870 lines
36 KiB
Rust
870 lines
36 KiB
Rust
use rustc_front::hir::*;
|
|
use rustc::lint::*;
|
|
use rustc::middle::ty;
|
|
use rustc::middle::subst::{Subst, TypeSpace};
|
|
use std::iter;
|
|
use std::borrow::Cow;
|
|
use syntax::ptr::P;
|
|
use syntax::codemap::Span;
|
|
|
|
use utils::{
|
|
get_trait_def_id, implements_trait, in_external_macro, in_macro, match_path,
|
|
match_trait_method, match_type, method_chain_args, snippet, span_lint, span_lint_and_then,
|
|
span_note_and_lint, walk_ptrs_ty, walk_ptrs_ty_depth,
|
|
};
|
|
use utils::{
|
|
BTREEMAP_ENTRY_PATH, DEFAULT_TRAIT_PATH, HASHMAP_ENTRY_PATH, OPTION_PATH, RESULT_PATH,
|
|
STRING_PATH, VEC_PATH,
|
|
};
|
|
use utils::MethodArgs;
|
|
use rustc::middle::cstore::CrateStore;
|
|
|
|
#[derive(Clone)]
|
|
pub struct MethodsPass;
|
|
|
|
/// **What it does:** This lint checks for `.unwrap()` calls on `Option`s. It is `Allow` by default.
|
|
///
|
|
/// **Why is this bad?** Usually it is better to handle the `None` case, or to at least call `.expect(_)` with a more helpful message. Still, for a lot of quick-and-dirty code, `unwrap` is a good choice, which is why this lint is `Allow` by default.
|
|
///
|
|
/// **Known problems:** None
|
|
///
|
|
/// **Example:** `x.unwrap()`
|
|
declare_lint!(pub OPTION_UNWRAP_USED, Allow,
|
|
"using `Option.unwrap()`, which should at least get a better message using `expect()`");
|
|
|
|
/// **What it does:** This lint checks for `.unwrap()` calls on `Result`s. It is `Allow` by default.
|
|
///
|
|
/// **Why is this bad?** `result.unwrap()` will let the thread panic on `Err` values. Normally, you want to implement more sophisticated error handling, and propagate errors upwards with `try!`.
|
|
///
|
|
/// Even if you want to panic on errors, not all `Error`s implement good messages on display. Therefore it may be beneficial to look at the places where they may get displayed. Activate this lint to do just that.
|
|
///
|
|
/// **Known problems:** None
|
|
///
|
|
/// **Example:** `x.unwrap()`
|
|
declare_lint!(pub RESULT_UNWRAP_USED, Allow,
|
|
"using `Result.unwrap()`, which might be better handled");
|
|
|
|
/// **What it does:** This lint checks for `.to_string()` method calls on values of type `&str`. It is `Warn` by default.
|
|
///
|
|
/// **Why is this bad?** This uses the whole formatting machinery just to clone a string. Using `.to_owned()` is lighter on resources. You can also consider using a [`Cow<'a, str>`](http://doc.rust-lang.org/std/borrow/enum.Cow.html) instead in some cases.
|
|
///
|
|
/// **Known problems:** None
|
|
///
|
|
/// **Example:** `s.to_string()` where `s: &str`
|
|
declare_lint!(pub STR_TO_STRING, Warn,
|
|
"using `to_string()` on a str, which should be `to_owned()`");
|
|
|
|
/// **What it does:** This lint checks for `.to_string()` method calls on values of type `String`. It is `Warn` by default.
|
|
///
|
|
/// **Why is this bad?** As our string is already owned, this whole operation is basically a no-op, but still creates a clone of the string (which, if really wanted, should be done with `.clone()`).
|
|
///
|
|
/// **Known problems:** None
|
|
///
|
|
/// **Example:** `s.to_string()` where `s: String`
|
|
declare_lint!(pub STRING_TO_STRING, Warn,
|
|
"calling `String.to_string()` which is a no-op");
|
|
|
|
/// **What it does:** This lint checks for methods that should live in a trait implementation of a `std` trait (see [llogiq's blog post](http://llogiq.github.io/2015/07/30/traits.html) for further information) instead of an inherent implementation. It is `Warn` by default.
|
|
///
|
|
/// **Why is this bad?** Implementing the traits improve ergonomics for users of the code, often with very little cost. Also people seeing a `mul(..)` method may expect `*` to work equally, so you should have good reason to disappoint them.
|
|
///
|
|
/// **Known problems:** None
|
|
///
|
|
/// **Example:**
|
|
/// ```
|
|
/// struct X;
|
|
/// impl X {
|
|
/// fn add(&self, other: &X) -> X { .. }
|
|
/// }
|
|
/// ```
|
|
declare_lint!(pub SHOULD_IMPLEMENT_TRAIT, Warn,
|
|
"defining a method that should be implementing a std trait");
|
|
|
|
/// **What it does:** This lint checks for methods with certain name prefixes and `Warn`s (by default) if the prefix doesn't match how self is taken. The actual rules are:
|
|
///
|
|
/// |Prefix |`self` taken |
|
|
/// |-------|--------------------|
|
|
/// |`as_` |`&self` or &mut self|
|
|
/// |`from_`| none |
|
|
/// |`into_`|`self` |
|
|
/// |`is_` |`&self` or none |
|
|
/// |`to_` |`&self` |
|
|
///
|
|
/// **Why is this bad?** Consistency breeds readability. If you follow the conventions, your users won't be surprised that they e.g. need to supply a mutable reference to a `as_`.. function.
|
|
///
|
|
/// **Known problems:** None
|
|
///
|
|
/// **Example**
|
|
///
|
|
/// ```
|
|
/// impl X {
|
|
/// fn as_str(self) -> &str { .. }
|
|
/// }
|
|
/// ```
|
|
declare_lint!(pub WRONG_SELF_CONVENTION, Warn,
|
|
"defining a method named with an established prefix (like \"into_\") that takes \
|
|
`self` with the wrong convention");
|
|
|
|
/// **What it does:** This is the same as [`wrong_self_convention`](#wrong_self_convention), but for public items. This lint is `Allow` by default.
|
|
///
|
|
/// **Why is this bad?** See [`wrong_self_convention`](#wrong_self_convention).
|
|
///
|
|
/// **Known problems:** Actually *renaming* the function may break clients if the function is part of the public interface. In that case, be mindful of the stability guarantees you've given your users.
|
|
///
|
|
/// **Example:**
|
|
/// ```
|
|
/// impl X {
|
|
/// pub fn as_str(self) -> &str { .. }
|
|
/// }
|
|
/// ```
|
|
declare_lint!(pub WRONG_PUB_SELF_CONVENTION, Allow,
|
|
"defining a public method named with an established prefix (like \"into_\") that takes \
|
|
`self` with the wrong convention");
|
|
|
|
/// **What it does:** This lint `Warn`s on using `ok().expect(..)`.
|
|
///
|
|
/// **Why is this bad?** Because you usually call `expect()` on the `Result` directly to get a good error message.
|
|
///
|
|
/// **Known problems:** None.
|
|
///
|
|
/// **Example:** `x.ok().expect("why did I do this again?")`
|
|
declare_lint!(pub OK_EXPECT, Warn,
|
|
"using `ok().expect()`, which gives worse error messages than \
|
|
calling `expect` directly on the Result");
|
|
|
|
/// **What it does:** This lint `Warn`s on `_.map(_).unwrap_or(_)`.
|
|
///
|
|
/// **Why is this bad?** Readability, this can be written more concisely as `_.map_or(_, _)`.
|
|
///
|
|
/// **Known problems:** None.
|
|
///
|
|
/// **Example:** `x.map(|a| a + 1).unwrap_or(0)`
|
|
declare_lint!(pub OPTION_MAP_UNWRAP_OR, Warn,
|
|
"using `Option.map(f).unwrap_or(a)`, which is more succinctly expressed as \
|
|
`map_or(a, f)`");
|
|
|
|
/// **What it does:** This lint `Warn`s on `_.map(_).unwrap_or_else(_)`.
|
|
///
|
|
/// **Why is this bad?** Readability, this can be written more concisely as `_.map_or_else(_, _)`.
|
|
///
|
|
/// **Known problems:** None.
|
|
///
|
|
/// **Example:** `x.map(|a| a + 1).unwrap_or_else(some_function)`
|
|
declare_lint!(pub OPTION_MAP_UNWRAP_OR_ELSE, Warn,
|
|
"using `Option.map(f).unwrap_or_else(g)`, which is more succinctly expressed as \
|
|
`map_or_else(g, f)`");
|
|
|
|
/// **What it does:** This lint `Warn`s on `_.filter(_).next()`.
|
|
///
|
|
/// **Why is this bad?** Readability, this can be written more concisely as `_.find(_)`.
|
|
///
|
|
/// **Known problems:** None.
|
|
///
|
|
/// **Example:** `iter.filter(|x| x == 0).next()`
|
|
declare_lint!(pub FILTER_NEXT, Warn,
|
|
"using `filter(p).next()`, which is more succinctly expressed as `.find(p)`");
|
|
|
|
/// **What it does:** This lint `Warn`s on an iterator search (such as `find()`, `position()`, or
|
|
/// `rposition()`) followed by a call to `is_some()`.
|
|
///
|
|
/// **Why is this bad?** Readability, this can be written more concisely as `_.any(_)`.
|
|
///
|
|
/// **Known problems:** None.
|
|
///
|
|
/// **Example:** `iter.find(|x| x == 0).is_some()`
|
|
declare_lint!(pub SEARCH_IS_SOME, Warn,
|
|
"using an iterator search followed by `is_some()`, which is more succinctly \
|
|
expressed as a call to `any()`");
|
|
|
|
/// **What it does:** This lint `Warn`s on using `.chars().next()` on a `str` to check if it
|
|
/// starts with a given char.
|
|
///
|
|
/// **Why is this bad?** Readability, this can be written more concisely as `_.starts_with(_)`.
|
|
///
|
|
/// **Known problems:** None.
|
|
///
|
|
/// **Example:** `name.chars().next() == Some('_')`
|
|
declare_lint!(pub CHARS_NEXT_CMP, Warn,
|
|
"using `.chars().next()` to check if a string starts with a char");
|
|
|
|
/// **What it does:** This lint checks for calls to `.or(foo(..))`, `.unwrap_or(foo(..))`, etc., and
|
|
/// suggests to use `or_else`, `unwrap_or_else`, etc., or `unwrap_or_default` instead.
|
|
///
|
|
/// **Why is this bad?** The function will always be called and potentially allocate an object
|
|
/// in expressions such as:
|
|
/// ```rust
|
|
/// foo.unwrap_or(String::new())
|
|
/// ```
|
|
/// this can instead be written:
|
|
/// ```rust
|
|
/// foo.unwrap_or_else(String::new)
|
|
/// ```
|
|
/// or
|
|
/// ```rust
|
|
/// foo.unwrap_or_default()
|
|
/// ```
|
|
///
|
|
/// **Known problems:** If the function as side-effects, not calling it will change the semantic of
|
|
/// the program, but you shouldn't rely on that anyway.
|
|
declare_lint!(pub OR_FUN_CALL, Warn,
|
|
"using any `*or` method when the `*or_else` would do");
|
|
|
|
/// **What it does:** This lint `Warn`s on using `.extend(s)` on a `vec` to extend the vec by a slice.
|
|
///
|
|
/// **Why is this bad?** Since Rust 1.6, the `extend_from_slice(_)` method is stable and at least for now faster.
|
|
///
|
|
/// **Known problems:** None.
|
|
///
|
|
/// **Example:** `my_vec.extend(&xs)`
|
|
declare_lint!(pub EXTEND_FROM_SLICE, Warn,
|
|
"`.extend_from_slice(_)` is a faster way to extend a Vec by a slice");
|
|
|
|
impl LintPass for MethodsPass {
|
|
fn get_lints(&self) -> LintArray {
|
|
lint_array!(EXTEND_FROM_SLICE,
|
|
OPTION_UNWRAP_USED,
|
|
RESULT_UNWRAP_USED,
|
|
STR_TO_STRING,
|
|
STRING_TO_STRING,
|
|
SHOULD_IMPLEMENT_TRAIT,
|
|
WRONG_SELF_CONVENTION,
|
|
WRONG_PUB_SELF_CONVENTION,
|
|
OK_EXPECT,
|
|
OPTION_MAP_UNWRAP_OR,
|
|
OPTION_MAP_UNWRAP_OR_ELSE,
|
|
OR_FUN_CALL,
|
|
CHARS_NEXT_CMP)
|
|
}
|
|
}
|
|
|
|
impl LateLintPass for MethodsPass {
|
|
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
|
|
if in_macro(cx, expr.span) {
|
|
return;
|
|
}
|
|
|
|
match expr.node {
|
|
ExprMethodCall(name, _, ref args) => {
|
|
// Chain calls
|
|
if let Some(arglists) = method_chain_args(expr, &["unwrap"]) {
|
|
lint_unwrap(cx, expr, arglists[0]);
|
|
} else if let Some(arglists) = method_chain_args(expr, &["to_string"]) {
|
|
lint_to_string(cx, expr, arglists[0]);
|
|
} else if let Some(arglists) = method_chain_args(expr, &["ok", "expect"]) {
|
|
lint_ok_expect(cx, expr, arglists[0]);
|
|
} else if let Some(arglists) = method_chain_args(expr, &["map", "unwrap_or"]) {
|
|
lint_map_unwrap_or(cx, expr, arglists[0], arglists[1]);
|
|
} else if let Some(arglists) = method_chain_args(expr, &["map", "unwrap_or_else"]) {
|
|
lint_map_unwrap_or_else(cx, expr, arglists[0], arglists[1]);
|
|
} else if let Some(arglists) = method_chain_args(expr, &["filter", "next"]) {
|
|
lint_filter_next(cx, expr, arglists[0]);
|
|
} else if let Some(arglists) = method_chain_args(expr, &["find", "is_some"]) {
|
|
lint_search_is_some(cx, expr, "find", arglists[0], arglists[1]);
|
|
} else if let Some(arglists) = method_chain_args(expr, &["position", "is_some"]) {
|
|
lint_search_is_some(cx, expr, "position", arglists[0], arglists[1]);
|
|
} else if let Some(arglists) = method_chain_args(expr, &["rposition", "is_some"]) {
|
|
lint_search_is_some(cx, expr, "rposition", arglists[0], arglists[1]);
|
|
} else if let Some(arglists) = method_chain_args(expr, &["extend"]) {
|
|
lint_extend(cx, expr, arglists[0]);
|
|
}
|
|
|
|
lint_or_fun_call(cx, expr, &name.node.as_str(), &args);
|
|
}
|
|
ExprBinary(op, ref lhs, ref rhs) if op.node == BiEq || op.node == BiNe => {
|
|
if !lint_chars_next(cx, expr, lhs, rhs, op.node == BiEq) {
|
|
lint_chars_next(cx, expr, rhs, lhs, op.node == BiEq);
|
|
}
|
|
}
|
|
_ => (),
|
|
}
|
|
}
|
|
|
|
fn check_item(&mut self, cx: &LateContext, item: &Item) {
|
|
if in_external_macro(cx, item.span) {
|
|
return;
|
|
}
|
|
|
|
if let ItemImpl(_, _, _, None, ref ty, ref items) = item.node {
|
|
for implitem in items {
|
|
let name = implitem.name;
|
|
if let ImplItemKind::Method(ref sig, _) = implitem.node {
|
|
// check missing trait implementations
|
|
for &(method_name, n_args, self_kind, out_type, trait_name) in &TRAIT_METHODS {
|
|
if_let_chain! {
|
|
[
|
|
name.as_str() == method_name,
|
|
sig.decl.inputs.len() == n_args,
|
|
out_type.matches(&sig.decl.output),
|
|
self_kind.matches(&sig.explicit_self.node, false)
|
|
], {
|
|
span_lint(cx, SHOULD_IMPLEMENT_TRAIT, implitem.span, &format!(
|
|
"defining a method called `{}` on this type; consider implementing \
|
|
the `{}` trait or choosing a less ambiguous name", name, trait_name));
|
|
}
|
|
}
|
|
}
|
|
// check conventions w.r.t. conversion method names and predicates
|
|
let is_copy = is_copy(cx, &ty, &item);
|
|
for &(prefix, self_kinds) in &CONVENTIONS {
|
|
if name.as_str().starts_with(prefix) &&
|
|
!self_kinds.iter().any(|k| k.matches(&sig.explicit_self.node, is_copy)) {
|
|
let lint = if item.vis == Visibility::Public {
|
|
WRONG_PUB_SELF_CONVENTION
|
|
} else {
|
|
WRONG_SELF_CONVENTION
|
|
};
|
|
span_lint(cx,
|
|
lint,
|
|
sig.explicit_self.span,
|
|
&format!("methods called `{}*` usually take {}; consider choosing a less \
|
|
ambiguous name",
|
|
prefix,
|
|
&self_kinds.iter()
|
|
.map(|k| k.description())
|
|
.collect::<Vec<_>>()
|
|
.join(" or ")));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Checks for the `OR_FUN_CALL` lint.
|
|
fn lint_or_fun_call(cx: &LateContext, expr: &Expr, name: &str, args: &[P<Expr>]) {
|
|
/// Check for `unwrap_or(T::new())` or `unwrap_or(T::default())`.
|
|
fn check_unwrap_or_default(
|
|
cx: &LateContext,
|
|
name: &str,
|
|
fun: &Expr,
|
|
self_expr: &Expr,
|
|
arg: &Expr,
|
|
or_has_args: bool,
|
|
span: Span
|
|
) -> bool {
|
|
if or_has_args {
|
|
return false;
|
|
}
|
|
|
|
if name == "unwrap_or" {
|
|
if let ExprPath(_, ref path) = fun.node {
|
|
let path: &str = &path.segments
|
|
.last()
|
|
.expect("A path must have at least one segment")
|
|
.identifier
|
|
.name
|
|
.as_str();
|
|
|
|
if ["default", "new"].contains(&path) {
|
|
let arg_ty = cx.tcx.expr_ty(arg);
|
|
let default_trait_id = if let Some(default_trait_id) = get_trait_def_id(cx, &DEFAULT_TRAIT_PATH) {
|
|
default_trait_id
|
|
} else {
|
|
return false;
|
|
};
|
|
|
|
if implements_trait(cx, arg_ty, default_trait_id, None) {
|
|
span_lint(cx, OR_FUN_CALL, span,
|
|
&format!("use of `{}` followed by a call to `{}`", name, path))
|
|
.span_suggestion(span, "try this",
|
|
format!("{}.unwrap_or_default()",
|
|
snippet(cx, self_expr.span, "_")));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
false
|
|
}
|
|
|
|
/// Check for `*or(foo())`.
|
|
fn check_general_case(
|
|
cx: &LateContext,
|
|
name: &str,
|
|
fun: &Expr,
|
|
self_expr: &Expr,
|
|
arg: &Expr,
|
|
or_has_args: bool,
|
|
span: Span
|
|
) {
|
|
// (path, fn_has_argument, methods)
|
|
let know_types : &[(&[_], _, &[_], _)] = &[
|
|
(&BTREEMAP_ENTRY_PATH, false, &["or_insert"], "with"),
|
|
(&HASHMAP_ENTRY_PATH, false, &["or_insert"], "with"),
|
|
(&OPTION_PATH, false, &["map_or", "ok_or", "or", "unwrap_or"], "else"),
|
|
(&RESULT_PATH, true, &["or", "unwrap_or"], "else"),
|
|
];
|
|
|
|
let self_ty = cx.tcx.expr_ty(self_expr);
|
|
|
|
let (fn_has_arguments, poss, suffix) =
|
|
if let Some(&(_, fn_has_arguments, poss, suffix)) = know_types.iter().find(|&&i| {
|
|
match_type(cx, self_ty, i.0)
|
|
}) {
|
|
(fn_has_arguments, poss, suffix)
|
|
}
|
|
else {
|
|
return
|
|
};
|
|
|
|
if !poss.contains(&name) {
|
|
return;
|
|
}
|
|
|
|
let sugg = match (fn_has_arguments, !or_has_args) {
|
|
(true, _) => format!("|_| {}", snippet(cx, arg.span, "..")),
|
|
(false, false) => format!("|| {}", snippet(cx, arg.span, "..")),
|
|
(false, true) => format!("{}", snippet(cx, fun.span, "..")),
|
|
};
|
|
|
|
span_lint(cx, OR_FUN_CALL, span,
|
|
&format!("use of `{}` followed by a function call", name))
|
|
.span_suggestion(span, "try this",
|
|
format!("{}.{}_{}({})",
|
|
snippet(cx, self_expr.span, "_"),
|
|
name,
|
|
suffix,
|
|
sugg));
|
|
}
|
|
|
|
if args.len() == 2 {
|
|
if let ExprCall(ref fun, ref or_args) = args[1].node {
|
|
let or_has_args = !or_args.is_empty();
|
|
if !check_unwrap_or_default(cx, name, fun, &args[0], &args[1], or_has_args, expr.span) {
|
|
check_general_case(cx, name, fun, &args[0], &args[1], or_has_args, expr.span);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn lint_extend(cx: &LateContext, expr: &Expr, args: &MethodArgs) {
|
|
let (obj_ty, _) = walk_ptrs_ty_depth(cx.tcx.expr_ty(&args[0]));
|
|
if !match_type(cx, obj_ty, &VEC_PATH) {
|
|
return;
|
|
}
|
|
let arg_ty = cx.tcx.expr_ty(&args[1]);
|
|
if let Some((span, r)) = derefs_to_slice(cx, &args[1], &arg_ty) {
|
|
span_lint(cx,
|
|
EXTEND_FROM_SLICE,
|
|
expr.span,
|
|
&format!("use of `extend` to extend a Vec by a slice"))
|
|
.span_suggestion(expr.span,
|
|
"try this",
|
|
format!("{}.extend_from_slice({}{})",
|
|
snippet(cx, args[0].span, "_"),
|
|
r,
|
|
snippet(cx, span, "_")));
|
|
}
|
|
}
|
|
|
|
fn derefs_to_slice(cx: &LateContext, expr: &Expr, ty: &ty::Ty) -> Option<(Span, &'static str)> {
|
|
fn may_slice(cx: &LateContext, ty: &ty::Ty) -> bool {
|
|
match ty.sty {
|
|
ty::TySlice(_) => true,
|
|
ty::TyStruct(..) => match_type(cx, ty, &VEC_PATH),
|
|
ty::TyArray(_, size) => size < 32,
|
|
ty::TyRef(_, ty::TypeAndMut { ty: ref inner, .. }) |
|
|
ty::TyBox(ref inner) => may_slice(cx, inner),
|
|
_ => false,
|
|
}
|
|
}
|
|
if let ExprMethodCall(name, _, ref args) = expr.node {
|
|
if &name.node.as_str() == &"iter" && may_slice(cx, &cx.tcx.expr_ty(&args[0])) {
|
|
Some((args[0].span, "&"))
|
|
} else {
|
|
None
|
|
}
|
|
} else {
|
|
match ty.sty {
|
|
ty::TySlice(_) => Some((expr.span, "")),
|
|
ty::TyRef(_, ty::TypeAndMut { ty: ref inner, .. }) |
|
|
ty::TyBox(ref inner) => {
|
|
if may_slice(cx, inner) {
|
|
Some((expr.span, ""))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[allow(ptr_arg)]
|
|
// Type of MethodArgs is potentially a Vec
|
|
/// lint use of `unwrap()` for `Option`s and `Result`s
|
|
fn lint_unwrap(cx: &LateContext, expr: &Expr, unwrap_args: &MethodArgs) {
|
|
let (obj_ty, _) = walk_ptrs_ty_depth(cx.tcx.expr_ty(&unwrap_args[0]));
|
|
|
|
let mess = if match_type(cx, obj_ty, &OPTION_PATH) {
|
|
Some((OPTION_UNWRAP_USED, "an Option", "None"))
|
|
} else if match_type(cx, obj_ty, &RESULT_PATH) {
|
|
Some((RESULT_UNWRAP_USED, "a Result", "Err"))
|
|
} else {
|
|
None
|
|
};
|
|
|
|
if let Some((lint, kind, none_value)) = mess {
|
|
span_lint(cx,
|
|
lint,
|
|
expr.span,
|
|
&format!("used unwrap() on {} value. If you don't want to handle the {} case gracefully, consider \
|
|
using expect() to provide a better panic
|
|
message",
|
|
kind,
|
|
none_value));
|
|
}
|
|
}
|
|
|
|
#[allow(ptr_arg)]
|
|
// Type of MethodArgs is potentially a Vec
|
|
/// lint use of `to_string()` for `&str`s and `String`s
|
|
fn lint_to_string(cx: &LateContext, expr: &Expr, to_string_args: &MethodArgs) {
|
|
let (obj_ty, ptr_depth) = walk_ptrs_ty_depth(cx.tcx.expr_ty(&to_string_args[0]));
|
|
|
|
if obj_ty.sty == ty::TyStr {
|
|
let mut arg_str = snippet(cx, to_string_args[0].span, "_");
|
|
if ptr_depth > 1 {
|
|
arg_str = Cow::Owned(format!("({}{})", iter::repeat('*').take(ptr_depth - 1).collect::<String>(), arg_str));
|
|
}
|
|
span_lint(cx, STR_TO_STRING, expr.span, &format!("`{}.to_owned()` is faster", arg_str));
|
|
} else if match_type(cx, obj_ty, &STRING_PATH) {
|
|
span_lint(cx,
|
|
STRING_TO_STRING,
|
|
expr.span,
|
|
"`String.to_string()` is a no-op; use `clone()` to make a copy");
|
|
}
|
|
}
|
|
|
|
#[allow(ptr_arg)]
|
|
// Type of MethodArgs is potentially a Vec
|
|
/// lint use of `ok().expect()` for `Result`s
|
|
fn lint_ok_expect(cx: &LateContext, expr: &Expr, ok_args: &MethodArgs) {
|
|
// lint if the caller of `ok()` is a `Result`
|
|
if match_type(cx, cx.tcx.expr_ty(&ok_args[0]), &RESULT_PATH) {
|
|
let result_type = cx.tcx.expr_ty(&ok_args[0]);
|
|
if let Some(error_type) = get_error_type(cx, result_type) {
|
|
if has_debug_impl(error_type, cx) {
|
|
span_lint(cx,
|
|
OK_EXPECT,
|
|
expr.span,
|
|
"called `ok().expect()` on a Result value. You can call `expect` directly on the `Result`");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[allow(ptr_arg)]
|
|
// Type of MethodArgs is potentially a Vec
|
|
/// lint use of `map().unwrap_or()` for `Option`s
|
|
fn lint_map_unwrap_or(cx: &LateContext, expr: &Expr, map_args: &MethodArgs, unwrap_args: &MethodArgs) {
|
|
// lint if the caller of `map()` is an `Option`
|
|
if match_type(cx, cx.tcx.expr_ty(&map_args[0]), &OPTION_PATH) {
|
|
// lint message
|
|
let msg = "called `map(f).unwrap_or(a)` on an Option value. This can be done more directly by calling \
|
|
`map_or(a, f)` instead";
|
|
// get snippets for args to map() and unwrap_or()
|
|
let map_snippet = snippet(cx, map_args[1].span, "..");
|
|
let unwrap_snippet = snippet(cx, unwrap_args[1].span, "..");
|
|
// lint, with note if neither arg is > 1 line and both map() and
|
|
// unwrap_or() have the same span
|
|
let multiline = map_snippet.lines().count() > 1 || unwrap_snippet.lines().count() > 1;
|
|
let same_span = map_args[1].span.expn_id == unwrap_args[1].span.expn_id;
|
|
if same_span && !multiline {
|
|
span_note_and_lint(cx,
|
|
OPTION_MAP_UNWRAP_OR,
|
|
expr.span,
|
|
msg,
|
|
expr.span,
|
|
&format!("replace `map({0}).unwrap_or({1})` with `map_or({1}, {0})`",
|
|
map_snippet,
|
|
unwrap_snippet));
|
|
} else if same_span && multiline {
|
|
span_lint(cx, OPTION_MAP_UNWRAP_OR, expr.span, msg);
|
|
};
|
|
}
|
|
}
|
|
|
|
#[allow(ptr_arg)]
|
|
// Type of MethodArgs is potentially a Vec
|
|
/// lint use of `map().unwrap_or_else()` for `Option`s
|
|
fn lint_map_unwrap_or_else(cx: &LateContext, expr: &Expr, map_args: &MethodArgs, unwrap_args: &MethodArgs) {
|
|
// lint if the caller of `map()` is an `Option`
|
|
if match_type(cx, cx.tcx.expr_ty(&map_args[0]), &OPTION_PATH) {
|
|
// lint message
|
|
let msg = "called `map(f).unwrap_or_else(g)` on an Option value. This can be done more directly by calling \
|
|
`map_or_else(g, f)` instead";
|
|
// get snippets for args to map() and unwrap_or_else()
|
|
let map_snippet = snippet(cx, map_args[1].span, "..");
|
|
let unwrap_snippet = snippet(cx, unwrap_args[1].span, "..");
|
|
// lint, with note if neither arg is > 1 line and both map() and
|
|
// unwrap_or_else() have the same span
|
|
let multiline = map_snippet.lines().count() > 1 || unwrap_snippet.lines().count() > 1;
|
|
let same_span = map_args[1].span.expn_id == unwrap_args[1].span.expn_id;
|
|
if same_span && !multiline {
|
|
span_note_and_lint(cx,
|
|
OPTION_MAP_UNWRAP_OR_ELSE,
|
|
expr.span,
|
|
msg,
|
|
expr.span,
|
|
&format!("replace `map({0}).unwrap_or_else({1})` with `with map_or_else({1}, {0})`",
|
|
map_snippet,
|
|
unwrap_snippet));
|
|
} else if same_span && multiline {
|
|
span_lint(cx, OPTION_MAP_UNWRAP_OR_ELSE, expr.span, msg);
|
|
};
|
|
}
|
|
}
|
|
|
|
#[allow(ptr_arg)]
|
|
// Type of MethodArgs is potentially a Vec
|
|
/// lint use of `filter().next() for Iterators`
|
|
fn lint_filter_next(cx: &LateContext, expr: &Expr, filter_args: &MethodArgs) {
|
|
// lint if caller of `.filter().next()` is an Iterator
|
|
if match_trait_method(cx, expr, &["core", "iter", "Iterator"]) {
|
|
let msg = "called `filter(p).next()` on an Iterator. This is more succinctly expressed by calling `.find(p)` \
|
|
instead.";
|
|
let filter_snippet = snippet(cx, filter_args[1].span, "..");
|
|
if filter_snippet.lines().count() <= 1 {
|
|
// add note if not multi-line
|
|
span_note_and_lint(cx,
|
|
FILTER_NEXT,
|
|
expr.span,
|
|
msg,
|
|
expr.span,
|
|
&format!("replace `filter({0}).next()` with `find({0})`", filter_snippet));
|
|
} else {
|
|
span_lint(cx, FILTER_NEXT, expr.span, msg);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[allow(ptr_arg)]
|
|
// Type of MethodArgs is potentially a Vec
|
|
/// lint searching an Iterator followed by `is_some()`
|
|
fn lint_search_is_some(cx: &LateContext, expr: &Expr, search_method: &str, search_args: &MethodArgs,
|
|
is_some_args: &MethodArgs) {
|
|
// lint if caller of search is an Iterator
|
|
if match_trait_method(cx, &*is_some_args[0], &["core", "iter", "Iterator"]) {
|
|
let msg = format!("called `is_some()` after searching an iterator with {}. This is more succinctly expressed \
|
|
by calling `any()`.",
|
|
search_method);
|
|
let search_snippet = snippet(cx, search_args[1].span, "..");
|
|
if search_snippet.lines().count() <= 1 {
|
|
// add note if not multi-line
|
|
span_note_and_lint(cx,
|
|
SEARCH_IS_SOME,
|
|
expr.span,
|
|
&msg,
|
|
expr.span,
|
|
&format!("replace `{0}({1}).is_some()` with `any({1})`", search_method, search_snippet));
|
|
} else {
|
|
span_lint(cx, SEARCH_IS_SOME, expr.span, &msg);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Checks for the `CHARS_NEXT_CMP` lint.
|
|
fn lint_chars_next(cx: &LateContext, expr: &Expr, chain: &Expr, other: &Expr, eq: bool) -> bool {
|
|
if_let_chain! {[
|
|
let Some(args) = method_chain_args(chain, &["chars", "next"]),
|
|
let ExprCall(ref fun, ref arg_char) = other.node,
|
|
arg_char.len() == 1,
|
|
let ExprPath(None, ref path) = fun.node,
|
|
path.segments.len() == 1 && path.segments[0].identifier.name.as_str() == "Some"
|
|
], {
|
|
let self_ty = walk_ptrs_ty(cx.tcx.expr_ty_adjusted(&args[0][0]));
|
|
|
|
if self_ty.sty != ty::TyStr {
|
|
return false;
|
|
}
|
|
|
|
span_lint_and_then(cx,
|
|
CHARS_NEXT_CMP,
|
|
expr.span,
|
|
"you should use the `starts_with` method",
|
|
|db| {
|
|
let sugg = format!("{}{}.starts_with({})",
|
|
if eq { "" } else { "!" },
|
|
snippet(cx, args[0][0].span, "_"),
|
|
snippet(cx, arg_char[0].span, "_")
|
|
);
|
|
|
|
db.span_suggestion(expr.span, "like this", sugg);
|
|
});
|
|
|
|
return true;
|
|
}}
|
|
|
|
false
|
|
}
|
|
|
|
// Given a `Result<T, E>` type, return its error type (`E`)
|
|
fn get_error_type<'a>(cx: &LateContext, ty: ty::Ty<'a>) -> Option<ty::Ty<'a>> {
|
|
if !match_type(cx, ty, &RESULT_PATH) {
|
|
return None;
|
|
}
|
|
if let ty::TyEnum(_, substs) = ty.sty {
|
|
if let Some(err_ty) = substs.types.opt_get(TypeSpace, 1) {
|
|
return Some(err_ty);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
// This checks whether a given type is known to implement Debug. It's
|
|
// conservative, i.e. it should not return false positives, but will return
|
|
// false negatives.
|
|
fn has_debug_impl<'a, 'b>(ty: ty::Ty<'a>, cx: &LateContext<'b, 'a>) -> bool {
|
|
let no_ref_ty = walk_ptrs_ty(ty);
|
|
let debug = match cx.tcx.lang_items.debug_trait() {
|
|
Some(debug) => debug,
|
|
None => return false,
|
|
};
|
|
let debug_def = cx.tcx.lookup_trait_def(debug);
|
|
let mut debug_impl_exists = false;
|
|
debug_def.for_each_relevant_impl(cx.tcx, no_ref_ty, |d| {
|
|
let self_ty = &cx.tcx.impl_trait_ref(d).and_then(|im| im.substs.self_ty());
|
|
if let Some(self_ty) = *self_ty {
|
|
if !self_ty.flags.get().contains(ty::TypeFlags::HAS_PARAMS) {
|
|
debug_impl_exists = true;
|
|
}
|
|
}
|
|
});
|
|
debug_impl_exists
|
|
}
|
|
|
|
#[rustfmt_skip]
|
|
const CONVENTIONS: [(&'static str, &'static [SelfKind]); 5] = [
|
|
("into_", &[SelfKind::Value]),
|
|
("to_", &[SelfKind::Ref]),
|
|
("as_", &[SelfKind::Ref, SelfKind::RefMut]),
|
|
("is_", &[SelfKind::Ref, SelfKind::No]),
|
|
("from_", &[SelfKind::No]),
|
|
];
|
|
|
|
#[rustfmt_skip]
|
|
const TRAIT_METHODS: [(&'static str, usize, SelfKind, OutType, &'static str); 30] = [
|
|
("add", 2, SelfKind::Value, OutType::Any, "std::ops::Add"),
|
|
("sub", 2, SelfKind::Value, OutType::Any, "std::ops::Sub"),
|
|
("mul", 2, SelfKind::Value, OutType::Any, "std::ops::Mul"),
|
|
("div", 2, SelfKind::Value, OutType::Any, "std::ops::Div"),
|
|
("rem", 2, SelfKind::Value, OutType::Any, "std::ops::Rem"),
|
|
("shl", 2, SelfKind::Value, OutType::Any, "std::ops::Shl"),
|
|
("shr", 2, SelfKind::Value, OutType::Any, "std::ops::Shr"),
|
|
("bitand", 2, SelfKind::Value, OutType::Any, "std::ops::BitAnd"),
|
|
("bitor", 2, SelfKind::Value, OutType::Any, "std::ops::BitOr"),
|
|
("bitxor", 2, SelfKind::Value, OutType::Any, "std::ops::BitXor"),
|
|
("neg", 1, SelfKind::Value, OutType::Any, "std::ops::Neg"),
|
|
("not", 1, SelfKind::Value, OutType::Any, "std::ops::Not"),
|
|
("drop", 1, SelfKind::RefMut, OutType::Unit, "std::ops::Drop"),
|
|
("index", 2, SelfKind::Ref, OutType::Ref, "std::ops::Index"),
|
|
("index_mut", 2, SelfKind::RefMut, OutType::Ref, "std::ops::IndexMut"),
|
|
("deref", 1, SelfKind::Ref, OutType::Ref, "std::ops::Deref"),
|
|
("deref_mut", 1, SelfKind::RefMut, OutType::Ref, "std::ops::DerefMut"),
|
|
("clone", 1, SelfKind::Ref, OutType::Any, "std::clone::Clone"),
|
|
("borrow", 1, SelfKind::Ref, OutType::Ref, "std::borrow::Borrow"),
|
|
("borrow_mut", 1, SelfKind::RefMut, OutType::Ref, "std::borrow::BorrowMut"),
|
|
("as_ref", 1, SelfKind::Ref, OutType::Ref, "std::convert::AsRef"),
|
|
("as_mut", 1, SelfKind::RefMut, OutType::Ref, "std::convert::AsMut"),
|
|
("eq", 2, SelfKind::Ref, OutType::Bool, "std::cmp::PartialEq"),
|
|
("cmp", 2, SelfKind::Ref, OutType::Any, "std::cmp::Ord"),
|
|
("default", 0, SelfKind::No, OutType::Any, "std::default::Default"),
|
|
("hash", 2, SelfKind::Ref, OutType::Unit, "std::hash::Hash"),
|
|
("next", 1, SelfKind::RefMut, OutType::Any, "std::iter::Iterator"),
|
|
("into_iter", 1, SelfKind::Value, OutType::Any, "std::iter::IntoIterator"),
|
|
("from_iter", 1, SelfKind::No, OutType::Any, "std::iter::FromIterator"),
|
|
("from_str", 1, SelfKind::No, OutType::Any, "std::str::FromStr"),
|
|
];
|
|
|
|
#[derive(Clone, Copy)]
|
|
enum SelfKind {
|
|
Value,
|
|
Ref,
|
|
RefMut,
|
|
No,
|
|
}
|
|
|
|
impl SelfKind {
|
|
fn matches(&self, slf: &ExplicitSelf_, allow_value_for_ref: bool) -> bool {
|
|
match (self, slf) {
|
|
(&SelfKind::Value, &SelfValue(_)) => true,
|
|
(&SelfKind::Ref, &SelfRegion(_, Mutability::MutImmutable, _)) => true,
|
|
(&SelfKind::RefMut, &SelfRegion(_, Mutability::MutMutable, _)) => true,
|
|
(&SelfKind::Ref, &SelfValue(_)) => allow_value_for_ref,
|
|
(&SelfKind::RefMut, &SelfValue(_)) => allow_value_for_ref,
|
|
(&SelfKind::No, &SelfStatic) => true,
|
|
(_, &SelfExplicit(ref ty, _)) => self.matches_explicit_type(ty, allow_value_for_ref),
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
fn matches_explicit_type(&self, ty: &Ty, allow_value_for_ref: bool) -> bool {
|
|
match (self, &ty.node) {
|
|
(&SelfKind::Value, &TyPath(..)) => true,
|
|
(&SelfKind::Ref, &TyRptr(_, MutTy { mutbl: Mutability::MutImmutable, .. })) => true,
|
|
(&SelfKind::RefMut, &TyRptr(_, MutTy { mutbl: Mutability::MutMutable, .. })) => true,
|
|
(&SelfKind::Ref, &TyPath(..)) => allow_value_for_ref,
|
|
(&SelfKind::RefMut, &TyPath(..)) => allow_value_for_ref,
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
fn description(&self) -> &'static str {
|
|
match *self {
|
|
SelfKind::Value => "self by value",
|
|
SelfKind::Ref => "self by reference",
|
|
SelfKind::RefMut => "self by mutable reference",
|
|
SelfKind::No => "no self",
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy)]
|
|
enum OutType {
|
|
Unit,
|
|
Bool,
|
|
Any,
|
|
Ref,
|
|
}
|
|
|
|
impl OutType {
|
|
fn matches(&self, ty: &FunctionRetTy) -> bool {
|
|
match (self, ty) {
|
|
(&OutType::Unit, &DefaultReturn(_)) => true,
|
|
(&OutType::Unit, &Return(ref ty)) if ty.node == TyTup(vec![].into()) => true,
|
|
(&OutType::Bool, &Return(ref ty)) if is_bool(ty) => true,
|
|
(&OutType::Any, &Return(ref ty)) if ty.node != TyTup(vec![].into()) => true,
|
|
(&OutType::Ref, &Return(ref ty)) => {
|
|
if let TyRptr(_, _) = ty.node {
|
|
true
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
_ => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
fn is_bool(ty: &Ty) -> bool {
|
|
if let TyPath(None, ref p) = ty.node {
|
|
if match_path(p, &["bool"]) {
|
|
return true;
|
|
}
|
|
}
|
|
false
|
|
}
|
|
|
|
fn is_copy(cx: &LateContext, ast_ty: &Ty, item: &Item) -> bool {
|
|
match cx.tcx.ast_ty_to_ty_cache.borrow().get(&ast_ty.id) {
|
|
None => false,
|
|
Some(ty) => {
|
|
let env = ty::ParameterEnvironment::for_item(cx.tcx, item.id);
|
|
!ty.subst(cx.tcx, &env.free_substs).moves_by_default(&env, ast_ty.span)
|
|
}
|
|
}
|
|
}
|