mk_ctxt() -> parse::ParseSess {
parse::ParseSess::new()
}
#[cfg(test)]
fn roundtrip(in_item: Option<P<ast::Item>>) {
let in_item = in_item.unwrap();
let mut wr = Cursor::new(Vec::new());
encode_item_ast(&mut Encoder::new(&mut wr), &*in_item);
let rbml_doc = rbml::Doc::new(wr.get_ref());
let out_item = decode_item_ast(rbml_doc);
assert!(*in_item == out_item);
}
#[test]
fn test_basic() {
let cx = mk_ctxt();
roundtrip(quote_item!(&cx,
fn foo() {}
));
}
#[test]
fn test_smalltalk() {
let cx = mk_ctxt();
roundtrip(quote_item!(&cx,
fn foo() -> isize { 3 + 4 } // first smalltalk program ever executed.
));
}
#[test]
fn test_more() {
let cx = mk_ctxt();
roundtrip(quote_item!(&cx,
fn foo(x: usize, y: usize) -> usize {
let z = x + y;
return z;
}
));
}
#[test]
fn test_simplification() {
let cx = mk_ctxt();
let item = quote_item!(&cx,
fn new_int_alist<B>() -> alist<isize, B> {
fn eq_int(a: isize, b: isize) -> bool { a == b }
return alist {eq_fn: eq_int, data: Vec::new()};
}
).unwrap();
let item_in = InlinedItemRef::Item(&*item);
let item_out = simplify_ast(item_in);
let item_exp = InlinedItem::Item(quote_item!(&cx,
fn new_int_alist<B>() -> alist<isize, B> {
return alist {eq_fn: eq_int, data: Vec::new()};
}
).unwrap());
match (item_out, item_exp) {
(InlinedItem::Item(item_out), InlinedItem::Item(item_exp)) => {
assert!(pprust::item_to_string(&*item_out) ==
pprust::item_to_string(&*item_exp));
}
_ => panic!()
}
}