rust/src/librustc/middle/const_eval.rs

1236 lines
49 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//#![allow(non_camel_case_types)]
use self::ConstVal::*;
use self::ErrKind::*;
use self::EvalHint::*;
use front::map as ast_map;
use front::map::blocks::FnLikeNode;
use middle::cstore::{self, CrateStore, InlinedItem};
use middle::{infer, subst, traits};
use middle::def::Def;
use middle::def_id::DefId;
use middle::pat_util::def_to_path;
use middle::ty::{self, Ty, TyCtxt};
use middle::ty::util::IntTypeExt;
use middle::traits::ProjectionMode;
use middle::astconv_util::ast_ty_to_prim_ty;
use util::nodemap::NodeMap;
use graphviz::IntoCow;
use syntax::ast;
use rustc_front::hir::{Expr, PatKind};
use rustc_front::hir;
use rustc_front::intravisit::FnKind;
use syntax::codemap::Span;
use syntax::parse::token::InternedString;
use syntax::ptr::P;
use syntax::codemap;
use syntax::attr::IntType;
use std::borrow::Cow;
use std::cmp::Ordering;
use std::collections::hash_map::Entry::Vacant;
use std::hash;
use std::mem::transmute;
use std::rc::Rc;
use rustc_const_eval::*;
macro_rules! math {
($e:expr, $op:expr) => {
match $op {
Ok(val) => val,
Err(e) => signal!($e, Math(e)),
}
}
}
fn lookup_variant_by_id<'a>(tcx: &'a ty::TyCtxt,
enum_def: DefId,
variant_def: DefId)
-> Option<&'a Expr> {
fn variant_expr<'a>(variants: &'a [hir::Variant], id: ast::NodeId)
-> Option<&'a Expr> {
for variant in variants {
if variant.node.data.id() == id {
return variant.node.disr_expr.as_ref().map(|e| &**e);
}
}
None
}
if let Some(enum_node_id) = tcx.map.as_local_node_id(enum_def) {
let variant_node_id = tcx.map.as_local_node_id(variant_def).unwrap();
match tcx.map.find(enum_node_id) {
None => None,
Some(ast_map::NodeItem(it)) => match it.node {
hir::ItemEnum(hir::EnumDef { ref variants }, _) => {
variant_expr(variants, variant_node_id)
}
_ => None
},
Some(_) => None
}
} else {
None
}
}
/// * `def_id` is the id of the constant.
/// * `substs` is the monomorphized substitutions for the expression.
///
/// `substs` is optional and is used for associated constants.
/// This generally happens in late/trans const evaluation.
pub fn lookup_const_by_id<'a, 'tcx: 'a>(tcx: &'a TyCtxt<'tcx>,
def_id: DefId,
substs: Option<subst::Substs<'tcx>>)
-> Option<(&'tcx Expr, Option<ty::Ty<'tcx>>)> {
if let Some(node_id) = tcx.map.as_local_node_id(def_id) {
match tcx.map.find(node_id) {
None => None,
Some(ast_map::NodeItem(it)) => match it.node {
hir::ItemConst(ref ty, ref const_expr) => {
Some((&const_expr, ast_ty_to_prim_ty(tcx, ty)))
}
_ => None
},
Some(ast_map::NodeTraitItem(ti)) => match ti.node {
hir::ConstTraitItem(_, _) => {
if let Some(substs) = substs {
// If we have a trait item and the substitutions for it,
// `resolve_trait_associated_const` will select an impl
// or the default.
let trait_id = tcx.trait_of_item(def_id).unwrap();
resolve_trait_associated_const(tcx, ti, trait_id, substs)
} else {
// Technically, without knowing anything about the
// expression that generates the obligation, we could
// still return the default if there is one. However,
// it's safer to return `None` than to return some value
// that may differ from what you would get from
// correctly selecting an impl.
None
}
}
_ => None
},
Some(ast_map::NodeImplItem(ii)) => match ii.node {
hir::ImplItemKind::Const(ref ty, ref expr) => {
Some((&expr, ast_ty_to_prim_ty(tcx, ty)))
}
_ => None
},
Some(_) => None
}
} else {
match tcx.extern_const_statics.borrow().get(&def_id) {
Some(&None) => return None,
Some(&Some((expr_id, ty))) => {
return Some((tcx.map.expect_expr(expr_id), ty));
}
None => {}
}
let mut used_substs = false;
let expr_ty = match tcx.sess.cstore.maybe_get_item_ast(tcx, def_id) {
cstore::FoundAst::Found(&InlinedItem::Item(ref item)) => match item.node {
hir::ItemConst(ref ty, ref const_expr) => {
Some((&**const_expr, ast_ty_to_prim_ty(tcx, ty)))
},
_ => None
},
cstore::FoundAst::Found(&InlinedItem::TraitItem(trait_id, ref ti)) => match ti.node {
hir::ConstTraitItem(_, _) => {
used_substs = true;
if let Some(substs) = substs {
// As mentioned in the comments above for in-crate
// constants, we only try to find the expression for
// a trait-associated const if the caller gives us
// the substitutions for the reference to it.
resolve_trait_associated_const(tcx, ti, trait_id, substs)
} else {
None
}
}
_ => None
},
cstore::FoundAst::Found(&InlinedItem::ImplItem(_, ref ii)) => match ii.node {
hir::ImplItemKind::Const(ref ty, ref expr) => {
Some((&**expr, ast_ty_to_prim_ty(tcx, ty)))
},
_ => None
},
_ => None
};
// If we used the substitutions, particularly to choose an impl
// of a trait-associated const, don't cache that, because the next
// lookup with the same def_id may yield a different result.
if !used_substs {
tcx.extern_const_statics
.borrow_mut()
.insert(def_id, expr_ty.map(|(e, t)| (e.id, t)));
}
expr_ty
}
}
fn inline_const_fn_from_external_crate(tcx: &TyCtxt, def_id: DefId)
-> Option<ast::NodeId> {
match tcx.extern_const_fns.borrow().get(&def_id) {
Some(&ast::DUMMY_NODE_ID) => return None,
Some(&fn_id) => return Some(fn_id),
None => {}
}
if !tcx.sess.cstore.is_const_fn(def_id) {
tcx.extern_const_fns.borrow_mut().insert(def_id, ast::DUMMY_NODE_ID);
return None;
}
let fn_id = match tcx.sess.cstore.maybe_get_item_ast(tcx, def_id) {
cstore::FoundAst::Found(&InlinedItem::Item(ref item)) => Some(item.id),
cstore::FoundAst::Found(&InlinedItem::ImplItem(_, ref item)) => Some(item.id),
_ => None
};
tcx.extern_const_fns.borrow_mut().insert(def_id,
fn_id.unwrap_or(ast::DUMMY_NODE_ID));
fn_id
}
pub fn lookup_const_fn_by_id<'tcx>(tcx: &TyCtxt<'tcx>, def_id: DefId)
-> Option<FnLikeNode<'tcx>>
{
let fn_id = if let Some(node_id) = tcx.map.as_local_node_id(def_id) {
node_id
} else {
if let Some(fn_id) = inline_const_fn_from_external_crate(tcx, def_id) {
fn_id
} else {
return None;
}
};
let fn_like = match FnLikeNode::from_node(tcx.map.get(fn_id)) {
Some(fn_like) => fn_like,
None => return None
};
match fn_like.kind() {
FnKind::ItemFn(_, _, _, hir::Constness::Const, _, _) => {
Some(fn_like)
}
FnKind::Method(_, m, _) => {
if m.constness == hir::Constness::Const {
Some(fn_like)
} else {
None
}
}
_ => None
}
}
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
pub enum ConstVal {
Float(f64),
Integral(ConstInt),
Str(InternedString),
ByteStr(Rc<Vec<u8>>),
Bool(bool),
Struct(ast::NodeId),
Tuple(ast::NodeId),
Function(DefId),
Array(ast::NodeId, u64),
Repeat(ast::NodeId, u64),
Char(char),
/// A value that only occurs in case `eval_const_expr` reported an error. You should never
/// handle this case. Its sole purpose is to allow more errors to be reported instead of
/// causing a fatal error.
Dummy,
}
impl hash::Hash for ConstVal {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
match *self {
Float(a) => unsafe { transmute::<_,u64>(a) }.hash(state),
Integral(a) => a.hash(state),
Str(ref a) => a.hash(state),
ByteStr(ref a) => a.hash(state),
Bool(a) => a.hash(state),
Struct(a) => a.hash(state),
Tuple(a) => a.hash(state),
Function(a) => a.hash(state),
Array(a, n) => { a.hash(state); n.hash(state) },
Repeat(a, n) => { a.hash(state); n.hash(state) },
Char(c) => c.hash(state),
Dummy => ().hash(state),
}
}
}
/// Note that equality for `ConstVal` means that the it is the same
/// constant, not that the rust values are equal. In particular, `NaN
/// == NaN` (at least if it's the same NaN; distinct encodings for NaN
/// are considering unequal).
impl PartialEq for ConstVal {
fn eq(&self, other: &ConstVal) -> bool {
match (self, other) {
(&Float(a), &Float(b)) => unsafe{transmute::<_,u64>(a) == transmute::<_,u64>(b)},
(&Integral(a), &Integral(b)) => a == b,
(&Str(ref a), &Str(ref b)) => a == b,
(&ByteStr(ref a), &ByteStr(ref b)) => a == b,
(&Bool(a), &Bool(b)) => a == b,
(&Struct(a), &Struct(b)) => a == b,
(&Tuple(a), &Tuple(b)) => a == b,
(&Function(a), &Function(b)) => a == b,
(&Array(a, an), &Array(b, bn)) => (a == b) && (an == bn),
(&Repeat(a, an), &Repeat(b, bn)) => (a == b) && (an == bn),
(&Char(a), &Char(b)) => a == b,
(&Dummy, &Dummy) => true, // FIXME: should this be false?
_ => false,
}
}
}
impl Eq for ConstVal { }
impl ConstVal {
pub fn description(&self) -> &'static str {
match *self {
Float(_) => "float",
Integral(i) => i.description(),
Str(_) => "string literal",
ByteStr(_) => "byte string literal",
Bool(_) => "boolean",
Struct(_) => "struct",
Tuple(_) => "tuple",
Function(_) => "function definition",
Array(..) => "array",
Repeat(..) => "repeat",
Char(..) => "char",
Dummy => "dummy value",
}
}
}
pub fn const_expr_to_pat(tcx: &TyCtxt, expr: &Expr, span: Span) -> P<hir::Pat> {
let pat = match expr.node {
hir::ExprTup(ref exprs) =>
PatKind::Tup(exprs.iter().map(|expr| const_expr_to_pat(tcx, &expr, span)).collect()),
hir::ExprCall(ref callee, ref args) => {
let def = *tcx.def_map.borrow().get(&callee.id).unwrap();
if let Vacant(entry) = tcx.def_map.borrow_mut().entry(expr.id) {
entry.insert(def);
}
let path = match def.full_def() {
Def::Struct(def_id) => def_to_path(tcx, def_id),
Def::Variant(_, variant_did) => def_to_path(tcx, variant_did),
Def::Fn(..) => return P(hir::Pat {
id: expr.id,
node: PatKind::Lit(P(expr.clone())),
span: span,
}),
_ => unreachable!()
};
let pats = args.iter().map(|expr| const_expr_to_pat(tcx, &expr, span)).collect();
PatKind::TupleStruct(path, Some(pats))
}
hir::ExprStruct(ref path, ref fields, None) => {
let field_pats = fields.iter().map(|field| codemap::Spanned {
span: codemap::DUMMY_SP,
node: hir::FieldPat {
name: field.name.node,
pat: const_expr_to_pat(tcx, &field.expr, span),
is_shorthand: false,
},
}).collect();
PatKind::Struct(path.clone(), field_pats, false)
}
hir::ExprVec(ref exprs) => {
let pats = exprs.iter().map(|expr| const_expr_to_pat(tcx, &expr, span)).collect();
PatKind::Vec(pats, None, hir::HirVec::new())
}
hir::ExprPath(_, ref path) => {
let opt_def = tcx.def_map.borrow().get(&expr.id).map(|d| d.full_def());
match opt_def {
Some(Def::Struct(..)) | Some(Def::Variant(..)) =>
PatKind::Path(path.clone()),
Some(Def::Const(def_id)) |
Some(Def::AssociatedConst(def_id)) => {
let substs = Some(tcx.node_id_item_substs(expr.id).substs);
let (expr, _ty) = lookup_const_by_id(tcx, def_id, substs).unwrap();
return const_expr_to_pat(tcx, expr, span);
},
_ => unreachable!(),
}
}
_ => PatKind::Lit(P(expr.clone()))
};
P(hir::Pat { id: expr.id, node: pat, span: span })
}
pub fn eval_const_expr(tcx: &TyCtxt, e: &Expr) -> ConstVal {
match eval_const_expr_partial(tcx, e, ExprTypeChecked, None) {
Ok(r) => r,
// non-const path still needs to be a fatal error, because enums are funky
Err(ref s) if s.kind == NonConstPath => tcx.sess.span_fatal(s.span, &s.description()),
Err(s) => {
tcx.sess.span_err(s.span, &s.description());
Dummy
},
}
}
pub type FnArgMap<'a> = Option<&'a NodeMap<ConstVal>>;
#[derive(Clone)]
pub struct ConstEvalErr {
pub span: Span,
pub kind: ErrKind,
}
#[derive(Clone, PartialEq)]
pub enum ErrKind {
CannotCast,
CannotCastTo(&'static str),
InvalidOpForInts(hir::BinOp_),
InvalidOpForBools(hir::BinOp_),
InvalidOpForFloats(hir::BinOp_),
InvalidOpForIntUint(hir::BinOp_),
InvalidOpForUintInt(hir::BinOp_),
NegateOn(ConstVal),
NotOn(ConstVal),
CallOn(ConstVal),
NegateWithOverflow(i64),
AddiWithOverflow(i64, i64),
SubiWithOverflow(i64, i64),
MuliWithOverflow(i64, i64),
AdduWithOverflow(u64, u64),
SubuWithOverflow(u64, u64),
MuluWithOverflow(u64, u64),
DivideByZero,
DivideWithOverflow,
ModuloByZero,
ModuloWithOverflow,
ShiftLeftWithOverflow,
ShiftRightWithOverflow,
MissingStructField,
NonConstPath,
UnimplementedConstVal(&'static str),
UnresolvedPath,
ExpectedConstTuple,
ExpectedConstStruct,
TupleIndexOutOfBounds,
IndexedNonVec,
IndexNegative,
IndexNotInt,
IndexOutOfBounds,
RepeatCountNotNatural,
RepeatCountNotInt,
MiscBinaryOp,
MiscCatchAll,
IndexOpFeatureGated,
Math(ConstMathErr),
IntermediateUnsignedNegative,
/// Expected, Got
TypeMismatch(String, ConstInt),
BadType(ConstVal),
}
impl From<ConstMathErr> for ErrKind {
fn from(err: ConstMathErr) -> ErrKind {
Math(err)
}
}
impl ConstEvalErr {
pub fn description(&self) -> Cow<str> {
use self::ErrKind::*;
match self.kind {
CannotCast => "can't cast this type".into_cow(),
CannotCastTo(s) => format!("can't cast this type to {}", s).into_cow(),
InvalidOpForInts(_) => "can't do this op on integrals".into_cow(),
InvalidOpForBools(_) => "can't do this op on bools".into_cow(),
InvalidOpForFloats(_) => "can't do this op on floats".into_cow(),
InvalidOpForIntUint(..) => "can't do this op on an isize and usize".into_cow(),
InvalidOpForUintInt(..) => "can't do this op on a usize and isize".into_cow(),
NegateOn(ref const_val) => format!("negate on {}", const_val.description()).into_cow(),
NotOn(ref const_val) => format!("not on {}", const_val.description()).into_cow(),
CallOn(ref const_val) => format!("call on {}", const_val.description()).into_cow(),
NegateWithOverflow(..) => "attempted to negate with overflow".into_cow(),
AddiWithOverflow(..) => "attempted to add with overflow".into_cow(),
SubiWithOverflow(..) => "attempted to sub with overflow".into_cow(),
MuliWithOverflow(..) => "attempted to mul with overflow".into_cow(),
AdduWithOverflow(..) => "attempted to add with overflow".into_cow(),
SubuWithOverflow(..) => "attempted to sub with overflow".into_cow(),
MuluWithOverflow(..) => "attempted to mul with overflow".into_cow(),
DivideByZero => "attempted to divide by zero".into_cow(),
DivideWithOverflow => "attempted to divide with overflow".into_cow(),
ModuloByZero => "attempted remainder with a divisor of zero".into_cow(),
ModuloWithOverflow => "attempted remainder with overflow".into_cow(),
ShiftLeftWithOverflow => "attempted left shift with overflow".into_cow(),
ShiftRightWithOverflow => "attempted right shift with overflow".into_cow(),
MissingStructField => "nonexistent struct field".into_cow(),
NonConstPath => "non-constant path in constant expression".into_cow(),
UnimplementedConstVal(what) =>
format!("unimplemented constant expression: {}", what).into_cow(),
UnresolvedPath => "unresolved path in constant expression".into_cow(),
ExpectedConstTuple => "expected constant tuple".into_cow(),
ExpectedConstStruct => "expected constant struct".into_cow(),
TupleIndexOutOfBounds => "tuple index out of bounds".into_cow(),
IndexedNonVec => "indexing is only supported for arrays".into_cow(),
IndexNegative => "indices must be non-negative integers".into_cow(),
IndexNotInt => "indices must be integers".into_cow(),
IndexOutOfBounds => "array index out of bounds".into_cow(),
RepeatCountNotNatural => "repeat count must be a natural number".into_cow(),
RepeatCountNotInt => "repeat count must be integers".into_cow(),
MiscBinaryOp => "bad operands for binary".into_cow(),
MiscCatchAll => "unsupported constant expr".into_cow(),
IndexOpFeatureGated => "the index operation on const values is unstable".into_cow(),
Math(ref err) => err.description().into_cow(),
IntermediateUnsignedNegative => "during the computation of an unsigned a negative \
number was encountered. This is most likely a bug in\
the constant evaluator".into_cow(),
TypeMismatch(ref expected, ref got) => {
format!("mismatched types: expected `{}`, found `{}`",
expected, got.description()).into_cow()
},
BadType(ref i) => format!("value of wrong type: {:?}", i).into_cow(),
}
}
}
pub type EvalResult = Result<ConstVal, ConstEvalErr>;
pub type CastResult = Result<ConstVal, ErrKind>;
// FIXME: Long-term, this enum should go away: trying to evaluate
// an expression which hasn't been type-checked is a recipe for
// disaster. That said, it's not clear how to fix ast_ty_to_ty
// to avoid the ordering issue.
/// Hint to determine how to evaluate constant expressions which
/// might not be type-checked.
#[derive(Copy, Clone, Debug)]
pub enum EvalHint<'tcx> {
/// We have a type-checked expression.
ExprTypeChecked,
/// We have an expression which hasn't been type-checked, but we have
/// an idea of what the type will be because of the context. For example,
/// the length of an array is always `usize`. (This is referred to as
/// a hint because it isn't guaranteed to be consistent with what
/// type-checking would compute.)
UncheckedExprHint(Ty<'tcx>),
/// We have an expression which has not yet been type-checked, and
/// and we have no clue what the type will be.
UncheckedExprNoHint,
}
impl<'tcx> EvalHint<'tcx> {
fn erase_hint(&self) -> EvalHint<'tcx> {
match *self {
ExprTypeChecked => ExprTypeChecked,
UncheckedExprHint(_) | UncheckedExprNoHint => UncheckedExprNoHint,
}
}
fn checked_or(&self, ty: Ty<'tcx>) -> EvalHint<'tcx> {
match *self {
ExprTypeChecked => ExprTypeChecked,
_ => UncheckedExprHint(ty),
}
}
}
macro_rules! signal {
($e:expr, $exn:expr) => {
return Err(ConstEvalErr { span: $e.span, kind: $exn })
}
}
/// Evaluate a constant expression in a context where the expression isn't
/// guaranteed to be evaluatable. `ty_hint` is usually ExprTypeChecked,
/// but a few places need to evaluate constants during type-checking, like
/// computing the length of an array. (See also the FIXME above EvalHint.)
pub fn eval_const_expr_partial<'tcx>(tcx: &TyCtxt<'tcx>,
e: &Expr,
ty_hint: EvalHint<'tcx>,
fn_args: FnArgMap) -> EvalResult {
// Try to compute the type of the expression based on the EvalHint.
// (See also the definition of EvalHint, and the FIXME above EvalHint.)
let ety = match ty_hint {
ExprTypeChecked => {
// After type-checking, expr_ty is guaranteed to succeed.
Some(tcx.expr_ty(e))
}
UncheckedExprHint(ty) => {
// Use the type hint; it's not guaranteed to be right, but it's
// usually good enough.
Some(ty)
}
UncheckedExprNoHint => {
// This expression might not be type-checked, and we have no hint.
// Try to query the context for a type anyway; we might get lucky
// (for example, if the expression was imported from another crate).
tcx.expr_ty_opt(e)
}
};
let result = match e.node {
hir::ExprUnary(hir::UnNeg, ref inner) => {
// unary neg literals already got their sign during creation
if let hir::ExprLit(ref lit) = inner.node {
use syntax::ast::*;
use syntax::ast::LitIntType::*;
const I8_OVERFLOW: u64 = ::std::i8::MAX as u64 + 1;
const I16_OVERFLOW: u64 = ::std::i16::MAX as u64 + 1;
const I32_OVERFLOW: u64 = ::std::i32::MAX as u64 + 1;
const I64_OVERFLOW: u64 = ::std::i64::MAX as u64 + 1;
match (&lit.node, ety.map(|t| &t.sty)) {
(&LitKind::Int(I8_OVERFLOW, Unsuffixed), Some(&ty::TyInt(IntTy::I8))) |
(&LitKind::Int(I8_OVERFLOW, Signed(IntTy::I8)), _) => {
return Ok(Integral(I8(::std::i8::MIN)))
},
(&LitKind::Int(I16_OVERFLOW, Unsuffixed), Some(&ty::TyInt(IntTy::I16))) |
(&LitKind::Int(I16_OVERFLOW, Signed(IntTy::I16)), _) => {
return Ok(Integral(I16(::std::i16::MIN)))
},
(&LitKind::Int(I32_OVERFLOW, Unsuffixed), Some(&ty::TyInt(IntTy::I32))) |
(&LitKind::Int(I32_OVERFLOW, Signed(IntTy::I32)), _) => {
return Ok(Integral(I32(::std::i32::MIN)))
},
(&LitKind::Int(I64_OVERFLOW, Unsuffixed), Some(&ty::TyInt(IntTy::I64))) |
(&LitKind::Int(I64_OVERFLOW, Signed(IntTy::I64)), _) => {
return Ok(Integral(I64(::std::i64::MIN)))
},
(&LitKind::Int(n, Unsuffixed), Some(&ty::TyInt(IntTy::Is))) |
(&LitKind::Int(n, Signed(IntTy::Is)), _) => {
match tcx.sess.target.int_type {
IntTy::I32 => if n == I32_OVERFLOW {
return Ok(Integral(Isize(Is32(::std::i32::MIN))));
},
IntTy::I64 => if n == I64_OVERFLOW {
return Ok(Integral(Isize(Is64(::std::i64::MIN))));
},
_ => unreachable!(),
}
},
_ => {},
}
}
match try!(eval_const_expr_partial(tcx, &inner, ty_hint, fn_args)) {
Float(f) => Float(-f),
Integral(i) => Integral(math!(e, -i)),
const_val => signal!(e, NegateOn(const_val)),
}
}
hir::ExprUnary(hir::UnNot, ref inner) => {
match try!(eval_const_expr_partial(tcx, &inner, ty_hint, fn_args)) {
Integral(i) => Integral(math!(e, !i)),
Bool(b) => Bool(!b),
const_val => signal!(e, NotOn(const_val)),
}
}
hir::ExprBinary(op, ref a, ref b) => {
let b_ty = match op.node {
hir::BiShl | hir::BiShr => ty_hint.erase_hint(),
_ => ty_hint
};
// technically, if we don't have type hints, but integral eval
// gives us a type through a type-suffix, cast or const def type
// we need to re-eval the other value of the BinOp if it was
// not inferred
match (try!(eval_const_expr_partial(tcx, &a, ty_hint, fn_args)),
try!(eval_const_expr_partial(tcx, &b, b_ty, fn_args))) {
(Float(a), Float(b)) => {
match op.node {
hir::BiAdd => Float(a + b),
hir::BiSub => Float(a - b),
hir::BiMul => Float(a * b),
hir::BiDiv => Float(a / b),
hir::BiRem => Float(a % b),
hir::BiEq => Bool(a == b),
hir::BiLt => Bool(a < b),
hir::BiLe => Bool(a <= b),
hir::BiNe => Bool(a != b),
hir::BiGe => Bool(a >= b),
hir::BiGt => Bool(a > b),
_ => signal!(e, InvalidOpForFloats(op.node)),
}
}
(Integral(a), Integral(b)) => {
use std::cmp::Ordering::*;
match op.node {
hir::BiAdd => Integral(math!(e, a + b)),
hir::BiSub => Integral(math!(e, a - b)),
hir::BiMul => Integral(math!(e, a * b)),
hir::BiDiv => Integral(math!(e, a / b)),
hir::BiRem => Integral(math!(e, a % b)),
hir::BiBitAnd => Integral(math!(e, a & b)),
hir::BiBitOr => Integral(math!(e, a | b)),
hir::BiBitXor => Integral(math!(e, a ^ b)),
hir::BiShl => Integral(math!(e, a << b)),
hir::BiShr => Integral(math!(e, a >> b)),
hir::BiEq => Bool(math!(e, a.try_cmp(b)) == Equal),
hir::BiLt => Bool(math!(e, a.try_cmp(b)) == Less),
hir::BiLe => Bool(math!(e, a.try_cmp(b)) != Greater),
hir::BiNe => Bool(math!(e, a.try_cmp(b)) != Equal),
hir::BiGe => Bool(math!(e, a.try_cmp(b)) != Less),
hir::BiGt => Bool(math!(e, a.try_cmp(b)) == Greater),
_ => signal!(e, InvalidOpForInts(op.node)),
}
}
(Bool(a), Bool(b)) => {
Bool(match op.node {
hir::BiAnd => a && b,
hir::BiOr => a || b,
hir::BiBitXor => a ^ b,
hir::BiBitAnd => a & b,
hir::BiBitOr => a | b,
hir::BiEq => a == b,
hir::BiNe => a != b,
_ => signal!(e, InvalidOpForBools(op.node)),
})
}
_ => signal!(e, MiscBinaryOp),
}
}
hir::ExprCast(ref base, ref target_ty) => {
let ety = ast_ty_to_prim_ty(tcx, &target_ty).or_else(|| ety)
.unwrap_or_else(|| {
tcx.sess.span_fatal(target_ty.span,
"target type not found for const cast")
});
let base_hint = if let ExprTypeChecked = ty_hint {
ExprTypeChecked
} else {
match tcx.expr_ty_opt(&base) {
Some(t) => UncheckedExprHint(t),
None => ty_hint
}
};
let val = match eval_const_expr_partial(tcx, &base, base_hint, fn_args) {
Ok(val) => val,
Err(ConstEvalErr { kind: TypeMismatch(_, val), .. }) => {
// Something like `5i8 as usize` doesn't need a type hint for the base
// instead take the type hint from the inner value
let hint = match val.int_type() {
Some(IntType::UnsignedInt(ty)) => ty_hint.checked_or(tcx.mk_mach_uint(ty)),
Some(IntType::SignedInt(ty)) => ty_hint.checked_or(tcx.mk_mach_int(ty)),
// we had a type hint, so we can't have an unknown type
None => unreachable!(),
};
try!(eval_const_expr_partial(tcx, &base, hint, fn_args))
},
Err(e) => return Err(e),
};
match cast_const(tcx, val, ety) {
Ok(val) => val,
Err(kind) => return Err(ConstEvalErr { span: e.span, kind: kind }),
}
}
hir::ExprPath(..) => {
let opt_def = if let Some(def) = tcx.def_map.borrow().get(&e.id) {
// After type-checking, def_map contains definition of the
// item referred to by the path. During type-checking, it
// can contain the raw output of path resolution, which
// might be a partially resolved path.
// FIXME: There's probably a better way to make sure we don't
// panic here.
if def.depth != 0 {
signal!(e, UnresolvedPath);
}
def.full_def()
} else {
signal!(e, NonConstPath);
};
match opt_def {
Def::Const(def_id) |
Def::AssociatedConst(def_id) => {
let substs = if let ExprTypeChecked = ty_hint {
Some(tcx.node_id_item_substs(e.id).substs)
} else {
None
};
if let Some((e, ty)) = lookup_const_by_id(tcx, def_id, substs) {
let item_hint = match ty {
Some(ty) => ty_hint.checked_or(ty),
None => ty_hint,
};
try!(eval_const_expr_partial(tcx, e, item_hint, None))
} else {
signal!(e, NonConstPath);
}
},
Def::Variant(enum_def, variant_def) => {
if let Some(const_expr) = lookup_variant_by_id(tcx, enum_def, variant_def) {
try!(eval_const_expr_partial(tcx, const_expr, ty_hint, None))
} else {
signal!(e, NonConstPath);
}
}
Def::Struct(..) => {
ConstVal::Struct(e.id)
}
Def::Local(_, id) => {
debug!("Def::Local({:?}): {:?}", id, fn_args);
if let Some(val) = fn_args.and_then(|args| args.get(&id)) {
val.clone()
} else {
signal!(e, NonConstPath);
}
},
Def::Method(id) | Def::Fn(id) => Function(id),
_ => signal!(e, NonConstPath),
}
}
hir::ExprCall(ref callee, ref args) => {
let sub_ty_hint = ty_hint.erase_hint();
let callee_val = try!(eval_const_expr_partial(tcx, callee, sub_ty_hint, fn_args));
let did = match callee_val {
Function(did) => did,
callee => signal!(e, CallOn(callee)),
};
let (decl, result) = if let Some(fn_like) = lookup_const_fn_by_id(tcx, did) {
(fn_like.decl(), &fn_like.body().expr)
} else {
signal!(e, NonConstPath)
};
let result = result.as_ref().expect("const fn has no result expression");
assert_eq!(decl.inputs.len(), args.len());
let mut call_args = NodeMap();
for (arg, arg_expr) in decl.inputs.iter().zip(args.iter()) {
let arg_hint = ty_hint.erase_hint();
let arg_val = try!(eval_const_expr_partial(
tcx,
arg_expr,
arg_hint,
fn_args
));
debug!("const call arg: {:?}", arg);
let old = call_args.insert(arg.pat.id, arg_val);
assert!(old.is_none());
}
debug!("const call({:?})", call_args);
try!(eval_const_expr_partial(tcx, &result, ty_hint, Some(&call_args)))
},
hir::ExprLit(ref lit) => try!(lit_to_const(&lit.node, tcx, ety, lit.span)),
hir::ExprBlock(ref block) => {
match block.expr {
Some(ref expr) => try!(eval_const_expr_partial(tcx, &expr, ty_hint, fn_args)),
None => unreachable!(),
}
}
hir::ExprType(ref e, _) => try!(eval_const_expr_partial(tcx, &e, ty_hint, fn_args)),
hir::ExprTup(_) => Tuple(e.id),
hir::ExprStruct(..) => Struct(e.id),
hir::ExprIndex(ref arr, ref idx) => {
if !tcx.sess.features.borrow().const_indexing {
signal!(e, IndexOpFeatureGated);
}
let arr_hint = ty_hint.erase_hint();
let arr = try!(eval_const_expr_partial(tcx, arr, arr_hint, fn_args));
let idx_hint = ty_hint.checked_or(tcx.types.usize);
let idx = match try!(eval_const_expr_partial(tcx, idx, idx_hint, fn_args)) {
Integral(Usize(i)) => i.as_u64(tcx.sess.target.uint_type),
Integral(_) => unreachable!(),
_ => signal!(idx, IndexNotInt),
};
assert_eq!(idx as usize as u64, idx);
match arr {
Array(_, n) if idx >= n => signal!(e, IndexOutOfBounds),
Array(v, n) => if let hir::ExprVec(ref v) = tcx.map.expect_expr(v).node {
assert_eq!(n as usize as u64, n);
try!(eval_const_expr_partial(tcx, &v[idx as usize], ty_hint, fn_args))
} else {
unreachable!()
},
Repeat(_, n) if idx >= n => signal!(e, IndexOutOfBounds),
Repeat(elem, _) => try!(eval_const_expr_partial(
tcx,
&tcx.map.expect_expr(elem),
ty_hint,
fn_args,
)),
ByteStr(ref data) if idx >= data.len() as u64 => signal!(e, IndexOutOfBounds),
ByteStr(data) => {
Integral(U8(data[idx as usize]))
},
Str(ref s) if idx as usize >= s.len() => signal!(e, IndexOutOfBounds),
Str(_) => unimplemented!(), // FIXME: return a const char
_ => signal!(e, IndexedNonVec),
}
}
hir::ExprVec(ref v) => Array(e.id, v.len() as u64),
hir::ExprRepeat(_, ref n) => {
let len_hint = ty_hint.checked_or(tcx.types.usize);
Repeat(
e.id,
match try!(eval_const_expr_partial(tcx, &n, len_hint, fn_args)) {
Integral(Usize(i)) => i.as_u64(tcx.sess.target.uint_type),
Integral(_) => signal!(e, RepeatCountNotNatural),
_ => signal!(e, RepeatCountNotInt),
},
)
},
hir::ExprTupField(ref base, index) => {
let base_hint = ty_hint.erase_hint();
let c = try!(eval_const_expr_partial(tcx, base, base_hint, fn_args));
if let Tuple(tup_id) = c {
if let hir::ExprTup(ref fields) = tcx.map.expect_expr(tup_id).node {
if index.node < fields.len() {
try!(eval_const_expr_partial(tcx, &fields[index.node], ty_hint, fn_args))
} else {
signal!(e, TupleIndexOutOfBounds);
}
} else {
unreachable!()
}
} else {
signal!(base, ExpectedConstTuple);
}
}
hir::ExprField(ref base, field_name) => {
let base_hint = ty_hint.erase_hint();
// Get the base expression if it is a struct and it is constant
let c = try!(eval_const_expr_partial(tcx, base, base_hint, fn_args));
if let Struct(struct_id) = c {
if let hir::ExprStruct(_, ref fields, _) = tcx.map.expect_expr(struct_id).node {
// Check that the given field exists and evaluate it
// if the idents are compared run-pass/issue-19244 fails
if let Some(f) = fields.iter().find(|f| f.name.node
== field_name.node) {
try!(eval_const_expr_partial(tcx, &f.expr, ty_hint, fn_args))
} else {
signal!(e, MissingStructField);
}
} else {
unreachable!()
}
} else {
signal!(base, ExpectedConstStruct);
}
}
_ => signal!(e, MiscCatchAll)
};
match (ety.map(|t| &t.sty), result) {
(Some(ref ty_hint), Integral(i)) => Ok(Integral(try!(infer(i, tcx, ty_hint, e.span)))),
(_, result) => Ok(result),
}
}
fn infer<'tcx>(
i: ConstInt,
tcx: &TyCtxt<'tcx>,
ty_hint: &ty::TypeVariants<'tcx>,
span: Span
) -> Result<ConstInt, ConstEvalErr> {
use syntax::ast::*;
let err = |e| ConstEvalErr {
span: span,
kind: e,
};
match (ty_hint, i) {
(&ty::TyInt(IntTy::I8), result @ I8(_)) => Ok(result),
(&ty::TyInt(IntTy::I16), result @ I16(_)) => Ok(result),
(&ty::TyInt(IntTy::I32), result @ I32(_)) => Ok(result),
(&ty::TyInt(IntTy::I64), result @ I64(_)) => Ok(result),
(&ty::TyInt(IntTy::Is), result @ Isize(_)) => Ok(result),
(&ty::TyUint(UintTy::U8), result @ U8(_)) => Ok(result),
(&ty::TyUint(UintTy::U16), result @ U16(_)) => Ok(result),
(&ty::TyUint(UintTy::U32), result @ U32(_)) => Ok(result),
(&ty::TyUint(UintTy::U64), result @ U64(_)) => Ok(result),
(&ty::TyUint(UintTy::Us), result @ Usize(_)) => Ok(result),
(&ty::TyInt(IntTy::I8), Infer(i)) => Ok(I8(i as i64 as i8)),
(&ty::TyInt(IntTy::I16), Infer(i)) => Ok(I16(i as i64 as i16)),
(&ty::TyInt(IntTy::I32), Infer(i)) => Ok(I32(i as i64 as i32)),
(&ty::TyInt(IntTy::I64), Infer(i)) => Ok(I64(i as i64)),
(&ty::TyInt(IntTy::Is), Infer(i)) => {
match ConstIsize::new(i as i64, tcx.sess.target.int_type) {
Ok(val) => Ok(Isize(val)),
Err(_) => Ok(Isize(ConstIsize::Is32(i as i64 as i32))),
}
},
(&ty::TyInt(IntTy::I8), InferSigned(i)) => Ok(I8(i as i8)),
(&ty::TyInt(IntTy::I16), InferSigned(i)) => Ok(I16(i as i16)),
(&ty::TyInt(IntTy::I32), InferSigned(i)) => Ok(I32(i as i32)),
(&ty::TyInt(IntTy::I64), InferSigned(i)) => Ok(I64(i)),
(&ty::TyInt(IntTy::Is), InferSigned(i)) => {
match ConstIsize::new(i, tcx.sess.target.int_type) {
Ok(val) => Ok(Isize(val)),
Err(_) => Ok(Isize(ConstIsize::Is32(i as i32))),
}
},
(&ty::TyUint(UintTy::U8), Infer(i)) => Ok(U8(i as u8)),
(&ty::TyUint(UintTy::U16), Infer(i)) => Ok(U16(i as u16)),
(&ty::TyUint(UintTy::U32), Infer(i)) => Ok(U32(i as u32)),
(&ty::TyUint(UintTy::U64), Infer(i)) => Ok(U64(i)),
(&ty::TyUint(UintTy::Us), Infer(i)) => {
match ConstUsize::new(i, tcx.sess.target.uint_type) {
Ok(val) => Ok(Usize(val)),
Err(_) => Ok(Usize(ConstUsize::Us32(i as u32))),
}
},
(&ty::TyUint(_), InferSigned(_)) => Err(err(IntermediateUnsignedNegative)),
(&ty::TyInt(ity), i) => Err(err(TypeMismatch(ity.to_string(), i))),
(&ty::TyUint(ity), i) => Err(err(TypeMismatch(ity.to_string(), i))),
(&ty::TyEnum(ref adt, _), i) => {
let hints = tcx.lookup_repr_hints(adt.did);
let int_ty = tcx.enum_repr_type(hints.iter().next());
infer(i, tcx, &int_ty.to_ty(tcx).sty, span)
},
(_, i) => Err(err(BadType(ConstVal::Integral(i)))),
}
}
fn resolve_trait_associated_const<'a, 'tcx: 'a>(tcx: &'a TyCtxt<'tcx>,
ti: &'tcx hir::TraitItem,
trait_id: DefId,
rcvr_substs: subst::Substs<'tcx>)
-> Option<(&'tcx Expr, Option<ty::Ty<'tcx>>)>
{
let trait_ref = ty::Binder(
rcvr_substs.erase_regions().to_trait_ref(tcx, trait_id)
);
debug!("resolve_trait_associated_const: trait_ref={:?}",
trait_ref);
tcx.populate_implementations_for_trait_if_necessary(trait_ref.def_id());
let infcx = infer::new_infer_ctxt(tcx, &tcx.tables, None, ProjectionMode::AnyFinal);
let mut selcx = traits::SelectionContext::new(&infcx);
let obligation = traits::Obligation::new(traits::ObligationCause::dummy(),
trait_ref.to_poly_trait_predicate());
let selection = match selcx.select(&obligation) {
Ok(Some(vtable)) => vtable,
// Still ambiguous, so give up and let the caller decide whether this
// expression is really needed yet. Some associated constant values
// can't be evaluated until monomorphization is done in trans.
Ok(None) => {
return None
}
Err(_) => {
return None
}
};
// NOTE: this code does not currently account for specialization, but when
// it does so, it should hook into the ProjectionMode to determine when the
// constant should resolve; this will also require plumbing through to this
// function whether we are in "trans mode" to pick the right ProjectionMode
// when constructing the inference context above.
match selection {
traits::VtableImpl(ref impl_data) => {
match tcx.associated_consts(impl_data.impl_def_id)
.iter().find(|ic| ic.name == ti.name) {
Some(ic) => lookup_const_by_id(tcx, ic.def_id, None),
None => match ti.node {
hir::ConstTraitItem(ref ty, Some(ref expr)) => {
Some((&*expr, ast_ty_to_prim_ty(tcx, ty)))
},
_ => None,
},
}
}
_ => {
tcx.sess.span_bug(
ti.span,
"resolve_trait_associated_const: unexpected vtable type")
}
}
}
fn cast_const_int<'tcx>(tcx: &TyCtxt<'tcx>, val: ConstInt, ty: ty::Ty) -> CastResult {
let v = val.to_u64_unchecked();
match ty.sty {
ty::TyBool if v == 0 => Ok(Bool(false)),
ty::TyBool if v == 1 => Ok(Bool(true)),
ty::TyInt(ast::IntTy::I8) => Ok(Integral(I8(v as i64 as i8))),
ty::TyInt(ast::IntTy::I16) => Ok(Integral(I16(v as i64 as i16))),
ty::TyInt(ast::IntTy::I32) => Ok(Integral(I32(v as i64 as i32))),
ty::TyInt(ast::IntTy::I64) => Ok(Integral(I64(v as i64))),
ty::TyInt(ast::IntTy::Is) => {
match ConstIsize::new(v as i64, tcx.sess.target.int_type) {
Ok(val) => Ok(Integral(Isize(val))),
Err(_) => Ok(Integral(Isize(ConstIsize::Is32(v as i64 as i32)))),
}
},
ty::TyUint(ast::UintTy::U8) => Ok(Integral(U8(v as u8))),
ty::TyUint(ast::UintTy::U16) => Ok(Integral(U16(v as u16))),
ty::TyUint(ast::UintTy::U32) => Ok(Integral(U32(v as u32))),
ty::TyUint(ast::UintTy::U64) => Ok(Integral(U64(v))),
ty::TyUint(ast::UintTy::Us) => {
match ConstUsize::new(v, tcx.sess.target.uint_type) {
Ok(val) => Ok(Integral(Usize(val))),
Err(_) => Ok(Integral(Usize(ConstUsize::Us32(v as u32)))),
}
},
ty::TyFloat(ast::FloatTy::F64) if val.is_negative() => {
// FIXME: this could probably be prettier
// there's no easy way to turn an `Infer` into a f64
let val = try!((-val).map_err(Math));
let val = val.to_u64().unwrap() as f64;
let val = -val;
Ok(Float(val))
},
ty::TyFloat(ast::FloatTy::F64) => Ok(Float(val.to_u64().unwrap() as f64)),
ty::TyFloat(ast::FloatTy::F32) if val.is_negative() => {
let val = try!((-val).map_err(Math));
let val = val.to_u64().unwrap() as f32;
let val = -val;
Ok(Float(val as f64))
},
ty::TyFloat(ast::FloatTy::F32) => Ok(Float(val.to_u64().unwrap() as f32 as f64)),
_ => Err(CannotCast),
}
}
fn cast_const_float<'tcx>(tcx: &TyCtxt<'tcx>, f: f64, ty: ty::Ty) -> CastResult {
match ty.sty {
ty::TyInt(_) if f >= 0.0 => cast_const_int(tcx, Infer(f as u64), ty),
ty::TyInt(_) => cast_const_int(tcx, InferSigned(f as i64), ty),
ty::TyUint(_) if f >= 0.0 => cast_const_int(tcx, Infer(f as u64), ty),
ty::TyFloat(ast::FloatTy::F64) => Ok(Float(f)),
ty::TyFloat(ast::FloatTy::F32) => Ok(Float(f as f32 as f64)),
_ => Err(CannotCast),
}
}
fn cast_const<'tcx>(tcx: &TyCtxt<'tcx>, val: ConstVal, ty: ty::Ty) -> CastResult {
match val {
Integral(i) => cast_const_int(tcx, i, ty),
Bool(b) => cast_const_int(tcx, Infer(b as u64), ty),
Float(f) => cast_const_float(tcx, f, ty),
Char(c) => cast_const_int(tcx, Infer(c as u64), ty),
_ => Err(CannotCast),
}
}
fn lit_to_const<'tcx>(lit: &ast::LitKind,
tcx: &TyCtxt<'tcx>,
ty_hint: Option<Ty<'tcx>>,
span: Span,
) -> Result<ConstVal, ConstEvalErr> {
use syntax::ast::*;
use syntax::ast::LitIntType::*;
match *lit {
LitKind::Str(ref s, _) => Ok(Str((*s).clone())),
LitKind::ByteStr(ref data) => Ok(ByteStr(data.clone())),
LitKind::Byte(n) => Ok(Integral(U8(n))),
LitKind::Int(n, Signed(ity)) => {
infer(InferSigned(n as i64), tcx, &ty::TyInt(ity), span).map(Integral)
},
LitKind::Int(n, Unsuffixed) => {
match ty_hint.map(|t| &t.sty) {
Some(&ty::TyInt(ity)) => {
infer(InferSigned(n as i64), tcx, &ty::TyInt(ity), span).map(Integral)
},
Some(&ty::TyUint(uty)) => {
infer(Infer(n), tcx, &ty::TyUint(uty), span).map(Integral)
},
None => Ok(Integral(Infer(n))),
Some(&ty::TyEnum(ref adt, _)) => {
let hints = tcx.lookup_repr_hints(adt.did);
let int_ty = tcx.enum_repr_type(hints.iter().next());
infer(Infer(n), tcx, &int_ty.to_ty(tcx).sty, span).map(Integral)
},
Some(ty_hint) => panic!("bad ty_hint: {:?}, {:?}", ty_hint, lit),
}
},
LitKind::Int(n, Unsigned(ity)) => {
infer(Infer(n), tcx, &ty::TyUint(ity), span).map(Integral)
},
LitKind::Float(ref n, _) |
LitKind::FloatUnsuffixed(ref n) => {
if let Ok(x) = n.parse::<f64>() {
Ok(Float(x))
} else {
// FIXME(#31407) this is only necessary because float parsing is buggy
tcx.sess.span_bug(span, "could not evaluate float literal (see issue #31407)");
}
}
LitKind::Bool(b) => Ok(Bool(b)),
LitKind::Char(c) => Ok(Char(c)),
}
}
pub fn compare_const_vals(a: &ConstVal, b: &ConstVal) -> Option<Ordering> {
match (a, b) {
(&Integral(a), &Integral(b)) => a.try_cmp(b).ok(),
(&Float(a), &Float(b)) => {
// This is pretty bad but it is the existing behavior.
Some(if a == b {
Ordering::Equal
} else if a < b {
Ordering::Less
} else {
Ordering::Greater
})
}
(&Str(ref a), &Str(ref b)) => Some(a.cmp(b)),
(&Bool(a), &Bool(b)) => Some(a.cmp(&b)),
(&ByteStr(ref a), &ByteStr(ref b)) => Some(a.cmp(b)),
(&Char(a), &Char(ref b)) => Some(a.cmp(b)),
_ => None,
}
}
pub fn compare_lit_exprs<'tcx>(tcx: &TyCtxt<'tcx>,
a: &Expr,
b: &Expr) -> Option<Ordering> {
let a = match eval_const_expr_partial(tcx, a, ExprTypeChecked, None) {
Ok(a) => a,
Err(e) => {
tcx.sess.span_err(a.span, &e.description());
return None;
}
};
let b = match eval_const_expr_partial(tcx, b, ExprTypeChecked, None) {
Ok(b) => b,
Err(e) => {
tcx.sess.span_err(b.span, &e.description());
return None;
}
};
compare_const_vals(&a, &b)
}