rust/src/liballoc/rc.rs
2015-03-16 21:57:42 -05:00

1006 lines
28 KiB
Rust
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Thread-local reference-counted boxes (the `Rc<T>` type).
//!
//! The `Rc<T>` type provides shared ownership of an immutable value.
//! Destruction is deterministic, and will occur as soon as the last owner is
//! gone. It is marked as non-sendable because it avoids the overhead of atomic
//! reference counting.
//!
//! The `downgrade` method can be used to create a non-owning `Weak<T>` pointer
//! to the box. A `Weak<T>` pointer can be upgraded to an `Rc<T>` pointer, but
//! will return `None` if the value has already been dropped.
//!
//! For example, a tree with parent pointers can be represented by putting the
//! nodes behind strong `Rc<T>` pointers, and then storing the parent pointers
//! as `Weak<T>` pointers.
//!
//! # Examples
//!
//! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
//! We want to have our `Gadget`s point to their `Owner`. We can't do this with
//! unique ownership, because more than one gadget may belong to the same
//! `Owner`. `Rc<T>` allows us to share an `Owner` between multiple `Gadget`s,
//! and have the `Owner` remain allocated as long as any `Gadget` points at it.
//!
//! ```rust
//! use std::rc::Rc;
//!
//! struct Owner {
//! name: String
//! // ...other fields
//! }
//!
//! struct Gadget {
//! id: i32,
//! owner: Rc<Owner>
//! // ...other fields
//! }
//!
//! fn main() {
//! // Create a reference counted Owner.
//! let gadget_owner : Rc<Owner> = Rc::new(
//! Owner { name: String::from_str("Gadget Man") }
//! );
//!
//! // Create Gadgets belonging to gadget_owner. To increment the reference
//! // count we clone the `Rc<T>` object.
//! let gadget1 = Gadget { id: 1, owner: gadget_owner.clone() };
//! let gadget2 = Gadget { id: 2, owner: gadget_owner.clone() };
//!
//! drop(gadget_owner);
//!
//! // Despite dropping gadget_owner, we're still able to print out the name of
//! // the Owner of the Gadgets. This is because we've only dropped the
//! // reference count object, not the Owner it wraps. As long as there are
//! // other `Rc<T>` objects pointing at the same Owner, it will remain allocated. Notice
//! // that the `Rc<T>` wrapper around Gadget.owner gets automatically dereferenced
//! // for us.
//! println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
//! println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
//!
//! // At the end of the method, gadget1 and gadget2 get destroyed, and with
//! // them the last counted references to our Owner. Gadget Man now gets
//! // destroyed as well.
//! }
//! ```
//!
//! If our requirements change, and we also need to be able to traverse from Owner → Gadget, we
//! will run into problems: an `Rc<T>` pointer from Owner → Gadget introduces a cycle between the
//! objects. This means that their reference counts can never reach 0, and the objects will remain
//! allocated: a memory leak. In order to get around this, we can use `Weak<T>` pointers. These
//! pointers don't contribute to the total count.
//!
//! Rust actually makes it somewhat difficult to produce this loop in the first place: in order to
//! end up with two objects that point at each other, one of them needs to be mutable. This is
//! problematic because `Rc<T>` enforces memory safety by only giving out shared references to the
//! object it wraps, and these don't allow direct mutation. We need to wrap the part of the object
//! we wish to mutate in a `RefCell`, which provides *interior mutability*: a method to achieve
//! mutability through a shared reference. `RefCell` enforces Rust's borrowing rules at runtime.
//! Read the `Cell` documentation for more details on interior mutability.
//!
//! ```rust
//! use std::rc::Rc;
//! use std::rc::Weak;
//! use std::cell::RefCell;
//!
//! struct Owner {
//! name: String,
//! gadgets: RefCell<Vec<Weak<Gadget>>>
//! // ...other fields
//! }
//!
//! struct Gadget {
//! id: i32,
//! owner: Rc<Owner>
//! // ...other fields
//! }
//!
//! fn main() {
//! // Create a reference counted Owner. Note the fact that we've put the
//! // Owner's vector of Gadgets inside a RefCell so that we can mutate it
//! // through a shared reference.
//! let gadget_owner : Rc<Owner> = Rc::new(
//! Owner {
//! name: "Gadget Man".to_string(),
//! gadgets: RefCell::new(Vec::new())
//! }
//! );
//!
//! // Create Gadgets belonging to gadget_owner as before.
//! let gadget1 = Rc::new(Gadget{id: 1, owner: gadget_owner.clone()});
//! let gadget2 = Rc::new(Gadget{id: 2, owner: gadget_owner.clone()});
//!
//! // Add the Gadgets to their Owner. To do this we mutably borrow from
//! // the RefCell holding the Owner's Gadgets.
//! gadget_owner.gadgets.borrow_mut().push(gadget1.clone().downgrade());
//! gadget_owner.gadgets.borrow_mut().push(gadget2.clone().downgrade());
//!
//! // Iterate over our Gadgets, printing their details out
//! for gadget_opt in gadget_owner.gadgets.borrow().iter() {
//!
//! // gadget_opt is a Weak<Gadget>. Since weak pointers can't guarantee
//! // that their object is still allocated, we need to call upgrade() on them
//! // to turn them into a strong reference. This returns an Option, which
//! // contains a reference to our object if it still exists.
//! let gadget = gadget_opt.upgrade().unwrap();
//! println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
//! }
//!
//! // At the end of the method, gadget_owner, gadget1 and gadget2 get
//! // destroyed. There are now no strong (`Rc<T>`) references to the gadgets.
//! // Once they get destroyed, the Gadgets get destroyed. This zeroes the
//! // reference count on Gadget Man, so he gets destroyed as well.
//! }
//! ```
#![stable(feature = "rust1", since = "1.0.0")]
#[cfg(not(test))]
use boxed;
#[cfg(test)]
use std::boxed;
use core::cell::Cell;
use core::clone::Clone;
use core::cmp::{PartialEq, PartialOrd, Eq, Ord, Ordering};
use core::default::Default;
use core::fmt;
use core::hash::{Hasher, Hash};
use core::marker;
use core::mem::{min_align_of, size_of, forget};
use core::nonzero::NonZero;
use core::ops::{Deref, Drop};
use core::option::Option;
use core::option::Option::{Some, None};
#[cfg(stage0)]
use core::ptr::{self, PtrExt};
#[cfg(not(stage0))]
use core::ptr;
use core::result::Result;
use core::result::Result::{Ok, Err};
use core::intrinsics::assume;
use heap::deallocate;
struct RcBox<T> {
value: T,
strong: Cell<usize>,
weak: Cell<usize>
}
/// A reference-counted pointer type over an immutable value.
///
/// See the [module level documentation](./index.html) for more details.
#[unsafe_no_drop_flag]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Rc<T> {
// FIXME #12808: strange names to try to avoid interfering with field accesses of the contained
// type via Deref
_ptr: NonZero<*mut RcBox<T>>,
}
impl<T> !marker::Send for Rc<T> {}
impl<T> !marker::Sync for Rc<T> {}
impl<T> Rc<T> {
/// Constructs a new `Rc<T>`.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new(value: T) -> Rc<T> {
unsafe {
Rc {
// there is an implicit weak pointer owned by all the strong pointers, which
// ensures that the weak destructor never frees the allocation while the strong
// destructor is running, even if the weak pointer is stored inside the strong one.
_ptr: NonZero::new(boxed::into_raw(box RcBox {
value: value,
strong: Cell::new(1),
weak: Cell::new(1)
})),
}
}
}
/// Downgrades the `Rc<T>` to a `Weak<T>` reference.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// let weak_five = five.downgrade();
/// ```
#[unstable(feature = "alloc",
reason = "Weak pointers may not belong in this module")]
pub fn downgrade(&self) -> Weak<T> {
self.inc_weak();
Weak { _ptr: self._ptr }
}
}
/// Get the number of weak references to this value.
#[inline]
#[unstable(feature = "alloc")]
pub fn weak_count<T>(this: &Rc<T>) -> usize { this.weak() - 1 }
/// Get the number of strong references to this value.
#[inline]
#[unstable(feature = "alloc")]
pub fn strong_count<T>(this: &Rc<T>) -> usize { this.strong() }
/// Returns true if there are no other `Rc` or `Weak<T>` values that share the same inner value.
///
/// # Examples
///
/// ```
/// use std::rc;
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// rc::is_unique(&five);
/// ```
#[inline]
#[unstable(feature = "alloc")]
pub fn is_unique<T>(rc: &Rc<T>) -> bool {
weak_count(rc) == 0 && strong_count(rc) == 1
}
/// Unwraps the contained value if the `Rc<T>` is unique.
///
/// If the `Rc<T>` is not unique, an `Err` is returned with the same `Rc<T>`.
///
/// # Examples
///
/// ```
/// use std::rc::{self, Rc};
///
/// let x = Rc::new(3);
/// assert_eq!(rc::try_unwrap(x), Ok(3));
///
/// let x = Rc::new(4);
/// let _y = x.clone();
/// assert_eq!(rc::try_unwrap(x), Err(Rc::new(4)));
/// ```
#[inline]
#[unstable(feature = "alloc")]
pub fn try_unwrap<T>(rc: Rc<T>) -> Result<T, Rc<T>> {
if is_unique(&rc) {
unsafe {
let val = ptr::read(&*rc); // copy the contained object
// destruct the box and skip our Drop
// we can ignore the refcounts because we know we're unique
deallocate(*rc._ptr as *mut u8, size_of::<RcBox<T>>(),
min_align_of::<RcBox<T>>());
forget(rc);
Ok(val)
}
} else {
Err(rc)
}
}
/// Returns a mutable reference to the contained value if the `Rc<T>` is unique.
///
/// Returns `None` if the `Rc<T>` is not unique.
///
/// # Examples
///
/// ```
/// use std::rc::{self, Rc};
///
/// let mut x = Rc::new(3);
/// *rc::get_mut(&mut x).unwrap() = 4;
/// assert_eq!(*x, 4);
///
/// let _y = x.clone();
/// assert!(rc::get_mut(&mut x).is_none());
/// ```
#[inline]
#[unstable(feature = "alloc")]
pub fn get_mut<'a, T>(rc: &'a mut Rc<T>) -> Option<&'a mut T> {
if is_unique(rc) {
let inner = unsafe { &mut **rc._ptr };
Some(&mut inner.value)
} else {
None
}
}
impl<T: Clone> Rc<T> {
/// Make a mutable reference from the given `Rc<T>`.
///
/// This is also referred to as a copy-on-write operation because the inner data is cloned if
/// the reference count is greater than one.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let mut five = Rc::new(5);
///
/// let mut_five = five.make_unique();
/// ```
#[inline]
#[unstable(feature = "alloc")]
pub fn make_unique(&mut self) -> &mut T {
if !is_unique(self) {
*self = Rc::new((**self).clone())
}
// This unsafety is ok because we're guaranteed that the pointer returned is the *only*
// pointer that will ever be returned to T. Our reference count is guaranteed to be 1 at
// this point, and we required the `Rc<T>` itself to be `mut`, so we're returning the only
// possible reference to the inner value.
let inner = unsafe { &mut **self._ptr };
&mut inner.value
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Deref for Rc<T> {
type Target = T;
#[inline(always)]
fn deref(&self) -> &T {
&self.inner().value
}
}
#[unsafe_destructor]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Drop for Rc<T> {
/// Drops the `Rc<T>`.
///
/// This will decrement the strong reference count. If the strong reference count becomes zero
/// and the only other references are `Weak<T>` ones, `drop`s the inner value.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// {
/// let five = Rc::new(5);
///
/// // stuff
///
/// drop(five); // explicit drop
/// }
/// {
/// let five = Rc::new(5);
///
/// // stuff
///
/// } // implicit drop
/// ```
fn drop(&mut self) {
unsafe {
let ptr = *self._ptr;
if !ptr.is_null() {
self.dec_strong();
if self.strong() == 0 {
ptr::read(&**self); // destroy the contained object
// remove the implicit "strong weak" pointer now that we've destroyed the
// contents.
self.dec_weak();
if self.weak() == 0 {
deallocate(ptr as *mut u8, size_of::<RcBox<T>>(),
min_align_of::<RcBox<T>>())
}
}
}
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for Rc<T> {
/// Makes a clone of the `Rc<T>`.
///
/// This increases the strong reference count.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// five.clone();
/// ```
#[inline]
fn clone(&self) -> Rc<T> {
self.inc_strong();
Rc { _ptr: self._ptr }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Default> Default for Rc<T> {
/// Creates a new `Rc<T>`, with the `Default` value for `T`.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
/// use std::default::Default;
///
/// let x: Rc<i32> = Default::default();
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
fn default() -> Rc<T> {
Rc::new(Default::default())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PartialEq> PartialEq for Rc<T> {
/// Equality for two `Rc<T>`s.
///
/// Two `Rc<T>`s are equal if their inner value are equal.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// five == Rc::new(5);
/// ```
#[inline(always)]
fn eq(&self, other: &Rc<T>) -> bool { **self == **other }
/// Inequality for two `Rc<T>`s.
///
/// Two `Rc<T>`s are unequal if their inner value are unequal.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// five != Rc::new(5);
/// ```
#[inline(always)]
fn ne(&self, other: &Rc<T>) -> bool { **self != **other }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Eq> Eq for Rc<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PartialOrd> PartialOrd for Rc<T> {
/// Partial comparison for two `Rc<T>`s.
///
/// The two are compared by calling `partial_cmp()` on their inner values.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// five.partial_cmp(&Rc::new(5));
/// ```
#[inline(always)]
fn partial_cmp(&self, other: &Rc<T>) -> Option<Ordering> {
(**self).partial_cmp(&**other)
}
/// Less-than comparison for two `Rc<T>`s.
///
/// The two are compared by calling `<` on their inner values.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// five < Rc::new(5);
/// ```
#[inline(always)]
fn lt(&self, other: &Rc<T>) -> bool { **self < **other }
/// 'Less-than or equal to' comparison for two `Rc<T>`s.
///
/// The two are compared by calling `<=` on their inner values.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// five <= Rc::new(5);
/// ```
#[inline(always)]
fn le(&self, other: &Rc<T>) -> bool { **self <= **other }
/// Greater-than comparison for two `Rc<T>`s.
///
/// The two are compared by calling `>` on their inner values.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// five > Rc::new(5);
/// ```
#[inline(always)]
fn gt(&self, other: &Rc<T>) -> bool { **self > **other }
/// 'Greater-than or equal to' comparison for two `Rc<T>`s.
///
/// The two are compared by calling `>=` on their inner values.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// five >= Rc::new(5);
/// ```
#[inline(always)]
fn ge(&self, other: &Rc<T>) -> bool { **self >= **other }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord> Ord for Rc<T> {
/// Comparison for two `Rc<T>`s.
///
/// The two are compared by calling `cmp()` on their inner values.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// five.partial_cmp(&Rc::new(5));
/// ```
#[inline]
fn cmp(&self, other: &Rc<T>) -> Ordering { (**self).cmp(&**other) }
}
// FIXME (#18248) Make `T` `Sized?`
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Hash> Hash for Rc<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
(**self).hash(state);
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Display> fmt::Display for Rc<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug> fmt::Debug for Rc<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
/// A weak version of `Rc<T>`.
///
/// Weak references do not count when determining if the inner value should be dropped.
///
/// See the [module level documentation](./index.html) for more.
#[unsafe_no_drop_flag]
#[unstable(feature = "alloc",
reason = "Weak pointers may not belong in this module.")]
pub struct Weak<T> {
// FIXME #12808: strange names to try to avoid interfering with
// field accesses of the contained type via Deref
_ptr: NonZero<*mut RcBox<T>>,
}
impl<T> !marker::Send for Weak<T> {}
impl<T> !marker::Sync for Weak<T> {}
#[unstable(feature = "alloc",
reason = "Weak pointers may not belong in this module.")]
impl<T> Weak<T> {
/// Upgrades a weak reference to a strong reference.
///
/// Upgrades the `Weak<T>` reference to an `Rc<T>`, if possible.
///
/// Returns `None` if there were no strong references and the data was destroyed.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// let weak_five = five.downgrade();
///
/// let strong_five: Option<Rc<_>> = weak_five.upgrade();
/// ```
pub fn upgrade(&self) -> Option<Rc<T>> {
if self.strong() == 0 {
None
} else {
self.inc_strong();
Some(Rc { _ptr: self._ptr })
}
}
}
#[unsafe_destructor]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Drop for Weak<T> {
/// Drops the `Weak<T>`.
///
/// This will decrement the weak reference count.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// {
/// let five = Rc::new(5);
/// let weak_five = five.downgrade();
///
/// // stuff
///
/// drop(weak_five); // explicit drop
/// }
/// {
/// let five = Rc::new(5);
/// let weak_five = five.downgrade();
///
/// // stuff
///
/// } // implicit drop
/// ```
fn drop(&mut self) {
unsafe {
let ptr = *self._ptr;
if !ptr.is_null() {
self.dec_weak();
// the weak count starts at 1, and will only go to zero if all the strong pointers
// have disappeared.
if self.weak() == 0 {
deallocate(ptr as *mut u8, size_of::<RcBox<T>>(),
min_align_of::<RcBox<T>>())
}
}
}
}
}
#[unstable(feature = "alloc",
reason = "Weak pointers may not belong in this module.")]
impl<T> Clone for Weak<T> {
/// Makes a clone of the `Weak<T>`.
///
/// This increases the weak reference count.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let weak_five = Rc::new(5).downgrade();
///
/// weak_five.clone();
/// ```
#[inline]
fn clone(&self) -> Weak<T> {
self.inc_weak();
Weak { _ptr: self._ptr }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug> fmt::Debug for Weak<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "(Weak)")
}
}
#[doc(hidden)]
trait RcBoxPtr<T> {
fn inner(&self) -> &RcBox<T>;
#[inline]
fn strong(&self) -> usize { self.inner().strong.get() }
#[inline]
fn inc_strong(&self) { self.inner().strong.set(self.strong() + 1); }
#[inline]
fn dec_strong(&self) { self.inner().strong.set(self.strong() - 1); }
#[inline]
fn weak(&self) -> usize { self.inner().weak.get() }
#[inline]
fn inc_weak(&self) { self.inner().weak.set(self.weak() + 1); }
#[inline]
fn dec_weak(&self) { self.inner().weak.set(self.weak() - 1); }
}
impl<T> RcBoxPtr<T> for Rc<T> {
#[inline(always)]
fn inner(&self) -> &RcBox<T> {
unsafe {
// Safe to assume this here, as if it weren't true, we'd be breaking
// the contract anyway.
// This allows the null check to be elided in the destructor if we
// manipulated the reference count in the same function.
assume(!self._ptr.is_null());
&(**self._ptr)
}
}
}
impl<T> RcBoxPtr<T> for Weak<T> {
#[inline(always)]
fn inner(&self) -> &RcBox<T> {
unsafe {
// Safe to assume this here, as if it weren't true, we'd be breaking
// the contract anyway.
// This allows the null check to be elided in the destructor if we
// manipulated the reference count in the same function.
assume(!self._ptr.is_null());
&(**self._ptr)
}
}
}
#[cfg(test)]
mod tests {
use super::{Rc, Weak, weak_count, strong_count};
use std::boxed::Box;
use std::cell::RefCell;
use std::option::Option;
use std::option::Option::{Some, None};
use std::result::Result::{Err, Ok};
use std::mem::drop;
use std::clone::Clone;
#[test]
fn test_clone() {
let x = Rc::new(RefCell::new(5));
let y = x.clone();
*x.borrow_mut() = 20;
assert_eq!(*y.borrow(), 20);
}
#[test]
fn test_simple() {
let x = Rc::new(5);
assert_eq!(*x, 5);
}
#[test]
fn test_simple_clone() {
let x = Rc::new(5);
let y = x.clone();
assert_eq!(*x, 5);
assert_eq!(*y, 5);
}
#[test]
fn test_destructor() {
let x: Rc<Box<_>> = Rc::new(box 5);
assert_eq!(**x, 5);
}
#[test]
fn test_live() {
let x = Rc::new(5);
let y = x.downgrade();
assert!(y.upgrade().is_some());
}
#[test]
fn test_dead() {
let x = Rc::new(5);
let y = x.downgrade();
drop(x);
assert!(y.upgrade().is_none());
}
#[test]
fn weak_self_cyclic() {
struct Cycle {
x: RefCell<Option<Weak<Cycle>>>
}
let a = Rc::new(Cycle { x: RefCell::new(None) });
let b = a.clone().downgrade();
*a.x.borrow_mut() = Some(b);
// hopefully we don't double-free (or leak)...
}
#[test]
fn is_unique() {
let x = Rc::new(3);
assert!(super::is_unique(&x));
let y = x.clone();
assert!(!super::is_unique(&x));
drop(y);
assert!(super::is_unique(&x));
let w = x.downgrade();
assert!(!super::is_unique(&x));
drop(w);
assert!(super::is_unique(&x));
}
#[test]
fn test_strong_count() {
let a = Rc::new(0u32);
assert!(strong_count(&a) == 1);
let w = a.downgrade();
assert!(strong_count(&a) == 1);
let b = w.upgrade().expect("upgrade of live rc failed");
assert!(strong_count(&b) == 2);
assert!(strong_count(&a) == 2);
drop(w);
drop(a);
assert!(strong_count(&b) == 1);
let c = b.clone();
assert!(strong_count(&b) == 2);
assert!(strong_count(&c) == 2);
}
#[test]
fn test_weak_count() {
let a = Rc::new(0u32);
assert!(strong_count(&a) == 1);
assert!(weak_count(&a) == 0);
let w = a.downgrade();
assert!(strong_count(&a) == 1);
assert!(weak_count(&a) == 1);
drop(w);
assert!(strong_count(&a) == 1);
assert!(weak_count(&a) == 0);
let c = a.clone();
assert!(strong_count(&a) == 2);
assert!(weak_count(&a) == 0);
drop(c);
}
#[test]
fn try_unwrap() {
let x = Rc::new(3);
assert_eq!(super::try_unwrap(x), Ok(3));
let x = Rc::new(4);
let _y = x.clone();
assert_eq!(super::try_unwrap(x), Err(Rc::new(4)));
let x = Rc::new(5);
let _w = x.downgrade();
assert_eq!(super::try_unwrap(x), Err(Rc::new(5)));
}
#[test]
fn get_mut() {
let mut x = Rc::new(3);
*super::get_mut(&mut x).unwrap() = 4;
assert_eq!(*x, 4);
let y = x.clone();
assert!(super::get_mut(&mut x).is_none());
drop(y);
assert!(super::get_mut(&mut x).is_some());
let _w = x.downgrade();
assert!(super::get_mut(&mut x).is_none());
}
#[test]
fn test_cowrc_clone_make_unique() {
let mut cow0 = Rc::new(75);
let mut cow1 = cow0.clone();
let mut cow2 = cow1.clone();
assert!(75 == *cow0.make_unique());
assert!(75 == *cow1.make_unique());
assert!(75 == *cow2.make_unique());
*cow0.make_unique() += 1;
*cow1.make_unique() += 2;
*cow2.make_unique() += 3;
assert!(76 == *cow0);
assert!(77 == *cow1);
assert!(78 == *cow2);
// none should point to the same backing memory
assert!(*cow0 != *cow1);
assert!(*cow0 != *cow2);
assert!(*cow1 != *cow2);
}
#[test]
fn test_cowrc_clone_unique2() {
let mut cow0 = Rc::new(75);
let cow1 = cow0.clone();
let cow2 = cow1.clone();
assert!(75 == *cow0);
assert!(75 == *cow1);
assert!(75 == *cow2);
*cow0.make_unique() += 1;
assert!(76 == *cow0);
assert!(75 == *cow1);
assert!(75 == *cow2);
// cow1 and cow2 should share the same contents
// cow0 should have a unique reference
assert!(*cow0 != *cow1);
assert!(*cow0 != *cow2);
assert!(*cow1 == *cow2);
}
#[test]
fn test_cowrc_clone_weak() {
let mut cow0 = Rc::new(75);
let cow1_weak = cow0.downgrade();
assert!(75 == *cow0);
assert!(75 == *cow1_weak.upgrade().unwrap());
*cow0.make_unique() += 1;
assert!(76 == *cow0);
assert!(cow1_weak.upgrade().is_none());
}
#[test]
fn test_show() {
let foo = Rc::new(75);
assert_eq!(format!("{:?}", foo), "75");
}
}