rust/src/libstd/rt/task.rs
2013-12-20 01:26:03 +11:00

758 lines
26 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Language-level runtime services that should reasonably expected
//! to be available 'everywhere'. Local heaps, GC, unwinding,
//! local storage, and logging. Even a 'freestanding' Rust would likely want
//! to implement this.
use super::local_heap::LocalHeap;
use prelude::*;
use borrow;
use cast::transmute;
use cleanup;
use io::Writer;
use libc::{c_void, uintptr_t, c_char, size_t};
use local_data;
use option::{Option, Some, None};
use rt::borrowck::BorrowRecord;
use rt::borrowck;
use rt::context::Context;
use rt::env;
use rt::kill::Death;
use rt::local::Local;
use rt::logging::StdErrLogger;
use rt::sched::{Scheduler, SchedHandle};
use rt::stack::{StackSegment, StackPool};
use send_str::SendStr;
use task::TaskResult;
use unstable::finally::Finally;
use unstable::mutex::Mutex;
// The Task struct represents all state associated with a rust
// task. There are at this point two primary "subtypes" of task,
// however instead of using a subtype we just have a "task_type" field
// in the struct. This contains a pointer to another struct that holds
// the type-specific state.
pub struct Task {
heap: LocalHeap,
priv gc: GarbageCollector,
storage: LocalStorage,
logger: Option<StdErrLogger>,
unwinder: Unwinder,
death: Death,
destroyed: bool,
name: Option<SendStr>,
coroutine: Option<Coroutine>,
sched: Option<~Scheduler>,
task_type: TaskType,
// Dynamic borrowck debugging info
borrow_list: Option<~[BorrowRecord]>,
stdout_handle: Option<~Writer>,
// See the comments in the scheduler about why this is necessary
nasty_deschedule_lock: Mutex,
}
pub enum TaskType {
GreenTask(Option<SchedHome>),
SchedTask
}
/// A coroutine is nothing more than a (register context, stack) pair.
pub struct Coroutine {
/// The segment of stack on which the task is currently running or
/// if the task is blocked, on which the task will resume
/// execution.
///
/// Servo needs this to be public in order to tell SpiderMonkey
/// about the stack bounds.
current_stack_segment: StackSegment,
/// Always valid if the task is alive and not running.
saved_context: Context
}
/// Some tasks have a dedicated home scheduler that they must run on.
pub enum SchedHome {
AnySched,
Sched(SchedHandle)
}
pub struct GarbageCollector;
pub struct LocalStorage(Option<local_data::Map>);
pub struct Unwinder {
unwinding: bool,
cause: Option<~Any>
}
impl Unwinder {
fn result(&mut self) -> TaskResult {
if self.unwinding {
Err(self.cause.take().unwrap())
} else {
Ok(())
}
}
}
impl Task {
// A helper to build a new task using the dynamically found
// scheduler and task. Only works in GreenTask context.
pub fn build_homed_child(stack_size: Option<uint>,
f: proc(),
home: SchedHome)
-> ~Task {
let mut running_task = Local::borrow(None::<Task>);
let mut sched = running_task.get().sched.take_unwrap();
let new_task = ~running_task.get()
.new_child_homed(&mut sched.stack_pool,
stack_size,
home,
f);
running_task.get().sched = Some(sched);
new_task
}
pub fn build_child(stack_size: Option<uint>, f: proc()) -> ~Task {
Task::build_homed_child(stack_size, f, AnySched)
}
pub fn build_homed_root(stack_size: Option<uint>,
f: proc(),
home: SchedHome)
-> ~Task {
let mut running_task = Local::borrow(None::<Task>);
let mut sched = running_task.get().sched.take_unwrap();
let new_task = ~Task::new_root_homed(&mut sched.stack_pool,
stack_size,
home,
f);
running_task.get().sched = Some(sched);
new_task
}
pub fn build_root(stack_size: Option<uint>, f: proc()) -> ~Task {
Task::build_homed_root(stack_size, f, AnySched)
}
pub fn new_sched_task() -> Task {
Task {
heap: LocalHeap::new(),
gc: GarbageCollector,
storage: LocalStorage(None),
logger: None,
unwinder: Unwinder { unwinding: false, cause: None },
death: Death::new(),
destroyed: false,
coroutine: Some(Coroutine::empty()),
name: None,
sched: None,
task_type: SchedTask,
borrow_list: None,
stdout_handle: None,
nasty_deschedule_lock: unsafe { Mutex::new() },
}
}
pub fn new_root(stack_pool: &mut StackPool,
stack_size: Option<uint>,
start: proc()) -> Task {
Task::new_root_homed(stack_pool, stack_size, AnySched, start)
}
pub fn new_child(&mut self,
stack_pool: &mut StackPool,
stack_size: Option<uint>,
start: proc()) -> Task {
self.new_child_homed(stack_pool, stack_size, AnySched, start)
}
pub fn new_root_homed(stack_pool: &mut StackPool,
stack_size: Option<uint>,
home: SchedHome,
start: proc()) -> Task {
Task {
heap: LocalHeap::new(),
gc: GarbageCollector,
storage: LocalStorage(None),
logger: None,
unwinder: Unwinder { unwinding: false, cause: None },
death: Death::new(),
destroyed: false,
name: None,
coroutine: Some(Coroutine::new(stack_pool, stack_size, start)),
sched: None,
task_type: GreenTask(Some(home)),
borrow_list: None,
stdout_handle: None,
nasty_deschedule_lock: unsafe { Mutex::new() },
}
}
pub fn new_child_homed(&mut self,
stack_pool: &mut StackPool,
stack_size: Option<uint>,
home: SchedHome,
start: proc()) -> Task {
Task {
heap: LocalHeap::new(),
gc: GarbageCollector,
storage: LocalStorage(None),
logger: None,
unwinder: Unwinder { unwinding: false, cause: None },
death: Death::new(),
destroyed: false,
name: None,
coroutine: Some(Coroutine::new(stack_pool, stack_size, start)),
sched: None,
task_type: GreenTask(Some(home)),
borrow_list: None,
stdout_handle: None,
nasty_deschedule_lock: unsafe { Mutex::new() },
}
}
pub fn give_home(&mut self, new_home: SchedHome) {
match self.task_type {
GreenTask(ref mut home) => {
*home = Some(new_home);
}
SchedTask => {
rtabort!("type error: used SchedTask as GreenTask");
}
}
}
pub fn take_unwrap_home(&mut self) -> SchedHome {
match self.task_type {
GreenTask(ref mut home) => {
let out = home.take_unwrap();
return out;
}
SchedTask => {
rtabort!("type error: used SchedTask as GreenTask");
}
}
}
pub fn run(&mut self, f: ||) {
rtdebug!("run called on task: {}", borrow::to_uint(self));
// The only try/catch block in the world. Attempt to run the task's
// client-specified code and catch any failures.
self.unwinder.try(|| {
// Run the task main function, then do some cleanup.
f.finally(|| {
// First, destroy task-local storage. This may run user dtors.
//
// FIXME #8302: Dear diary. I'm so tired and confused.
// There's some interaction in rustc between the box
// annihilator and the TLS dtor by which TLS is
// accessed from annihilated box dtors *after* TLS is
// destroyed. Somehow setting TLS back to null, as the
// old runtime did, makes this work, but I don't currently
// understand how. I would expect that, if the annihilator
// reinvokes TLS while TLS is uninitialized, that
// TLS would be reinitialized but never destroyed,
// but somehow this works. I have no idea what's going
// on but this seems to make things magically work. FML.
//
// (added after initial comment) A possible interaction here is
// that the destructors for the objects in TLS themselves invoke
// TLS, or possibly some destructors for those objects being
// annihilated invoke TLS. Sadly these two operations seemed to
// be intertwined, and miraculously work for now...
self.storage.take();
// Destroy remaining boxes. Also may run user dtors.
unsafe { cleanup::annihilate(); }
// Finally flush and destroy any output handles which the task
// owns. There are no boxes here, and no user destructors should
// run after this any more.
match self.stdout_handle.take() {
Some(handle) => {
let mut handle = handle;
handle.flush();
}
None => {}
}
self.logger.take();
})
});
// Cleanup the dynamic borrowck debugging info
borrowck::clear_task_borrow_list();
self.death.collect_failure(self.unwinder.result());
self.destroyed = true;
}
// New utility functions for homes.
pub fn is_home_no_tls(&self, sched: &~Scheduler) -> bool {
match self.task_type {
GreenTask(Some(AnySched)) => { false }
GreenTask(Some(Sched(SchedHandle { sched_id: ref id, .. }))) => {
*id == sched.sched_id()
}
GreenTask(None) => {
rtabort!("task without home");
}
SchedTask => {
// Awe yea
rtabort!("type error: expected: GreenTask, found: SchedTask");
}
}
}
pub fn homed(&self) -> bool {
match self.task_type {
GreenTask(Some(AnySched)) => { false }
GreenTask(Some(Sched(SchedHandle { .. }))) => { true }
GreenTask(None) => {
rtabort!("task without home");
}
SchedTask => {
rtabort!("type error: expected: GreenTask, found: SchedTask");
}
}
}
// Grab both the scheduler and the task from TLS and check if the
// task is executing on an appropriate scheduler.
pub fn on_appropriate_sched() -> bool {
let mut task = Local::borrow(None::<Task>);
let sched_id = task.get().sched.get_ref().sched_id();
let sched_run_anything = task.get().sched.get_ref().run_anything;
match task.get().task_type {
GreenTask(Some(AnySched)) => {
rtdebug!("anysched task in sched check ****");
sched_run_anything
}
GreenTask(Some(Sched(SchedHandle { sched_id: ref id, ..}))) => {
rtdebug!("homed task in sched check ****");
*id == sched_id
}
GreenTask(None) => {
rtabort!("task without home");
}
SchedTask => {
rtabort!("type error: expected: GreenTask, found: SchedTask");
}
}
}
}
impl Drop for Task {
fn drop(&mut self) {
rtdebug!("called drop for a task: {}", borrow::to_uint(self));
rtassert!(self.destroyed);
unsafe { self.nasty_deschedule_lock.destroy(); }
}
}
// Coroutines represent nothing more than a context and a stack
// segment.
impl Coroutine {
pub fn new(stack_pool: &mut StackPool,
stack_size: Option<uint>,
start: proc())
-> Coroutine {
let stack_size = match stack_size {
Some(size) => size,
None => env::min_stack()
};
let start = Coroutine::build_start_wrapper(start);
let mut stack = stack_pool.take_segment(stack_size);
let initial_context = Context::new(start, &mut stack);
Coroutine {
current_stack_segment: stack,
saved_context: initial_context
}
}
pub fn empty() -> Coroutine {
Coroutine {
current_stack_segment: StackSegment::new(0),
saved_context: Context::empty()
}
}
fn build_start_wrapper(start: proc()) -> proc() {
let wrapper: proc() = proc() {
// First code after swap to this new context. Run our
// cleanup job.
unsafe {
// Again - might work while safe, or it might not.
{
let mut sched = Local::borrow(None::<Scheduler>);
sched.get().run_cleanup_job();
}
// To call the run method on a task we need a direct
// reference to it. The task is in TLS, so we can
// simply unsafe_borrow it to get this reference. We
// need to still have the task in TLS though, so we
// need to unsafe_borrow.
let task: *mut Task = Local::unsafe_borrow();
let mut start_cell = Some(start);
(*task).run(|| {
// N.B. Removing `start` from the start wrapper
// closure by emptying a cell is critical for
// correctness. The ~Task pointer, and in turn the
// closure used to initialize the first call
// frame, is destroyed in the scheduler context,
// not task context. So any captured closures must
// not contain user-definable dtors that expect to
// be in task context. By moving `start` out of
// the closure, all the user code goes our of
// scope while the task is still running.
let start = start_cell.take_unwrap();
start();
});
}
// We remove the sched from the Task in TLS right now.
let sched: ~Scheduler = Local::take();
// ... allowing us to give it away when performing a
// scheduling operation.
sched.terminate_current_task()
};
return wrapper;
}
/// Destroy coroutine and try to reuse stack segment.
pub fn recycle(self, stack_pool: &mut StackPool) {
match self {
Coroutine { current_stack_segment, .. } => {
stack_pool.give_segment(current_stack_segment);
}
}
}
}
// Just a sanity check to make sure we are catching a Rust-thrown exception
static UNWIND_TOKEN: uintptr_t = 839147;
impl Unwinder {
pub fn try(&mut self, f: ||) {
use unstable::raw::Closure;
unsafe {
let closure: Closure = transmute(f);
let code = transmute(closure.code);
let env = transmute(closure.env);
let token = rust_try(try_fn, code, env);
assert!(token == 0 || token == UNWIND_TOKEN);
}
extern fn try_fn(code: *c_void, env: *c_void) {
unsafe {
let closure: Closure = Closure {
code: transmute(code),
env: transmute(env),
};
let closure: || = transmute(closure);
closure();
}
}
extern {
fn rust_try(f: extern "C" fn(*c_void, *c_void),
code: *c_void,
data: *c_void) -> uintptr_t;
}
}
pub fn begin_unwind(&mut self, cause: ~Any) -> ! {
self.unwinding = true;
self.cause = Some(cause);
unsafe {
rust_begin_unwind(UNWIND_TOKEN);
return transmute(());
}
extern {
fn rust_begin_unwind(token: uintptr_t);
}
}
}
/// This function is invoked from rust's current __morestack function. Segmented
/// stacks are currently not enabled as segmented stacks, but rather one giant
/// stack segment. This means that whenever we run out of stack, we want to
/// truly consider it to be stack overflow rather than allocating a new stack.
#[no_mangle] // - this is called from C code
#[no_split_stack] // - it would be sad for this function to trigger __morestack
#[doc(hidden)] // - Function must be `pub` to get exported, but it's
// irrelevant for documentation purposes.
#[cfg(not(test))] // in testing, use the original libstd's version
pub extern "C" fn rust_stack_exhausted() {
use rt::context;
use rt::in_green_task_context;
use rt::task::Task;
use rt::local::Local;
use unstable::intrinsics;
unsafe {
// We're calling this function because the stack just ran out. We need
// to call some other rust functions, but if we invoke the functions
// right now it'll just trigger this handler being called again. In
// order to alleviate this, we move the stack limit to be inside of the
// red zone that was allocated for exactly this reason.
let limit = context::get_sp_limit();
context::record_sp_limit(limit - context::RED_ZONE / 2);
// This probably isn't the best course of action. Ideally one would want
// to unwind the stack here instead of just aborting the entire process.
// This is a tricky problem, however. There's a few things which need to
// be considered:
//
// 1. We're here because of a stack overflow, yet unwinding will run
// destructors and hence arbitrary code. What if that code overflows
// the stack? One possibility is to use the above allocation of an
// extra 10k to hope that we don't hit the limit, and if we do then
// abort the whole program. Not the best, but kind of hard to deal
// with unless we want to switch stacks.
//
// 2. LLVM will optimize functions based on whether they can unwind or
// not. It will flag functions with 'nounwind' if it believes that
// the function cannot trigger unwinding, but if we do unwind on
// stack overflow then it means that we could unwind in any function
// anywhere. We would have to make sure that LLVM only places the
// nounwind flag on functions which don't call any other functions.
//
// 3. The function that overflowed may have owned arguments. These
// arguments need to have their destructors run, but we haven't even
// begun executing the function yet, so unwinding will not run the
// any landing pads for these functions. If this is ignored, then
// the arguments will just be leaked.
//
// Exactly what to do here is a very delicate topic, and is possibly
// still up in the air for what exactly to do. Some relevant issues:
//
// #3555 - out-of-stack failure leaks arguments
// #3695 - should there be a stack limit?
// #9855 - possible strategies which could be taken
// #9854 - unwinding on windows through __morestack has never worked
// #2361 - possible implementation of not using landing pads
if in_green_task_context() {
let mut task = Local::borrow(None::<Task>);
let n = task.get()
.name
.as_ref()
.map(|n| n.as_slice())
.unwrap_or("<unnamed>");
// See the message below for why this is not emitted to the
// task's logger. This has the additional conundrum of the
// logger may not be initialized just yet, meaning that an FFI
// call would happen to initialized it (calling out to libuv),
// and the FFI call needs 2MB of stack when we just ran out.
rterrln!("task '{}' has overflowed its stack", n);
} else {
rterrln!("stack overflow in non-task context");
}
intrinsics::abort();
}
}
/// This is the entry point of unwinding for things like lang items and such.
/// The arguments are normally generated by the compiler, and need to
/// have static lifetimes.
pub fn begin_unwind_raw(msg: *c_char, file: *c_char, line: size_t) -> ! {
use c_str::CString;
use cast::transmute;
#[inline]
fn static_char_ptr(p: *c_char) -> &'static str {
let s = unsafe { CString::new(p, false) };
match s.as_str() {
Some(s) => unsafe { transmute::<&str, &'static str>(s) },
None => rtabort!("message wasn't utf8?")
}
}
let msg = static_char_ptr(msg);
let file = static_char_ptr(file);
begin_unwind(msg, file, line as uint)
}
/// This is the entry point of unwinding for fail!() and assert!().
pub fn begin_unwind<M: Any + Send>(msg: M, file: &'static str, line: uint) -> ! {
use any::AnyRefExt;
use rt::in_green_task_context;
use rt::local::Local;
use rt::task::Task;
use str::Str;
use unstable::intrinsics;
unsafe {
let task: *mut Task;
// Note that this should be the only allocation performed in this block.
// Currently this means that fail!() on OOM will invoke this code path,
// but then again we're not really ready for failing on OOM anyway. If
// we do start doing this, then we should propagate this allocation to
// be performed in the parent of this task instead of the task that's
// failing.
let msg = ~msg as ~Any;
{
//let msg: &Any = msg;
let msg_s = match msg.as_ref::<&'static str>() {
Some(s) => *s,
None => match msg.as_ref::<~str>() {
Some(s) => s.as_slice(),
None => "~Any",
}
};
if !in_green_task_context() {
rterrln!("failed in non-task context at '{}', {}:{}",
msg_s, file, line);
intrinsics::abort();
}
task = Local::unsafe_borrow();
let n = (*task).name.as_ref().map(|n| n.as_slice()).unwrap_or("<unnamed>");
// XXX: this should no get forcibly printed to the console, this should
// either be sent to the parent task (ideally), or get printed to
// the task's logger. Right now the logger is actually a uvio
// instance, which uses unkillable blocks internally for various
// reasons. This will cause serious trouble if the task is failing
// due to mismanagment of its own kill flag, so calling our own
// logger in its current state is a bit of a problem.
rterrln!("task '{}' failed at '{}', {}:{}", n, msg_s, file, line);
if (*task).unwinder.unwinding {
rtabort!("unwinding again");
}
}
(*task).unwinder.begin_unwind(msg);
}
}
#[cfg(test)]
mod test {
use super::*;
use rt::test::*;
use prelude::*;
#[test]
fn local_heap() {
do run_in_newsched_task() {
let a = @5;
let b = a;
assert!(*a == 5);
assert!(*b == 5);
}
}
#[test]
fn tls() {
use local_data;
do run_in_newsched_task() {
local_data_key!(key: @~str)
local_data::set(key, @~"data");
assert!(*local_data::get(key, |k| k.map(|k| *k)).unwrap() == ~"data");
local_data_key!(key2: @~str)
local_data::set(key2, @~"data");
assert!(*local_data::get(key2, |k| k.map(|k| *k)).unwrap() == ~"data");
}
}
#[test]
fn unwind() {
do run_in_newsched_task() {
let result = spawntask_try(proc()());
rtdebug!("trying first assert");
assert!(result.is_ok());
let result = spawntask_try(proc() fail!());
rtdebug!("trying second assert");
assert!(result.is_err());
}
}
#[test]
fn rng() {
do run_in_uv_task() {
use rand::{rng, Rng};
let mut r = rng();
let _ = r.next_u32();
}
}
#[test]
fn logging() {
do run_in_uv_task() {
info!("here i am. logging in a newsched task");
}
}
#[test]
fn comm_stream() {
do run_in_newsched_task() {
let (port, chan) = Chan::new();
chan.send(10);
assert!(port.recv() == 10);
}
}
#[test]
fn comm_shared_chan() {
do run_in_newsched_task() {
let (port, chan) = SharedChan::new();
chan.send(10);
assert!(port.recv() == 10);
}
}
#[test]
fn heap_cycles() {
use option::{Option, Some, None};
do run_in_newsched_task {
struct List {
next: Option<@mut List>,
}
let a = @mut List { next: None };
let b = @mut List { next: Some(a) };
a.next = Some(b);
}
}
#[test]
#[should_fail]
fn test_begin_unwind() { begin_unwind("cause", file!(), line!()) }
}