rust/src/libsyntax/attr.rs
bors 5afa2704a6 Auto merge of #23011 - nagisa:the-war-of-symbol-and-symbol, r=pnkfelix
We provide tools to tell what exact symbols to emit for any fn or static, but
don’t quite check if that won’t cause any issues later on. Some of the issues
include LLVM mangling our names again and our names pointing to wrong locations,
us generating dumb foreign call wrappers, linker errors, extern functions
resolving to different symbols altogether (`extern {fn fail();} fail();` in some
cases calling `fail1()`), etc.

Before the commit we had a function called `note_unique_llvm_symbol`, so it is
clear somebody was aware of the issue at some point, but the function was barely
used, mostly in irrelevant locations.

Along with working on it I took liberty to start refactoring trans/base into
a few smaller modules. The refactoring is incomplete and I hope I will find some
motivation to carry on with it.

This is possibly a [breaking-change] because it makes dumbly written code
properly invalid.

This fixes all those issues about incorrect use of #[no_mangle] being not reported/misreported/ICEd by the compiler.

NB. This PR does not attempt to tackle the parallel codegen issue that was mentioned in https://github.com/rust-lang/rust/pull/22811, but I believe it should be very straightforward in a follow up PR by modifying `trans::declare::get_defined_value` to look at all the contexts.

cc @alexcrichton @huonw @nrc because you commented on the original RFC issue.

EDIT: wow, this became much bigger than I initially intended.
2015-04-12 01:26:53 +00:00

634 lines
21 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Functions dealing with attributes and meta items
pub use self::StabilityLevel::*;
pub use self::ReprAttr::*;
pub use self::IntType::*;
use ast;
use ast::{AttrId, Attribute, Attribute_, MetaItem, MetaWord, MetaNameValue, MetaList};
use codemap::{Span, Spanned, spanned, dummy_spanned};
use codemap::BytePos;
use diagnostic::SpanHandler;
use parse::lexer::comments::{doc_comment_style, strip_doc_comment_decoration};
use parse::token::{InternedString, intern_and_get_ident};
use parse::token;
use ptr::P;
use std::cell::{RefCell, Cell};
use std::collections::BitSet;
use std::collections::HashSet;
use std::fmt;
thread_local! { static USED_ATTRS: RefCell<BitSet> = RefCell::new(BitSet::new()) }
pub fn mark_used(attr: &Attribute) {
let AttrId(id) = attr.node.id;
USED_ATTRS.with(|slot| slot.borrow_mut().insert(id));
}
pub fn is_used(attr: &Attribute) -> bool {
let AttrId(id) = attr.node.id;
USED_ATTRS.with(|slot| slot.borrow().contains(&id))
}
pub trait AttrMetaMethods {
fn check_name(&self, name: &str) -> bool {
name == &self.name()[..]
}
/// Retrieve the name of the meta item, e.g. `foo` in `#[foo]`,
/// `#[foo="bar"]` and `#[foo(bar)]`
fn name(&self) -> InternedString;
/// Gets the string value if self is a MetaNameValue variant
/// containing a string, otherwise None.
fn value_str(&self) -> Option<InternedString>;
/// Gets a list of inner meta items from a list MetaItem type.
fn meta_item_list<'a>(&'a self) -> Option<&'a [P<MetaItem>]>;
fn span(&self) -> Span;
}
impl AttrMetaMethods for Attribute {
fn check_name(&self, name: &str) -> bool {
let matches = name == &self.name()[..];
if matches {
mark_used(self);
}
matches
}
fn name(&self) -> InternedString { self.meta().name() }
fn value_str(&self) -> Option<InternedString> {
self.meta().value_str()
}
fn meta_item_list<'a>(&'a self) -> Option<&'a [P<MetaItem>]> {
self.node.value.meta_item_list()
}
fn span(&self) -> Span { self.meta().span }
}
impl AttrMetaMethods for MetaItem {
fn name(&self) -> InternedString {
match self.node {
MetaWord(ref n) => (*n).clone(),
MetaNameValue(ref n, _) => (*n).clone(),
MetaList(ref n, _) => (*n).clone(),
}
}
fn value_str(&self) -> Option<InternedString> {
match self.node {
MetaNameValue(_, ref v) => {
match v.node {
ast::LitStr(ref s, _) => Some((*s).clone()),
_ => None,
}
},
_ => None
}
}
fn meta_item_list<'a>(&'a self) -> Option<&'a [P<MetaItem>]> {
match self.node {
MetaList(_, ref l) => Some(&l[..]),
_ => None
}
}
fn span(&self) -> Span { self.span }
}
// Annoying, but required to get test_cfg to work
impl AttrMetaMethods for P<MetaItem> {
fn name(&self) -> InternedString { (**self).name() }
fn value_str(&self) -> Option<InternedString> { (**self).value_str() }
fn meta_item_list<'a>(&'a self) -> Option<&'a [P<MetaItem>]> {
(**self).meta_item_list()
}
fn span(&self) -> Span { (**self).span() }
}
pub trait AttributeMethods {
fn meta<'a>(&'a self) -> &'a MetaItem;
fn with_desugared_doc<T, F>(&self, f: F) -> T where
F: FnOnce(&Attribute) -> T;
}
impl AttributeMethods for Attribute {
/// Extract the MetaItem from inside this Attribute.
fn meta<'a>(&'a self) -> &'a MetaItem {
&*self.node.value
}
/// Convert self to a normal #[doc="foo"] comment, if it is a
/// comment like `///` or `/** */`. (Returns self unchanged for
/// non-sugared doc attributes.)
fn with_desugared_doc<T, F>(&self, f: F) -> T where
F: FnOnce(&Attribute) -> T,
{
if self.node.is_sugared_doc {
let comment = self.value_str().unwrap();
let meta = mk_name_value_item_str(
InternedString::new("doc"),
token::intern_and_get_ident(&strip_doc_comment_decoration(
&comment)));
if self.node.style == ast::AttrOuter {
f(&mk_attr_outer(self.node.id, meta))
} else {
f(&mk_attr_inner(self.node.id, meta))
}
} else {
f(self)
}
}
}
/* Constructors */
pub fn mk_name_value_item_str(name: InternedString, value: InternedString)
-> P<MetaItem> {
let value_lit = dummy_spanned(ast::LitStr(value, ast::CookedStr));
mk_name_value_item(name, value_lit)
}
pub fn mk_name_value_item(name: InternedString, value: ast::Lit)
-> P<MetaItem> {
P(dummy_spanned(MetaNameValue(name, value)))
}
pub fn mk_list_item(name: InternedString, items: Vec<P<MetaItem>>) -> P<MetaItem> {
P(dummy_spanned(MetaList(name, items)))
}
pub fn mk_word_item(name: InternedString) -> P<MetaItem> {
P(dummy_spanned(MetaWord(name)))
}
thread_local! { static NEXT_ATTR_ID: Cell<usize> = Cell::new(0) }
pub fn mk_attr_id() -> AttrId {
let id = NEXT_ATTR_ID.with(|slot| {
let r = slot.get();
slot.set(r + 1);
r
});
AttrId(id)
}
/// Returns an inner attribute with the given value.
pub fn mk_attr_inner(id: AttrId, item: P<MetaItem>) -> Attribute {
dummy_spanned(Attribute_ {
id: id,
style: ast::AttrInner,
value: item,
is_sugared_doc: false,
})
}
/// Returns an outer attribute with the given value.
pub fn mk_attr_outer(id: AttrId, item: P<MetaItem>) -> Attribute {
dummy_spanned(Attribute_ {
id: id,
style: ast::AttrOuter,
value: item,
is_sugared_doc: false,
})
}
pub fn mk_sugared_doc_attr(id: AttrId, text: InternedString, lo: BytePos,
hi: BytePos)
-> Attribute {
let style = doc_comment_style(&text);
let lit = spanned(lo, hi, ast::LitStr(text, ast::CookedStr));
let attr = Attribute_ {
id: id,
style: style,
value: P(spanned(lo, hi, MetaNameValue(InternedString::new("doc"),
lit))),
is_sugared_doc: true
};
spanned(lo, hi, attr)
}
/* Searching */
/// Check if `needle` occurs in `haystack` by a structural
/// comparison. This is slightly subtle, and relies on ignoring the
/// span included in the `==` comparison a plain MetaItem.
pub fn contains(haystack: &[P<MetaItem>], needle: &MetaItem) -> bool {
debug!("attr::contains (name={})", needle.name());
haystack.iter().any(|item| {
debug!(" testing: {}", item.name());
item.node == needle.node
})
}
pub fn contains_name<AM: AttrMetaMethods>(metas: &[AM], name: &str) -> bool {
debug!("attr::contains_name (name={})", name);
metas.iter().any(|item| {
debug!(" testing: {}", item.name());
item.check_name(name)
})
}
pub fn first_attr_value_str_by_name(attrs: &[Attribute], name: &str)
-> Option<InternedString> {
attrs.iter()
.find(|at| at.check_name(name))
.and_then(|at| at.value_str())
}
pub fn last_meta_item_value_str_by_name(items: &[P<MetaItem>], name: &str)
-> Option<InternedString> {
items.iter()
.rev()
.find(|mi| mi.check_name(name))
.and_then(|i| i.value_str())
}
/* Higher-level applications */
pub fn sort_meta_items(items: Vec<P<MetaItem>>) -> Vec<P<MetaItem>> {
// This is sort of stupid here, but we need to sort by
// human-readable strings.
let mut v = items.into_iter()
.map(|mi| (mi.name(), mi))
.collect::<Vec<(InternedString, P<MetaItem>)>>();
v.sort_by(|&(ref a, _), &(ref b, _)| a.cmp(b));
// There doesn't seem to be a more optimal way to do this
v.into_iter().map(|(_, m)| m.map(|Spanned {node, span}| {
Spanned {
node: match node {
MetaList(n, mis) => MetaList(n, sort_meta_items(mis)),
_ => node
},
span: span
}
})).collect()
}
pub fn find_crate_name(attrs: &[Attribute]) -> Option<InternedString> {
first_attr_value_str_by_name(attrs, "crate_name")
}
/// Find the value of #[export_name=*] attribute and check its validity.
pub fn find_export_name_attr(diag: &SpanHandler, attrs: &[Attribute]) -> Option<InternedString> {
attrs.iter().fold(None, |ia,attr| {
if attr.check_name("export_name") {
if let s@Some(_) = attr.value_str() {
s
} else {
diag.span_err(attr.span, "export_name attribute has invalid format");
diag.handler.help("use #[export_name=\"*\"]");
None
}
} else {
ia
}
})
}
#[derive(Copy, Clone, PartialEq)]
pub enum InlineAttr {
None,
Hint,
Always,
Never,
}
/// Determine what `#[inline]` attribute is present in `attrs`, if any.
pub fn find_inline_attr(diagnostic: Option<&SpanHandler>, attrs: &[Attribute]) -> InlineAttr {
// FIXME (#2809)---validate the usage of #[inline] and #[inline]
attrs.iter().fold(InlineAttr::None, |ia,attr| {
match attr.node.value.node {
MetaWord(ref n) if *n == "inline" => {
mark_used(attr);
InlineAttr::Hint
}
MetaList(ref n, ref items) if *n == "inline" => {
mark_used(attr);
if items.len() != 1 {
diagnostic.map(|d|{ d.span_err(attr.span, "expected one argument"); });
InlineAttr::None
} else if contains_name(&items[..], "always") {
InlineAttr::Always
} else if contains_name(&items[..], "never") {
InlineAttr::Never
} else {
diagnostic.map(|d|{ d.span_err((*items[0]).span, "invalid argument"); });
InlineAttr::None
}
}
_ => ia
}
})
}
/// True if `#[inline]` or `#[inline(always)]` is present in `attrs`.
pub fn requests_inline(attrs: &[Attribute]) -> bool {
match find_inline_attr(None, attrs) {
InlineAttr::Hint | InlineAttr::Always => true,
InlineAttr::None | InlineAttr::Never => false,
}
}
/// Tests if a cfg-pattern matches the cfg set
pub fn cfg_matches(diagnostic: &SpanHandler, cfgs: &[P<MetaItem>], cfg: &ast::MetaItem) -> bool {
match cfg.node {
ast::MetaList(ref pred, ref mis) if &pred[..] == "any" =>
mis.iter().any(|mi| cfg_matches(diagnostic, cfgs, &**mi)),
ast::MetaList(ref pred, ref mis) if &pred[..] == "all" =>
mis.iter().all(|mi| cfg_matches(diagnostic, cfgs, &**mi)),
ast::MetaList(ref pred, ref mis) if &pred[..] == "not" => {
if mis.len() != 1 {
diagnostic.span_err(cfg.span, "expected 1 cfg-pattern");
return false;
}
!cfg_matches(diagnostic, cfgs, &*mis[0])
}
ast::MetaList(ref pred, _) => {
diagnostic.span_err(cfg.span, &format!("invalid predicate `{}`", pred));
false
},
ast::MetaWord(_) | ast::MetaNameValue(..) => contains(cfgs, cfg),
}
}
/// Represents the #[deprecated] and friends attributes.
#[derive(RustcEncodable,RustcDecodable,Clone,Debug)]
pub struct Stability {
pub level: StabilityLevel,
pub feature: InternedString,
pub since: Option<InternedString>,
pub deprecated_since: Option<InternedString>,
// The reason for the current stability level. If deprecated, the
// reason for deprecation.
pub reason: Option<InternedString>,
}
/// The available stability levels.
#[derive(RustcEncodable,RustcDecodable,PartialEq,PartialOrd,Clone,Debug,Copy)]
pub enum StabilityLevel {
Unstable,
Stable,
}
impl fmt::Display for StabilityLevel {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(self, f)
}
}
fn find_stability_generic<'a,
AM: AttrMetaMethods,
I: Iterator<Item=&'a AM>>
(diagnostic: &SpanHandler, attrs: I, item_sp: Span)
-> (Option<Stability>, Vec<&'a AM>) {
let mut stab: Option<Stability> = None;
let mut deprecated: Option<(InternedString, Option<InternedString>)> = None;
let mut used_attrs: Vec<&'a AM> = vec![];
'outer: for attr in attrs {
let tag = attr.name();
let tag = &tag[..];
if tag != "deprecated" && tag != "unstable" && tag != "stable" {
continue // not a stability level
}
used_attrs.push(attr);
let (feature, since, reason) = match attr.meta_item_list() {
Some(metas) => {
let mut feature = None;
let mut since = None;
let mut reason = None;
for meta in metas.iter() {
if meta.name() == "feature" {
match meta.value_str() {
Some(v) => feature = Some(v),
None => {
diagnostic.span_err(meta.span, "incorrect meta item");
continue 'outer;
}
}
}
if &meta.name()[..] == "since" {
match meta.value_str() {
Some(v) => since = Some(v),
None => {
diagnostic.span_err(meta.span, "incorrect meta item");
continue 'outer;
}
}
}
if &meta.name()[..] == "reason" {
match meta.value_str() {
Some(v) => reason = Some(v),
None => {
diagnostic.span_err(meta.span, "incorrect meta item");
continue 'outer;
}
}
}
}
(feature, since, reason)
}
None => {
diagnostic.span_err(attr.span(), "incorrect stability attribute type");
continue
}
};
// Deprecated tags don't require feature names
if feature == None && tag != "deprecated" {
diagnostic.span_err(attr.span(), "missing 'feature'");
}
// Unstable tags don't require a version
if since == None && tag != "unstable" {
diagnostic.span_err(attr.span(), "missing 'since'");
}
if tag == "unstable" || tag == "stable" {
if stab.is_some() {
diagnostic.span_err(item_sp, "multiple stability levels");
}
let level = match tag {
"unstable" => Unstable,
"stable" => Stable,
_ => unreachable!()
};
stab = Some(Stability {
level: level,
feature: feature.unwrap_or(intern_and_get_ident("bogus")),
since: since,
deprecated_since: None,
reason: reason
});
} else { // "deprecated"
if deprecated.is_some() {
diagnostic.span_err(item_sp, "multiple deprecated attributes");
}
deprecated = Some((since.unwrap_or(intern_and_get_ident("bogus")), reason));
}
}
// Merge the deprecation info into the stability info
if deprecated.is_some() {
match stab {
Some(ref mut s) => {
let (since, reason) = deprecated.unwrap();
s.deprecated_since = Some(since);
s.reason = reason;
}
None => {
diagnostic.span_err(item_sp, "deprecated attribute must be paired with \
either stable or unstable attribute");
}
}
}
(stab, used_attrs)
}
/// Find the first stability attribute. `None` if none exists.
pub fn find_stability(diagnostic: &SpanHandler, attrs: &[Attribute],
item_sp: Span) -> Option<Stability> {
let (s, used) = find_stability_generic(diagnostic, attrs.iter(), item_sp);
for used in used { mark_used(used) }
return s;
}
pub fn require_unique_names(diagnostic: &SpanHandler, metas: &[P<MetaItem>]) {
let mut set = HashSet::new();
for meta in metas {
let name = meta.name();
if !set.insert(name.clone()) {
panic!(diagnostic.span_fatal(meta.span,
&format!("duplicate meta item `{}`", name)));
}
}
}
/// Parse #[repr(...)] forms.
///
/// Valid repr contents: any of the primitive integral type names (see
/// `int_type_of_word`, below) to specify enum discriminant type; `C`, to use
/// the same discriminant size that the corresponding C enum would or C
/// structure layout, and `packed` to remove padding.
pub fn find_repr_attrs(diagnostic: &SpanHandler, attr: &Attribute) -> Vec<ReprAttr> {
let mut acc = Vec::new();
match attr.node.value.node {
ast::MetaList(ref s, ref items) if *s == "repr" => {
mark_used(attr);
for item in items {
match item.node {
ast::MetaWord(ref word) => {
let hint = match &word[..] {
// Can't use "extern" because it's not a lexical identifier.
"C" => Some(ReprExtern),
"packed" => Some(ReprPacked),
_ => match int_type_of_word(&word) {
Some(ity) => Some(ReprInt(item.span, ity)),
None => {
// Not a word we recognize
diagnostic.span_err(item.span,
"unrecognized representation hint");
None
}
}
};
match hint {
Some(h) => acc.push(h),
None => { }
}
}
// Not a word:
_ => diagnostic.span_err(item.span, "unrecognized enum representation hint")
}
}
}
// Not a "repr" hint: ignore.
_ => { }
}
acc
}
fn int_type_of_word(s: &str) -> Option<IntType> {
match s {
"i8" => Some(SignedInt(ast::TyI8)),
"u8" => Some(UnsignedInt(ast::TyU8)),
"i16" => Some(SignedInt(ast::TyI16)),
"u16" => Some(UnsignedInt(ast::TyU16)),
"i32" => Some(SignedInt(ast::TyI32)),
"u32" => Some(UnsignedInt(ast::TyU32)),
"i64" => Some(SignedInt(ast::TyI64)),
"u64" => Some(UnsignedInt(ast::TyU64)),
"isize" => Some(SignedInt(ast::TyIs)),
"usize" => Some(UnsignedInt(ast::TyUs)),
_ => None
}
}
#[derive(PartialEq, Debug, RustcEncodable, RustcDecodable, Copy, Clone)]
pub enum ReprAttr {
ReprAny,
ReprInt(Span, IntType),
ReprExtern,
ReprPacked,
}
impl ReprAttr {
pub fn is_ffi_safe(&self) -> bool {
match *self {
ReprAny => false,
ReprInt(_sp, ity) => ity.is_ffi_safe(),
ReprExtern => true,
ReprPacked => false
}
}
}
#[derive(Eq, Hash, PartialEq, Debug, RustcEncodable, RustcDecodable, Copy, Clone)]
pub enum IntType {
SignedInt(ast::IntTy),
UnsignedInt(ast::UintTy)
}
impl IntType {
#[inline]
pub fn is_signed(self) -> bool {
match self {
SignedInt(..) => true,
UnsignedInt(..) => false
}
}
fn is_ffi_safe(self) -> bool {
match self {
SignedInt(ast::TyI8) | UnsignedInt(ast::TyU8) |
SignedInt(ast::TyI16) | UnsignedInt(ast::TyU16) |
SignedInt(ast::TyI32) | UnsignedInt(ast::TyU32) |
SignedInt(ast::TyI64) | UnsignedInt(ast::TyU64) => true,
SignedInt(ast::TyIs) | UnsignedInt(ast::TyUs) => false
}
}
}