rust/src/libcore/fmt/float.rs
Brian Anderson 4f5b6927e8 std: Rename various slice traits for consistency
ImmutableVector -> ImmutableSlice
ImmutableEqVector -> ImmutableEqSlice
ImmutableOrdVector -> ImmutableOrdSlice
MutableVector -> MutableSlice
MutableVectorAllocating -> MutableSliceAllocating
MutableCloneableVector -> MutableCloneableSlice
MutableOrdVector -> MutableOrdSlice

These are all in the prelude so most code will not break.

[breaking-change]
2014-08-13 11:30:14 -07:00

370 lines
13 KiB
Rust

// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(missing_doc)]
use char;
use collections::Collection;
use fmt;
use iter::{range, DoubleEndedIterator};
use num::{Float, FPNaN, FPInfinite, ToPrimitive, Primitive};
use num::{Zero, One, cast};
use result::Ok;
use slice::{ImmutableSlice, MutableSlice};
use slice;
use str::StrSlice;
/// A flag that specifies whether to use exponential (scientific) notation.
pub enum ExponentFormat {
/// Do not use exponential notation.
ExpNone,
/// Use exponential notation with the exponent having a base of 10 and the
/// exponent sign being `e` or `E`. For example, 1000 would be printed
/// 1e3.
ExpDec,
/// Use exponential notation with the exponent having a base of 2 and the
/// exponent sign being `p` or `P`. For example, 8 would be printed 1p3.
ExpBin,
}
/// The number of digits used for emitting the fractional part of a number, if
/// any.
pub enum SignificantDigits {
/// All calculable digits will be printed.
///
/// Note that bignums or fractions may cause a surprisingly large number
/// of digits to be printed.
DigAll,
/// At most the given number of digits will be printed, truncating any
/// trailing zeroes.
DigMax(uint),
/// Precisely the given number of digits will be printed.
DigExact(uint)
}
/// How to emit the sign of a number.
pub enum SignFormat {
/// No sign will be printed. The exponent sign will also be emitted.
SignNone,
/// `-` will be printed for negative values, but no sign will be emitted
/// for positive numbers.
SignNeg,
/// `+` will be printed for positive values, and `-` will be printed for
/// negative values.
SignAll,
}
static DIGIT_P_RADIX: uint = ('p' as uint) - ('a' as uint) + 11u;
static DIGIT_E_RADIX: uint = ('e' as uint) - ('a' as uint) + 11u;
/**
* Converts a number to its string representation as a byte vector.
* This is meant to be a common base implementation for all numeric string
* conversion functions like `to_string()` or `to_str_radix()`.
*
* # Arguments
* - `num` - The number to convert. Accepts any number that
* implements the numeric traits.
* - `radix` - Base to use. Accepts only the values 2-36. If the exponential notation
* is used, then this base is only used for the significand. The exponent
* itself always printed using a base of 10.
* - `negative_zero` - Whether to treat the special value `-0` as
* `-0` or as `+0`.
* - `sign` - How to emit the sign. See `SignFormat`.
* - `digits` - The amount of digits to use for emitting the fractional
* part, if any. See `SignificantDigits`.
* - `exp_format` - Whether or not to use the exponential (scientific) notation.
* See `ExponentFormat`.
* - `exp_capital` - Whether or not to use a capital letter for the exponent sign, if
* exponential notation is desired.
* - `f` - A closure to invoke with the bytes representing the
* float.
*
* # Failure
* - Fails if `radix` < 2 or `radix` > 36.
* - Fails if `radix` > 14 and `exp_format` is `ExpDec` due to conflict
* between digit and exponent sign `'e'`.
* - Fails if `radix` > 25 and `exp_format` is `ExpBin` due to conflict
* between digit and exponent sign `'p'`.
*/
pub fn float_to_str_bytes_common<T: Primitive + Float, U>(
num: T,
radix: uint,
negative_zero: bool,
sign: SignFormat,
digits: SignificantDigits,
exp_format: ExponentFormat,
exp_upper: bool,
f: |&[u8]| -> U
) -> U {
assert!(2 <= radix && radix <= 36);
match exp_format {
ExpDec if radix >= DIGIT_E_RADIX // decimal exponent 'e'
=> fail!("float_to_str_bytes_common: radix {} incompatible with \
use of 'e' as decimal exponent", radix),
ExpBin if radix >= DIGIT_P_RADIX // binary exponent 'p'
=> fail!("float_to_str_bytes_common: radix {} incompatible with \
use of 'p' as binary exponent", radix),
_ => ()
}
let _0: T = Zero::zero();
let _1: T = One::one();
match num.classify() {
FPNaN => return f("NaN".as_bytes()),
FPInfinite if num > _0 => {
return match sign {
SignAll => return f("+inf".as_bytes()),
_ => return f("inf".as_bytes()),
};
}
FPInfinite if num < _0 => {
return match sign {
SignNone => return f("inf".as_bytes()),
_ => return f("-inf".as_bytes()),
};
}
_ => {}
}
let neg = num < _0 || (negative_zero && _1 / num == Float::neg_infinity());
// For an f64 the exponent is in the range of [-1022, 1023] for base 2, so
// we may have up to that many digits. Give ourselves some extra wiggle room
// otherwise as well.
let mut buf = [0u8, ..1536];
let mut end = 0;
let radix_gen: T = cast(radix as int).unwrap();
let (num, exp) = match exp_format {
ExpNone => (num, 0i32),
ExpDec | ExpBin if num == _0 => (num, 0i32),
ExpDec | ExpBin => {
let (exp, exp_base) = match exp_format {
ExpDec => (num.abs().log10().floor(), cast::<f64, T>(10.0f64).unwrap()),
ExpBin => (num.abs().log2().floor(), cast::<f64, T>(2.0f64).unwrap()),
ExpNone => fail!("unreachable"),
};
(num / exp_base.powf(exp), cast::<T, i32>(exp).unwrap())
}
};
// First emit the non-fractional part, looping at least once to make
// sure at least a `0` gets emitted.
let mut deccum = num.trunc();
loop {
// Calculate the absolute value of each digit instead of only
// doing it once for the whole number because a
// representable negative number doesn't necessary have an
// representable additive inverse of the same type
// (See twos complement). But we assume that for the
// numbers [-35 .. 0] we always have [0 .. 35].
let current_digit = (deccum % radix_gen).abs();
// Decrease the deccumulator one digit at a time
deccum = deccum / radix_gen;
deccum = deccum.trunc();
let c = char::from_digit(current_digit.to_int().unwrap() as uint, radix);
buf[end] = c.unwrap() as u8;
end += 1;
// No more digits to calculate for the non-fractional part -> break
if deccum == _0 { break; }
}
// If limited digits, calculate one digit more for rounding.
let (limit_digits, digit_count, exact) = match digits {
DigAll => (false, 0u, false),
DigMax(count) => (true, count+1, false),
DigExact(count) => (true, count+1, true)
};
// Decide what sign to put in front
match sign {
SignNeg | SignAll if neg => {
buf[end] = b'-';
end += 1;
}
SignAll => {
buf[end] = b'+';
end += 1;
}
_ => ()
}
buf.mut_slice_to(end).reverse();
// Remember start of the fractional digits.
// Points one beyond end of buf if none get generated,
// or at the '.' otherwise.
let start_fractional_digits = end;
// Now emit the fractional part, if any
deccum = num.fract();
if deccum != _0 || (limit_digits && exact && digit_count > 0) {
buf[end] = b'.';
end += 1;
let mut dig = 0u;
// calculate new digits while
// - there is no limit and there are digits left
// - or there is a limit, it's not reached yet and
// - it's exact
// - or it's a maximum, and there are still digits left
while (!limit_digits && deccum != _0)
|| (limit_digits && dig < digit_count && (
exact
|| (!exact && deccum != _0)
)
) {
// Shift first fractional digit into the integer part
deccum = deccum * radix_gen;
// Calculate the absolute value of each digit.
// See note in first loop.
let current_digit = deccum.trunc().abs();
let c = char::from_digit(current_digit.to_int().unwrap() as uint,
radix);
buf[end] = c.unwrap() as u8;
end += 1;
// Decrease the deccumulator one fractional digit at a time
deccum = deccum.fract();
dig += 1u;
}
// If digits are limited, and that limit has been reached,
// cut off the one extra digit, and depending on its value
// round the remaining ones.
if limit_digits && dig == digit_count {
let ascii2value = |chr: u8| {
char::to_digit(chr as char, radix).unwrap()
};
let value2ascii = |val: uint| {
char::from_digit(val, radix).unwrap() as u8
};
let extra_digit = ascii2value(buf[end - 1]);
end -= 1;
if extra_digit >= radix / 2 { // -> need to round
let mut i: int = end as int - 1;
loop {
// If reached left end of number, have to
// insert additional digit:
if i < 0
|| buf[i as uint] == b'-'
|| buf[i as uint] == b'+' {
for j in range(i as uint + 1, end).rev() {
buf[j + 1] = buf[j];
}
buf[(i + 1) as uint] = value2ascii(1);
end += 1;
break;
}
// Skip the '.'
if buf[i as uint] == b'.' { i -= 1; continue; }
// Either increment the digit,
// or set to 0 if max and carry the 1.
let current_digit = ascii2value(buf[i as uint]);
if current_digit < (radix - 1) {
buf[i as uint] = value2ascii(current_digit+1);
break;
} else {
buf[i as uint] = value2ascii(0);
i -= 1;
}
}
}
}
}
// if number of digits is not exact, remove all trailing '0's up to
// and including the '.'
if !exact {
let buf_max_i = end - 1;
// index to truncate from
let mut i = buf_max_i;
// discover trailing zeros of fractional part
while i > start_fractional_digits && buf[i] == b'0' {
i -= 1;
}
// Only attempt to truncate digits if buf has fractional digits
if i >= start_fractional_digits {
// If buf ends with '.', cut that too.
if buf[i] == b'.' { i -= 1 }
// only resize buf if we actually remove digits
if i < buf_max_i {
end = i + 1;
}
}
} // If exact and trailing '.', just cut that
else {
let max_i = end - 1;
if buf[max_i] == b'.' {
end = max_i;
}
}
match exp_format {
ExpNone => {},
_ => {
buf[end] = match exp_format {
ExpDec if exp_upper => 'E',
ExpDec if !exp_upper => 'e',
ExpBin if exp_upper => 'P',
ExpBin if !exp_upper => 'p',
_ => fail!("unreachable"),
} as u8;
end += 1;
struct Filler<'a> {
buf: &'a mut [u8],
end: &'a mut uint,
}
impl<'a> fmt::FormatWriter for Filler<'a> {
fn write(&mut self, bytes: &[u8]) -> fmt::Result {
slice::bytes::copy_memory(self.buf.mut_slice_from(*self.end),
bytes);
*self.end += bytes.len();
Ok(())
}
}
let mut filler = Filler { buf: buf, end: &mut end };
match sign {
SignNeg => {
let _ = format_args!(|args| {
fmt::write(&mut filler, args)
}, "{:-}", exp);
}
SignNone | SignAll => {
let _ = format_args!(|args| {
fmt::write(&mut filler, args)
}, "{}", exp);
}
}
}
}
f(buf.slice_to(end))
}