rust/compiler/rustc_ast_lowering/src/index.rs
bors c95346b8ac Auto merge of #91557 - cjgillot:ast-lifetimes-named, r=petrochenkov
Perform lifetime resolution on the AST for lowering

Lifetime resolution is currently implemented several times. Once during lowering in order to introduce in-band lifetimes, and once in the resolve_lifetimes query. However, due to the global nature of lifetime resolution and how it interferes with hygiene, it is better suited on the AST.

This PR implements a first draft of lifetime resolution on the AST. For now, we specifically target named lifetimes and everything we need to remove lifetime resolution from lowering. Some diagnostics have already been ported, and sometimes made more precise using available hygiene information. Follow-up PRs will address in particular the resolution of anonymous lifetimes on the AST.

We reuse the rib design of the current resolution framework. Specific `LifetimeRib` and `LifetimeRibKind` types are introduced. The most important variant is `LifetimeRibKind::Generics`, which happens each time we encounter something which may introduce generic lifetime parameters. It can be an item or a `for<...>` binder. The `LifetimeBinderKind` specifies how this rib behaves with respect to in-band lifetimes.

r? `@petrochenkov`
2022-04-27 23:13:28 +00:00

341 lines
12 KiB
Rust

use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sorted_map::SortedMap;
use rustc_hir as hir;
use rustc_hir::def_id::LocalDefId;
use rustc_hir::definitions;
use rustc_hir::intravisit::{self, Visitor};
use rustc_hir::*;
use rustc_index::vec::{Idx, IndexVec};
use rustc_session::Session;
use rustc_span::source_map::SourceMap;
use rustc_span::{Span, DUMMY_SP};
use tracing::debug;
/// A visitor that walks over the HIR and collects `Node`s into a HIR map.
pub(super) struct NodeCollector<'a, 'hir> {
/// Source map
source_map: &'a SourceMap,
bodies: &'a SortedMap<ItemLocalId, &'hir Body<'hir>>,
/// Outputs
nodes: IndexVec<ItemLocalId, Option<ParentedNode<'hir>>>,
parenting: FxHashMap<LocalDefId, ItemLocalId>,
/// The parent of this node
parent_node: hir::ItemLocalId,
owner: LocalDefId,
definitions: &'a definitions::Definitions,
}
#[tracing::instrument(level = "debug", skip(sess, definitions, bodies))]
pub(super) fn index_hir<'hir>(
sess: &Session,
definitions: &definitions::Definitions,
item: hir::OwnerNode<'hir>,
bodies: &SortedMap<ItemLocalId, &'hir Body<'hir>>,
) -> (IndexVec<ItemLocalId, Option<ParentedNode<'hir>>>, FxHashMap<LocalDefId, ItemLocalId>) {
let mut nodes = IndexVec::new();
// This node's parent should never be accessed: the owner's parent is computed by the
// hir_owner_parent query. Make it invalid (= ItemLocalId::MAX) to force an ICE whenever it is
// used.
nodes.push(Some(ParentedNode { parent: ItemLocalId::INVALID, node: item.into() }));
let mut collector = NodeCollector {
source_map: sess.source_map(),
definitions,
owner: item.def_id(),
parent_node: ItemLocalId::new(0),
nodes,
bodies,
parenting: FxHashMap::default(),
};
match item {
OwnerNode::Crate(citem) => {
collector.visit_mod(&citem, citem.spans.inner_span, hir::CRATE_HIR_ID)
}
OwnerNode::Item(item) => collector.visit_item(item),
OwnerNode::TraitItem(item) => collector.visit_trait_item(item),
OwnerNode::ImplItem(item) => collector.visit_impl_item(item),
OwnerNode::ForeignItem(item) => collector.visit_foreign_item(item),
};
(collector.nodes, collector.parenting)
}
impl<'a, 'hir> NodeCollector<'a, 'hir> {
#[tracing::instrument(level = "debug", skip(self))]
fn insert(&mut self, span: Span, hir_id: HirId, node: Node<'hir>) {
debug_assert_eq!(self.owner, hir_id.owner);
debug_assert_ne!(hir_id.local_id.as_u32(), 0);
// Make sure that the DepNode of some node coincides with the HirId
// owner of that node.
if cfg!(debug_assertions) {
if hir_id.owner != self.owner {
panic!(
"inconsistent DepNode at `{:?}` for `{:?}`: \
current_dep_node_owner={} ({:?}), hir_id.owner={} ({:?})",
self.source_map.span_to_diagnostic_string(span),
node,
self.definitions.def_path(self.owner).to_string_no_crate_verbose(),
self.owner,
self.definitions.def_path(hir_id.owner).to_string_no_crate_verbose(),
hir_id.owner,
)
}
}
self.nodes.insert(hir_id.local_id, ParentedNode { parent: self.parent_node, node: node });
}
fn with_parent<F: FnOnce(&mut Self)>(&mut self, parent_node_id: HirId, f: F) {
debug_assert_eq!(parent_node_id.owner, self.owner);
let parent_node = self.parent_node;
self.parent_node = parent_node_id.local_id;
f(self);
self.parent_node = parent_node;
}
fn insert_nested(&mut self, item: LocalDefId) {
self.parenting.insert(item, self.parent_node);
}
}
impl<'a, 'hir> Visitor<'hir> for NodeCollector<'a, 'hir> {
/// Because we want to track parent items and so forth, enable
/// deep walking so that we walk nested items in the context of
/// their outer items.
fn visit_nested_item(&mut self, item: ItemId) {
debug!("visit_nested_item: {:?}", item);
self.insert_nested(item.def_id);
}
fn visit_nested_trait_item(&mut self, item_id: TraitItemId) {
self.insert_nested(item_id.def_id);
}
fn visit_nested_impl_item(&mut self, item_id: ImplItemId) {
self.insert_nested(item_id.def_id);
}
fn visit_nested_foreign_item(&mut self, foreign_id: ForeignItemId) {
self.insert_nested(foreign_id.def_id);
}
fn visit_nested_body(&mut self, id: BodyId) {
debug_assert_eq!(id.hir_id.owner, self.owner);
let body = self.bodies[&id.hir_id.local_id];
self.visit_body(body);
}
fn visit_param(&mut self, param: &'hir Param<'hir>) {
let node = Node::Param(param);
self.insert(param.pat.span, param.hir_id, node);
self.with_parent(param.hir_id, |this| {
intravisit::walk_param(this, param);
});
}
#[tracing::instrument(level = "debug", skip(self))]
fn visit_item(&mut self, i: &'hir Item<'hir>) {
debug_assert_eq!(i.def_id, self.owner);
self.with_parent(i.hir_id(), |this| {
if let ItemKind::Struct(ref struct_def, _) = i.kind {
// If this is a tuple or unit-like struct, register the constructor.
if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
this.insert(i.span, ctor_hir_id, Node::Ctor(struct_def));
}
}
intravisit::walk_item(this, i);
});
}
#[tracing::instrument(level = "debug", skip(self))]
fn visit_foreign_item(&mut self, fi: &'hir ForeignItem<'hir>) {
debug_assert_eq!(fi.def_id, self.owner);
self.with_parent(fi.hir_id(), |this| {
intravisit::walk_foreign_item(this, fi);
});
}
fn visit_generic_param(&mut self, param: &'hir GenericParam<'hir>) {
self.insert(param.span, param.hir_id, Node::GenericParam(param));
intravisit::walk_generic_param(self, param);
}
fn visit_const_param_default(&mut self, param: HirId, ct: &'hir AnonConst) {
self.with_parent(param, |this| {
intravisit::walk_const_param_default(this, ct);
})
}
#[tracing::instrument(level = "debug", skip(self))]
fn visit_trait_item(&mut self, ti: &'hir TraitItem<'hir>) {
debug_assert_eq!(ti.def_id, self.owner);
self.with_parent(ti.hir_id(), |this| {
intravisit::walk_trait_item(this, ti);
});
}
#[tracing::instrument(level = "debug", skip(self))]
fn visit_impl_item(&mut self, ii: &'hir ImplItem<'hir>) {
debug_assert_eq!(ii.def_id, self.owner);
self.with_parent(ii.hir_id(), |this| {
intravisit::walk_impl_item(this, ii);
});
}
fn visit_pat(&mut self, pat: &'hir Pat<'hir>) {
let node =
if let PatKind::Binding(..) = pat.kind { Node::Binding(pat) } else { Node::Pat(pat) };
self.insert(pat.span, pat.hir_id, node);
self.with_parent(pat.hir_id, |this| {
intravisit::walk_pat(this, pat);
});
}
fn visit_arm(&mut self, arm: &'hir Arm<'hir>) {
let node = Node::Arm(arm);
self.insert(arm.span, arm.hir_id, node);
self.with_parent(arm.hir_id, |this| {
intravisit::walk_arm(this, arm);
});
}
fn visit_anon_const(&mut self, constant: &'hir AnonConst) {
self.insert(DUMMY_SP, constant.hir_id, Node::AnonConst(constant));
self.with_parent(constant.hir_id, |this| {
intravisit::walk_anon_const(this, constant);
});
}
fn visit_expr(&mut self, expr: &'hir Expr<'hir>) {
self.insert(expr.span, expr.hir_id, Node::Expr(expr));
self.with_parent(expr.hir_id, |this| {
intravisit::walk_expr(this, expr);
});
}
fn visit_stmt(&mut self, stmt: &'hir Stmt<'hir>) {
self.insert(stmt.span, stmt.hir_id, Node::Stmt(stmt));
self.with_parent(stmt.hir_id, |this| {
intravisit::walk_stmt(this, stmt);
});
}
fn visit_path_segment(&mut self, path_span: Span, path_segment: &'hir PathSegment<'hir>) {
if let Some(hir_id) = path_segment.hir_id {
self.insert(path_span, hir_id, Node::PathSegment(path_segment));
}
intravisit::walk_path_segment(self, path_span, path_segment);
}
fn visit_ty(&mut self, ty: &'hir Ty<'hir>) {
self.insert(ty.span, ty.hir_id, Node::Ty(ty));
self.with_parent(ty.hir_id, |this| {
intravisit::walk_ty(this, ty);
});
}
fn visit_infer(&mut self, inf: &'hir InferArg) {
self.insert(inf.span, inf.hir_id, Node::Infer(inf));
self.with_parent(inf.hir_id, |this| {
intravisit::walk_inf(this, inf);
});
}
fn visit_trait_ref(&mut self, tr: &'hir TraitRef<'hir>) {
self.insert(tr.path.span, tr.hir_ref_id, Node::TraitRef(tr));
self.with_parent(tr.hir_ref_id, |this| {
intravisit::walk_trait_ref(this, tr);
});
}
fn visit_fn(
&mut self,
fk: intravisit::FnKind<'hir>,
fd: &'hir FnDecl<'hir>,
b: BodyId,
s: Span,
id: HirId,
) {
assert_eq!(self.owner, id.owner);
assert_eq!(self.parent_node, id.local_id);
intravisit::walk_fn(self, fk, fd, b, s, id);
}
fn visit_block(&mut self, block: &'hir Block<'hir>) {
self.insert(block.span, block.hir_id, Node::Block(block));
self.with_parent(block.hir_id, |this| {
intravisit::walk_block(this, block);
});
}
fn visit_local(&mut self, l: &'hir Local<'hir>) {
self.insert(l.span, l.hir_id, Node::Local(l));
self.with_parent(l.hir_id, |this| {
intravisit::walk_local(this, l);
})
}
fn visit_lifetime(&mut self, lifetime: &'hir Lifetime) {
self.insert(lifetime.span, lifetime.hir_id, Node::Lifetime(lifetime));
}
fn visit_variant(&mut self, v: &'hir Variant<'hir>, g: &'hir Generics<'hir>, item_id: HirId) {
self.insert(v.span, v.id, Node::Variant(v));
self.with_parent(v.id, |this| {
// Register the constructor of this variant.
if let Some(ctor_hir_id) = v.data.ctor_hir_id() {
this.insert(v.span, ctor_hir_id, Node::Ctor(&v.data));
}
intravisit::walk_variant(this, v, g, item_id);
});
}
fn visit_field_def(&mut self, field: &'hir FieldDef<'hir>) {
self.insert(field.span, field.hir_id, Node::Field(field));
self.with_parent(field.hir_id, |this| {
intravisit::walk_field_def(this, field);
});
}
fn visit_trait_item_ref(&mut self, ii: &'hir TraitItemRef) {
// Do not visit the duplicate information in TraitItemRef. We want to
// map the actual nodes, not the duplicate ones in the *Ref.
let TraitItemRef { id, ident: _, kind: _, span: _, defaultness: _ } = *ii;
self.visit_nested_trait_item(id);
}
fn visit_impl_item_ref(&mut self, ii: &'hir ImplItemRef) {
// Do not visit the duplicate information in ImplItemRef. We want to
// map the actual nodes, not the duplicate ones in the *Ref.
let ImplItemRef { id, ident: _, kind: _, span: _, defaultness: _, trait_item_def_id: _ } =
*ii;
self.visit_nested_impl_item(id);
}
fn visit_foreign_item_ref(&mut self, fi: &'hir ForeignItemRef) {
// Do not visit the duplicate information in ForeignItemRef. We want to
// map the actual nodes, not the duplicate ones in the *Ref.
let ForeignItemRef { id, ident: _, span: _ } = *fi;
self.visit_nested_foreign_item(id);
}
}