4f5b6927e8
ImmutableVector -> ImmutableSlice ImmutableEqVector -> ImmutableEqSlice ImmutableOrdVector -> ImmutableOrdSlice MutableVector -> MutableSlice MutableVectorAllocating -> MutableSliceAllocating MutableCloneableVector -> MutableCloneableSlice MutableOrdVector -> MutableOrdSlice These are all in the prelude so most code will not break. [breaking-change]
370 lines
13 KiB
Rust
370 lines
13 KiB
Rust
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
#![allow(missing_doc)]
|
|
|
|
use char;
|
|
use collections::Collection;
|
|
use fmt;
|
|
use iter::{range, DoubleEndedIterator};
|
|
use num::{Float, FPNaN, FPInfinite, ToPrimitive, Primitive};
|
|
use num::{Zero, One, cast};
|
|
use result::Ok;
|
|
use slice::{ImmutableSlice, MutableSlice};
|
|
use slice;
|
|
use str::StrSlice;
|
|
|
|
/// A flag that specifies whether to use exponential (scientific) notation.
|
|
pub enum ExponentFormat {
|
|
/// Do not use exponential notation.
|
|
ExpNone,
|
|
/// Use exponential notation with the exponent having a base of 10 and the
|
|
/// exponent sign being `e` or `E`. For example, 1000 would be printed
|
|
/// 1e3.
|
|
ExpDec,
|
|
/// Use exponential notation with the exponent having a base of 2 and the
|
|
/// exponent sign being `p` or `P`. For example, 8 would be printed 1p3.
|
|
ExpBin,
|
|
}
|
|
|
|
/// The number of digits used for emitting the fractional part of a number, if
|
|
/// any.
|
|
pub enum SignificantDigits {
|
|
/// All calculable digits will be printed.
|
|
///
|
|
/// Note that bignums or fractions may cause a surprisingly large number
|
|
/// of digits to be printed.
|
|
DigAll,
|
|
|
|
/// At most the given number of digits will be printed, truncating any
|
|
/// trailing zeroes.
|
|
DigMax(uint),
|
|
|
|
/// Precisely the given number of digits will be printed.
|
|
DigExact(uint)
|
|
}
|
|
|
|
/// How to emit the sign of a number.
|
|
pub enum SignFormat {
|
|
/// No sign will be printed. The exponent sign will also be emitted.
|
|
SignNone,
|
|
/// `-` will be printed for negative values, but no sign will be emitted
|
|
/// for positive numbers.
|
|
SignNeg,
|
|
/// `+` will be printed for positive values, and `-` will be printed for
|
|
/// negative values.
|
|
SignAll,
|
|
}
|
|
|
|
static DIGIT_P_RADIX: uint = ('p' as uint) - ('a' as uint) + 11u;
|
|
static DIGIT_E_RADIX: uint = ('e' as uint) - ('a' as uint) + 11u;
|
|
|
|
/**
|
|
* Converts a number to its string representation as a byte vector.
|
|
* This is meant to be a common base implementation for all numeric string
|
|
* conversion functions like `to_string()` or `to_str_radix()`.
|
|
*
|
|
* # Arguments
|
|
* - `num` - The number to convert. Accepts any number that
|
|
* implements the numeric traits.
|
|
* - `radix` - Base to use. Accepts only the values 2-36. If the exponential notation
|
|
* is used, then this base is only used for the significand. The exponent
|
|
* itself always printed using a base of 10.
|
|
* - `negative_zero` - Whether to treat the special value `-0` as
|
|
* `-0` or as `+0`.
|
|
* - `sign` - How to emit the sign. See `SignFormat`.
|
|
* - `digits` - The amount of digits to use for emitting the fractional
|
|
* part, if any. See `SignificantDigits`.
|
|
* - `exp_format` - Whether or not to use the exponential (scientific) notation.
|
|
* See `ExponentFormat`.
|
|
* - `exp_capital` - Whether or not to use a capital letter for the exponent sign, if
|
|
* exponential notation is desired.
|
|
* - `f` - A closure to invoke with the bytes representing the
|
|
* float.
|
|
*
|
|
* # Failure
|
|
* - Fails if `radix` < 2 or `radix` > 36.
|
|
* - Fails if `radix` > 14 and `exp_format` is `ExpDec` due to conflict
|
|
* between digit and exponent sign `'e'`.
|
|
* - Fails if `radix` > 25 and `exp_format` is `ExpBin` due to conflict
|
|
* between digit and exponent sign `'p'`.
|
|
*/
|
|
pub fn float_to_str_bytes_common<T: Primitive + Float, U>(
|
|
num: T,
|
|
radix: uint,
|
|
negative_zero: bool,
|
|
sign: SignFormat,
|
|
digits: SignificantDigits,
|
|
exp_format: ExponentFormat,
|
|
exp_upper: bool,
|
|
f: |&[u8]| -> U
|
|
) -> U {
|
|
assert!(2 <= radix && radix <= 36);
|
|
match exp_format {
|
|
ExpDec if radix >= DIGIT_E_RADIX // decimal exponent 'e'
|
|
=> fail!("float_to_str_bytes_common: radix {} incompatible with \
|
|
use of 'e' as decimal exponent", radix),
|
|
ExpBin if radix >= DIGIT_P_RADIX // binary exponent 'p'
|
|
=> fail!("float_to_str_bytes_common: radix {} incompatible with \
|
|
use of 'p' as binary exponent", radix),
|
|
_ => ()
|
|
}
|
|
|
|
let _0: T = Zero::zero();
|
|
let _1: T = One::one();
|
|
|
|
match num.classify() {
|
|
FPNaN => return f("NaN".as_bytes()),
|
|
FPInfinite if num > _0 => {
|
|
return match sign {
|
|
SignAll => return f("+inf".as_bytes()),
|
|
_ => return f("inf".as_bytes()),
|
|
};
|
|
}
|
|
FPInfinite if num < _0 => {
|
|
return match sign {
|
|
SignNone => return f("inf".as_bytes()),
|
|
_ => return f("-inf".as_bytes()),
|
|
};
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
let neg = num < _0 || (negative_zero && _1 / num == Float::neg_infinity());
|
|
// For an f64 the exponent is in the range of [-1022, 1023] for base 2, so
|
|
// we may have up to that many digits. Give ourselves some extra wiggle room
|
|
// otherwise as well.
|
|
let mut buf = [0u8, ..1536];
|
|
let mut end = 0;
|
|
let radix_gen: T = cast(radix as int).unwrap();
|
|
|
|
let (num, exp) = match exp_format {
|
|
ExpNone => (num, 0i32),
|
|
ExpDec | ExpBin if num == _0 => (num, 0i32),
|
|
ExpDec | ExpBin => {
|
|
let (exp, exp_base) = match exp_format {
|
|
ExpDec => (num.abs().log10().floor(), cast::<f64, T>(10.0f64).unwrap()),
|
|
ExpBin => (num.abs().log2().floor(), cast::<f64, T>(2.0f64).unwrap()),
|
|
ExpNone => fail!("unreachable"),
|
|
};
|
|
|
|
(num / exp_base.powf(exp), cast::<T, i32>(exp).unwrap())
|
|
}
|
|
};
|
|
|
|
// First emit the non-fractional part, looping at least once to make
|
|
// sure at least a `0` gets emitted.
|
|
let mut deccum = num.trunc();
|
|
loop {
|
|
// Calculate the absolute value of each digit instead of only
|
|
// doing it once for the whole number because a
|
|
// representable negative number doesn't necessary have an
|
|
// representable additive inverse of the same type
|
|
// (See twos complement). But we assume that for the
|
|
// numbers [-35 .. 0] we always have [0 .. 35].
|
|
let current_digit = (deccum % radix_gen).abs();
|
|
|
|
// Decrease the deccumulator one digit at a time
|
|
deccum = deccum / radix_gen;
|
|
deccum = deccum.trunc();
|
|
|
|
let c = char::from_digit(current_digit.to_int().unwrap() as uint, radix);
|
|
buf[end] = c.unwrap() as u8;
|
|
end += 1;
|
|
|
|
// No more digits to calculate for the non-fractional part -> break
|
|
if deccum == _0 { break; }
|
|
}
|
|
|
|
// If limited digits, calculate one digit more for rounding.
|
|
let (limit_digits, digit_count, exact) = match digits {
|
|
DigAll => (false, 0u, false),
|
|
DigMax(count) => (true, count+1, false),
|
|
DigExact(count) => (true, count+1, true)
|
|
};
|
|
|
|
// Decide what sign to put in front
|
|
match sign {
|
|
SignNeg | SignAll if neg => {
|
|
buf[end] = b'-';
|
|
end += 1;
|
|
}
|
|
SignAll => {
|
|
buf[end] = b'+';
|
|
end += 1;
|
|
}
|
|
_ => ()
|
|
}
|
|
|
|
buf.mut_slice_to(end).reverse();
|
|
|
|
// Remember start of the fractional digits.
|
|
// Points one beyond end of buf if none get generated,
|
|
// or at the '.' otherwise.
|
|
let start_fractional_digits = end;
|
|
|
|
// Now emit the fractional part, if any
|
|
deccum = num.fract();
|
|
if deccum != _0 || (limit_digits && exact && digit_count > 0) {
|
|
buf[end] = b'.';
|
|
end += 1;
|
|
let mut dig = 0u;
|
|
|
|
// calculate new digits while
|
|
// - there is no limit and there are digits left
|
|
// - or there is a limit, it's not reached yet and
|
|
// - it's exact
|
|
// - or it's a maximum, and there are still digits left
|
|
while (!limit_digits && deccum != _0)
|
|
|| (limit_digits && dig < digit_count && (
|
|
exact
|
|
|| (!exact && deccum != _0)
|
|
)
|
|
) {
|
|
// Shift first fractional digit into the integer part
|
|
deccum = deccum * radix_gen;
|
|
|
|
// Calculate the absolute value of each digit.
|
|
// See note in first loop.
|
|
let current_digit = deccum.trunc().abs();
|
|
|
|
let c = char::from_digit(current_digit.to_int().unwrap() as uint,
|
|
radix);
|
|
buf[end] = c.unwrap() as u8;
|
|
end += 1;
|
|
|
|
// Decrease the deccumulator one fractional digit at a time
|
|
deccum = deccum.fract();
|
|
dig += 1u;
|
|
}
|
|
|
|
// If digits are limited, and that limit has been reached,
|
|
// cut off the one extra digit, and depending on its value
|
|
// round the remaining ones.
|
|
if limit_digits && dig == digit_count {
|
|
let ascii2value = |chr: u8| {
|
|
char::to_digit(chr as char, radix).unwrap()
|
|
};
|
|
let value2ascii = |val: uint| {
|
|
char::from_digit(val, radix).unwrap() as u8
|
|
};
|
|
|
|
let extra_digit = ascii2value(buf[end - 1]);
|
|
end -= 1;
|
|
if extra_digit >= radix / 2 { // -> need to round
|
|
let mut i: int = end as int - 1;
|
|
loop {
|
|
// If reached left end of number, have to
|
|
// insert additional digit:
|
|
if i < 0
|
|
|| buf[i as uint] == b'-'
|
|
|| buf[i as uint] == b'+' {
|
|
for j in range(i as uint + 1, end).rev() {
|
|
buf[j + 1] = buf[j];
|
|
}
|
|
buf[(i + 1) as uint] = value2ascii(1);
|
|
end += 1;
|
|
break;
|
|
}
|
|
|
|
// Skip the '.'
|
|
if buf[i as uint] == b'.' { i -= 1; continue; }
|
|
|
|
// Either increment the digit,
|
|
// or set to 0 if max and carry the 1.
|
|
let current_digit = ascii2value(buf[i as uint]);
|
|
if current_digit < (radix - 1) {
|
|
buf[i as uint] = value2ascii(current_digit+1);
|
|
break;
|
|
} else {
|
|
buf[i as uint] = value2ascii(0);
|
|
i -= 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// if number of digits is not exact, remove all trailing '0's up to
|
|
// and including the '.'
|
|
if !exact {
|
|
let buf_max_i = end - 1;
|
|
|
|
// index to truncate from
|
|
let mut i = buf_max_i;
|
|
|
|
// discover trailing zeros of fractional part
|
|
while i > start_fractional_digits && buf[i] == b'0' {
|
|
i -= 1;
|
|
}
|
|
|
|
// Only attempt to truncate digits if buf has fractional digits
|
|
if i >= start_fractional_digits {
|
|
// If buf ends with '.', cut that too.
|
|
if buf[i] == b'.' { i -= 1 }
|
|
|
|
// only resize buf if we actually remove digits
|
|
if i < buf_max_i {
|
|
end = i + 1;
|
|
}
|
|
}
|
|
} // If exact and trailing '.', just cut that
|
|
else {
|
|
let max_i = end - 1;
|
|
if buf[max_i] == b'.' {
|
|
end = max_i;
|
|
}
|
|
}
|
|
|
|
match exp_format {
|
|
ExpNone => {},
|
|
_ => {
|
|
buf[end] = match exp_format {
|
|
ExpDec if exp_upper => 'E',
|
|
ExpDec if !exp_upper => 'e',
|
|
ExpBin if exp_upper => 'P',
|
|
ExpBin if !exp_upper => 'p',
|
|
_ => fail!("unreachable"),
|
|
} as u8;
|
|
end += 1;
|
|
|
|
struct Filler<'a> {
|
|
buf: &'a mut [u8],
|
|
end: &'a mut uint,
|
|
}
|
|
|
|
impl<'a> fmt::FormatWriter for Filler<'a> {
|
|
fn write(&mut self, bytes: &[u8]) -> fmt::Result {
|
|
slice::bytes::copy_memory(self.buf.mut_slice_from(*self.end),
|
|
bytes);
|
|
*self.end += bytes.len();
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
let mut filler = Filler { buf: buf, end: &mut end };
|
|
match sign {
|
|
SignNeg => {
|
|
let _ = format_args!(|args| {
|
|
fmt::write(&mut filler, args)
|
|
}, "{:-}", exp);
|
|
}
|
|
SignNone | SignAll => {
|
|
let _ = format_args!(|args| {
|
|
fmt::write(&mut filler, args)
|
|
}, "{}", exp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
f(buf.slice_to(end))
|
|
}
|