bba701c59d
This completes the last stage of the renaming of the comparison hierarchy of traits. This change renames TotalEq to Eq and TotalOrd to Ord. In the future the new Eq/Ord will be filled out with their appropriate methods, but for now this change is purely a renaming change. [breaking-change]
1326 lines
46 KiB
Rust
1326 lines
46 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
/*!
|
|
* # Categorization
|
|
*
|
|
* The job of the categorization module is to analyze an expression to
|
|
* determine what kind of memory is used in evaluating it (for example,
|
|
* where dereferences occur and what kind of pointer is dereferenced;
|
|
* whether the memory is mutable; etc)
|
|
*
|
|
* Categorization effectively transforms all of our expressions into
|
|
* expressions of the following forms (the actual enum has many more
|
|
* possibilities, naturally, but they are all variants of these base
|
|
* forms):
|
|
*
|
|
* E = rvalue // some computed rvalue
|
|
* | x // address of a local variable or argument
|
|
* | *E // deref of a ptr
|
|
* | E.comp // access to an interior component
|
|
*
|
|
* Imagine a routine ToAddr(Expr) that evaluates an expression and returns an
|
|
* address where the result is to be found. If Expr is an lvalue, then this
|
|
* is the address of the lvalue. If Expr is an rvalue, this is the address of
|
|
* some temporary spot in memory where the result is stored.
|
|
*
|
|
* Now, cat_expr() classies the expression Expr and the address A=ToAddr(Expr)
|
|
* as follows:
|
|
*
|
|
* - cat: what kind of expression was this? This is a subset of the
|
|
* full expression forms which only includes those that we care about
|
|
* for the purpose of the analysis.
|
|
* - mutbl: mutability of the address A
|
|
* - ty: the type of data found at the address A
|
|
*
|
|
* The resulting categorization tree differs somewhat from the expressions
|
|
* themselves. For example, auto-derefs are explicit. Also, an index a[b] is
|
|
* decomposed into two operations: a derefence to reach the array data and
|
|
* then an index to jump forward to the relevant item.
|
|
*
|
|
* ## By-reference upvars
|
|
*
|
|
* One part of the translation which may be non-obvious is that we translate
|
|
* closure upvars into the dereference of a borrowed pointer; this more closely
|
|
* resembles the runtime translation. So, for example, if we had:
|
|
*
|
|
* let mut x = 3;
|
|
* let y = 5;
|
|
* let inc = || x += y;
|
|
*
|
|
* Then when we categorize `x` (*within* the closure) we would yield a
|
|
* result of `*x'`, effectively, where `x'` is a `cat_upvar` reference
|
|
* tied to `x`. The type of `x'` will be a borrowed pointer.
|
|
*/
|
|
|
|
#![allow(non_camel_case_types)]
|
|
|
|
use middle::ty;
|
|
use middle::typeck;
|
|
use util::nodemap::NodeMap;
|
|
use util::ppaux::{ty_to_str, Repr};
|
|
|
|
use syntax::ast::{MutImmutable, MutMutable};
|
|
use syntax::ast;
|
|
use syntax::codemap::Span;
|
|
use syntax::print::pprust;
|
|
use syntax::parse::token;
|
|
|
|
use std::cell::RefCell;
|
|
use std::rc::Rc;
|
|
|
|
#[deriving(Clone, PartialEq)]
|
|
pub enum categorization {
|
|
cat_rvalue(ty::Region), // temporary val, argument is its scope
|
|
cat_static_item,
|
|
cat_copied_upvar(CopiedUpvar), // upvar copied into proc env
|
|
cat_upvar(ty::UpvarId, ty::UpvarBorrow), // by ref upvar from stack closure
|
|
cat_local(ast::NodeId), // local variable
|
|
cat_arg(ast::NodeId), // formal argument
|
|
cat_deref(cmt, uint, PointerKind), // deref of a ptr
|
|
cat_interior(cmt, InteriorKind), // something interior: field, tuple, etc
|
|
cat_downcast(cmt), // selects a particular enum variant (*1)
|
|
cat_discr(cmt, ast::NodeId), // match discriminant (see preserve())
|
|
|
|
// (*1) downcast is only required if the enum has more than one variant
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq)]
|
|
pub struct CopiedUpvar {
|
|
pub upvar_id: ast::NodeId,
|
|
pub onceness: ast::Onceness,
|
|
}
|
|
|
|
// different kinds of pointers:
|
|
#[deriving(Clone, PartialEq, Eq, Hash)]
|
|
pub enum PointerKind {
|
|
OwnedPtr,
|
|
GcPtr,
|
|
BorrowedPtr(ty::BorrowKind, ty::Region),
|
|
UnsafePtr(ast::Mutability),
|
|
}
|
|
|
|
// We use the term "interior" to mean "something reachable from the
|
|
// base without a pointer dereference", e.g. a field
|
|
#[deriving(Clone, PartialEq, Eq, Hash)]
|
|
pub enum InteriorKind {
|
|
InteriorField(FieldName),
|
|
InteriorElement(ElementKind),
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq, Eq, Hash)]
|
|
pub enum FieldName {
|
|
NamedField(ast::Name),
|
|
PositionalField(uint)
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq, Eq, Hash)]
|
|
pub enum ElementKind {
|
|
VecElement,
|
|
StrElement,
|
|
OtherElement,
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq, Eq, Hash, Show)]
|
|
pub enum MutabilityCategory {
|
|
McImmutable, // Immutable.
|
|
McDeclared, // Directly declared as mutable.
|
|
McInherited, // Inherited from the fact that owner is mutable.
|
|
}
|
|
|
|
// `cmt`: "Category, Mutability, and Type".
|
|
//
|
|
// a complete categorization of a value indicating where it originated
|
|
// and how it is located, as well as the mutability of the memory in
|
|
// which the value is stored.
|
|
//
|
|
// *WARNING* The field `cmt.type` is NOT necessarily the same as the
|
|
// result of `node_id_to_type(cmt.id)`. This is because the `id` is
|
|
// always the `id` of the node producing the type; in an expression
|
|
// like `*x`, the type of this deref node is the deref'd type (`T`),
|
|
// but in a pattern like `@x`, the `@x` pattern is again a
|
|
// dereference, but its type is the type *before* the dereference
|
|
// (`@T`). So use `cmt.type` to find the type of the value in a consistent
|
|
// fashion. For more details, see the method `cat_pattern`
|
|
#[deriving(Clone, PartialEq)]
|
|
pub struct cmt_ {
|
|
pub id: ast::NodeId, // id of expr/pat producing this value
|
|
pub span: Span, // span of same expr/pat
|
|
pub cat: categorization, // categorization of expr
|
|
pub mutbl: MutabilityCategory, // mutability of expr as lvalue
|
|
pub ty: ty::t // type of the expr (*see WARNING above*)
|
|
}
|
|
|
|
pub type cmt = Rc<cmt_>;
|
|
|
|
// We pun on *T to mean both actual deref of a ptr as well
|
|
// as accessing of components:
|
|
pub enum deref_kind {
|
|
deref_ptr(PointerKind),
|
|
deref_interior(InteriorKind),
|
|
}
|
|
|
|
// Categorizes a derefable type. Note that we include vectors and strings as
|
|
// derefable (we model an index as the combination of a deref and then a
|
|
// pointer adjustment).
|
|
pub fn opt_deref_kind(t: ty::t) -> Option<deref_kind> {
|
|
match ty::get(t).sty {
|
|
ty::ty_uniq(_) |
|
|
ty::ty_trait(box ty::TyTrait { store: ty::UniqTraitStore, .. }) |
|
|
ty::ty_closure(box ty::ClosureTy {store: ty::UniqTraitStore, ..}) => {
|
|
Some(deref_ptr(OwnedPtr))
|
|
}
|
|
|
|
ty::ty_rptr(r, mt) => {
|
|
let kind = ty::BorrowKind::from_mutbl(mt.mutbl);
|
|
Some(deref_ptr(BorrowedPtr(kind, r)))
|
|
}
|
|
ty::ty_trait(box ty::TyTrait {
|
|
store: ty::RegionTraitStore(r, mutbl),
|
|
..
|
|
}) => {
|
|
let kind = ty::BorrowKind::from_mutbl(mutbl);
|
|
Some(deref_ptr(BorrowedPtr(kind, r)))
|
|
}
|
|
|
|
ty::ty_closure(box ty::ClosureTy {
|
|
store: ty::RegionTraitStore(r, _),
|
|
..
|
|
}) => {
|
|
Some(deref_ptr(BorrowedPtr(ty::ImmBorrow, r)))
|
|
}
|
|
|
|
ty::ty_box(..) => {
|
|
Some(deref_ptr(GcPtr))
|
|
}
|
|
|
|
ty::ty_ptr(ref mt) => {
|
|
Some(deref_ptr(UnsafePtr(mt.mutbl)))
|
|
}
|
|
|
|
ty::ty_enum(..) |
|
|
ty::ty_struct(..) => { // newtype
|
|
Some(deref_interior(InteriorField(PositionalField(0))))
|
|
}
|
|
|
|
ty::ty_vec(_, Some(_)) => {
|
|
Some(deref_interior(InteriorElement(element_kind(t))))
|
|
}
|
|
|
|
_ => None
|
|
}
|
|
}
|
|
|
|
pub fn deref_kind(tcx: &ty::ctxt, t: ty::t) -> deref_kind {
|
|
match opt_deref_kind(t) {
|
|
Some(k) => k,
|
|
None => {
|
|
tcx.sess.bug(
|
|
format!("deref_cat() invoked on non-derefable type {}",
|
|
ty_to_str(tcx, t)).as_slice());
|
|
}
|
|
}
|
|
}
|
|
|
|
trait ast_node {
|
|
fn id(&self) -> ast::NodeId;
|
|
fn span(&self) -> Span;
|
|
}
|
|
|
|
impl ast_node for ast::Expr {
|
|
fn id(&self) -> ast::NodeId { self.id }
|
|
fn span(&self) -> Span { self.span }
|
|
}
|
|
|
|
impl ast_node for ast::Pat {
|
|
fn id(&self) -> ast::NodeId { self.id }
|
|
fn span(&self) -> Span { self.span }
|
|
}
|
|
|
|
pub struct MemCategorizationContext<'t,TYPER> {
|
|
typer: &'t TYPER
|
|
}
|
|
|
|
pub type McResult<T> = Result<T, ()>;
|
|
|
|
/**
|
|
* The `Typer` trait provides the interface for the mem-categorization
|
|
* module to the results of the type check. It can be used to query
|
|
* the type assigned to an expression node, to inquire after adjustments,
|
|
* and so on.
|
|
*
|
|
* This interface is needed because mem-categorization is used from
|
|
* two places: `regionck` and `borrowck`. `regionck` executes before
|
|
* type inference is complete, and hence derives types and so on from
|
|
* intermediate tables. This also implies that type errors can occur,
|
|
* and hence `node_ty()` and friends return a `Result` type -- any
|
|
* error will propagate back up through the mem-categorization
|
|
* routines.
|
|
*
|
|
* In the borrow checker, in contrast, type checking is complete and we
|
|
* know that no errors have occurred, so we simply consult the tcx and we
|
|
* can be sure that only `Ok` results will occur.
|
|
*/
|
|
pub trait Typer {
|
|
fn tcx<'a>(&'a self) -> &'a ty::ctxt;
|
|
fn node_ty(&self, id: ast::NodeId) -> McResult<ty::t>;
|
|
fn node_method_ty(&self, method_call: typeck::MethodCall) -> Option<ty::t>;
|
|
fn adjustments<'a>(&'a self) -> &'a RefCell<NodeMap<ty::AutoAdjustment>>;
|
|
fn is_method_call(&self, id: ast::NodeId) -> bool;
|
|
fn temporary_scope(&self, rvalue_id: ast::NodeId) -> Option<ast::NodeId>;
|
|
fn upvar_borrow(&self, upvar_id: ty::UpvarId) -> ty::UpvarBorrow;
|
|
}
|
|
|
|
impl MutabilityCategory {
|
|
pub fn from_mutbl(m: ast::Mutability) -> MutabilityCategory {
|
|
match m {
|
|
MutImmutable => McImmutable,
|
|
MutMutable => McDeclared
|
|
}
|
|
}
|
|
|
|
pub fn from_borrow_kind(borrow_kind: ty::BorrowKind) -> MutabilityCategory {
|
|
match borrow_kind {
|
|
ty::ImmBorrow => McImmutable,
|
|
ty::UniqueImmBorrow => McImmutable,
|
|
ty::MutBorrow => McDeclared,
|
|
}
|
|
}
|
|
|
|
pub fn from_pointer_kind(base_mutbl: MutabilityCategory,
|
|
ptr: PointerKind) -> MutabilityCategory {
|
|
match ptr {
|
|
OwnedPtr => {
|
|
base_mutbl.inherit()
|
|
}
|
|
BorrowedPtr(borrow_kind, _) => {
|
|
MutabilityCategory::from_borrow_kind(borrow_kind)
|
|
}
|
|
GcPtr => {
|
|
McImmutable
|
|
}
|
|
UnsafePtr(m) => {
|
|
MutabilityCategory::from_mutbl(m)
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn inherit(&self) -> MutabilityCategory {
|
|
match *self {
|
|
McImmutable => McImmutable,
|
|
McDeclared => McInherited,
|
|
McInherited => McInherited,
|
|
}
|
|
}
|
|
|
|
pub fn is_mutable(&self) -> bool {
|
|
match *self {
|
|
McImmutable => false,
|
|
McInherited => true,
|
|
McDeclared => true,
|
|
}
|
|
}
|
|
|
|
pub fn is_immutable(&self) -> bool {
|
|
match *self {
|
|
McImmutable => true,
|
|
McDeclared | McInherited => false
|
|
}
|
|
}
|
|
|
|
pub fn to_user_str(&self) -> &'static str {
|
|
match *self {
|
|
McDeclared | McInherited => "mutable",
|
|
McImmutable => "immutable",
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! if_ok(
|
|
($inp: expr) => (
|
|
match $inp {
|
|
Ok(v) => { v }
|
|
Err(e) => { return Err(e); }
|
|
}
|
|
)
|
|
)
|
|
|
|
impl<'t,TYPER:Typer> MemCategorizationContext<'t,TYPER> {
|
|
pub fn new(typer: &'t TYPER) -> MemCategorizationContext<'t,TYPER> {
|
|
MemCategorizationContext { typer: typer }
|
|
}
|
|
|
|
fn tcx(&self) -> &'t ty::ctxt {
|
|
self.typer.tcx()
|
|
}
|
|
|
|
fn expr_ty(&self, expr: &ast::Expr) -> McResult<ty::t> {
|
|
self.typer.node_ty(expr.id)
|
|
}
|
|
|
|
fn expr_ty_adjusted(&self, expr: &ast::Expr) -> McResult<ty::t> {
|
|
let unadjusted_ty = if_ok!(self.expr_ty(expr));
|
|
Ok(ty::adjust_ty(self.tcx(), expr.span, expr.id, unadjusted_ty,
|
|
self.typer.adjustments().borrow().find(&expr.id),
|
|
|method_call| self.typer.node_method_ty(method_call)))
|
|
}
|
|
|
|
fn node_ty(&self, id: ast::NodeId) -> McResult<ty::t> {
|
|
self.typer.node_ty(id)
|
|
}
|
|
|
|
fn pat_ty(&self, pat: &ast::Pat) -> McResult<ty::t> {
|
|
self.typer.node_ty(pat.id)
|
|
}
|
|
|
|
pub fn cat_expr(&self, expr: &ast::Expr) -> McResult<cmt> {
|
|
match self.typer.adjustments().borrow().find(&expr.id) {
|
|
None => {
|
|
// No adjustments.
|
|
self.cat_expr_unadjusted(expr)
|
|
}
|
|
|
|
Some(adjustment) => {
|
|
match *adjustment {
|
|
ty::AutoObject(..) => {
|
|
// Implicity casts a concrete object to trait object
|
|
// so just patch up the type
|
|
let expr_ty = if_ok!(self.expr_ty_adjusted(expr));
|
|
let mut expr_cmt = (*if_ok!(self.cat_expr_unadjusted(expr))).clone();
|
|
expr_cmt.ty = expr_ty;
|
|
Ok(Rc::new(expr_cmt))
|
|
}
|
|
|
|
ty::AutoAddEnv(..) => {
|
|
// Convert a bare fn to a closure by adding NULL env.
|
|
// Result is an rvalue.
|
|
let expr_ty = if_ok!(self.expr_ty_adjusted(expr));
|
|
Ok(self.cat_rvalue_node(expr.id(), expr.span(), expr_ty))
|
|
}
|
|
|
|
ty::AutoDerefRef(
|
|
ty::AutoDerefRef {
|
|
autoref: Some(_), ..}) => {
|
|
// Equivalent to &*expr or something similar.
|
|
// Result is an rvalue.
|
|
let expr_ty = if_ok!(self.expr_ty_adjusted(expr));
|
|
Ok(self.cat_rvalue_node(expr.id(), expr.span(), expr_ty))
|
|
}
|
|
|
|
ty::AutoDerefRef(
|
|
ty::AutoDerefRef {
|
|
autoref: None, autoderefs: autoderefs}) => {
|
|
// Equivalent to *expr or something similar.
|
|
self.cat_expr_autoderefd(expr, autoderefs)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn cat_expr_autoderefd(&self,
|
|
expr: &ast::Expr,
|
|
autoderefs: uint)
|
|
-> McResult<cmt> {
|
|
let mut cmt = if_ok!(self.cat_expr_unadjusted(expr));
|
|
for deref in range(1u, autoderefs + 1) {
|
|
cmt = self.cat_deref(expr, cmt, deref);
|
|
}
|
|
return Ok(cmt);
|
|
}
|
|
|
|
pub fn cat_expr_unadjusted(&self, expr: &ast::Expr) -> McResult<cmt> {
|
|
debug!("cat_expr: id={} expr={}", expr.id, expr.repr(self.tcx()));
|
|
|
|
let expr_ty = if_ok!(self.expr_ty(expr));
|
|
match expr.node {
|
|
ast::ExprUnary(ast::UnDeref, e_base) => {
|
|
let base_cmt = if_ok!(self.cat_expr(e_base));
|
|
Ok(self.cat_deref(expr, base_cmt, 0))
|
|
}
|
|
|
|
ast::ExprField(base, f_name, _) => {
|
|
let base_cmt = if_ok!(self.cat_expr(base));
|
|
Ok(self.cat_field(expr, base_cmt, f_name, expr_ty))
|
|
}
|
|
|
|
ast::ExprIndex(base, _) => {
|
|
if self.typer.is_method_call(expr.id) {
|
|
return Ok(self.cat_rvalue_node(expr.id(), expr.span(), expr_ty));
|
|
}
|
|
|
|
let base_cmt = if_ok!(self.cat_expr(base));
|
|
Ok(self.cat_index(expr, base_cmt, 0))
|
|
}
|
|
|
|
ast::ExprPath(_) => {
|
|
let def = self.tcx().def_map.borrow().get_copy(&expr.id);
|
|
self.cat_def(expr.id, expr.span, expr_ty, def)
|
|
}
|
|
|
|
ast::ExprParen(e) => {
|
|
self.cat_expr(e)
|
|
}
|
|
|
|
ast::ExprAddrOf(..) | ast::ExprCall(..) |
|
|
ast::ExprAssign(..) | ast::ExprAssignOp(..) |
|
|
ast::ExprFnBlock(..) | ast::ExprProc(..) | ast::ExprRet(..) |
|
|
ast::ExprUnary(..) |
|
|
ast::ExprMethodCall(..) | ast::ExprCast(..) | ast::ExprVstore(..) |
|
|
ast::ExprVec(..) | ast::ExprTup(..) | ast::ExprIf(..) |
|
|
ast::ExprBinary(..) | ast::ExprWhile(..) |
|
|
ast::ExprBlock(..) | ast::ExprLoop(..) | ast::ExprMatch(..) |
|
|
ast::ExprLit(..) | ast::ExprBreak(..) | ast::ExprMac(..) |
|
|
ast::ExprAgain(..) | ast::ExprStruct(..) | ast::ExprRepeat(..) |
|
|
ast::ExprInlineAsm(..) | ast::ExprBox(..) => {
|
|
Ok(self.cat_rvalue_node(expr.id(), expr.span(), expr_ty))
|
|
}
|
|
|
|
ast::ExprForLoop(..) => fail!("non-desugared expr_for_loop")
|
|
}
|
|
}
|
|
|
|
pub fn cat_def(&self,
|
|
id: ast::NodeId,
|
|
span: Span,
|
|
expr_ty: ty::t,
|
|
def: ast::Def)
|
|
-> McResult<cmt> {
|
|
debug!("cat_def: id={} expr={} def={:?}",
|
|
id, expr_ty.repr(self.tcx()), def);
|
|
|
|
match def {
|
|
ast::DefStruct(..) | ast::DefVariant(..) => {
|
|
Ok(self.cat_rvalue_node(id, span, expr_ty))
|
|
}
|
|
ast::DefFn(..) | ast::DefStaticMethod(..) | ast::DefMod(_) |
|
|
ast::DefForeignMod(_) | ast::DefStatic(_, false) |
|
|
ast::DefUse(_) | ast::DefTrait(_) | ast::DefTy(_) | ast::DefPrimTy(_) |
|
|
ast::DefTyParam(..) | ast::DefTyParamBinder(..) | ast::DefRegion(_) |
|
|
ast::DefLabel(_) | ast::DefSelfTy(..) | ast::DefMethod(..) => {
|
|
Ok(Rc::new(cmt_ {
|
|
id:id,
|
|
span:span,
|
|
cat:cat_static_item,
|
|
mutbl: McImmutable,
|
|
ty:expr_ty
|
|
}))
|
|
}
|
|
|
|
ast::DefStatic(_, true) => {
|
|
Ok(Rc::new(cmt_ {
|
|
id:id,
|
|
span:span,
|
|
cat:cat_static_item,
|
|
mutbl: McDeclared,
|
|
ty:expr_ty
|
|
}))
|
|
}
|
|
|
|
ast::DefArg(vid, binding_mode) => {
|
|
// Idea: make this could be rewritten to model by-ref
|
|
// stuff as `&const` and `&mut`?
|
|
|
|
// m: mutability of the argument
|
|
let m = match binding_mode {
|
|
ast::BindByValue(ast::MutMutable) => McDeclared,
|
|
_ => McImmutable
|
|
};
|
|
Ok(Rc::new(cmt_ {
|
|
id: id,
|
|
span: span,
|
|
cat: cat_arg(vid),
|
|
mutbl: m,
|
|
ty:expr_ty
|
|
}))
|
|
}
|
|
|
|
ast::DefUpvar(var_id, _, fn_node_id, _) => {
|
|
let ty = if_ok!(self.node_ty(fn_node_id));
|
|
match ty::get(ty).sty {
|
|
ty::ty_closure(ref closure_ty) => {
|
|
// Decide whether to use implicit reference or by copy/move
|
|
// capture for the upvar. This, combined with the onceness,
|
|
// determines whether the closure can move out of it.
|
|
let var_is_refd = match (closure_ty.store, closure_ty.onceness) {
|
|
// Many-shot stack closures can never move out.
|
|
(ty::RegionTraitStore(..), ast::Many) => true,
|
|
// 1-shot stack closures can move out.
|
|
(ty::RegionTraitStore(..), ast::Once) => false,
|
|
// Heap closures always capture by copy/move, and can
|
|
// move out if they are once.
|
|
(ty::UniqTraitStore, _) => false,
|
|
|
|
};
|
|
if var_is_refd {
|
|
self.cat_upvar(id, span, var_id, fn_node_id)
|
|
} else {
|
|
// FIXME #2152 allow mutation of moved upvars
|
|
Ok(Rc::new(cmt_ {
|
|
id:id,
|
|
span:span,
|
|
cat:cat_copied_upvar(CopiedUpvar {
|
|
upvar_id: var_id,
|
|
onceness: closure_ty.onceness}),
|
|
mutbl:McImmutable,
|
|
ty:expr_ty
|
|
}))
|
|
}
|
|
}
|
|
_ => {
|
|
self.tcx().sess.span_bug(
|
|
span,
|
|
format!("Upvar of non-closure {} - {}",
|
|
fn_node_id,
|
|
ty.repr(self.tcx())).as_slice());
|
|
}
|
|
}
|
|
}
|
|
|
|
ast::DefLocal(vid, binding_mode) |
|
|
ast::DefBinding(vid, binding_mode) => {
|
|
// by-value/by-ref bindings are local variables
|
|
let m = match binding_mode {
|
|
ast::BindByValue(ast::MutMutable) => McDeclared,
|
|
_ => McImmutable
|
|
};
|
|
|
|
Ok(Rc::new(cmt_ {
|
|
id: id,
|
|
span: span,
|
|
cat: cat_local(vid),
|
|
mutbl: m,
|
|
ty: expr_ty
|
|
}))
|
|
}
|
|
}
|
|
}
|
|
|
|
fn cat_upvar(&self,
|
|
id: ast::NodeId,
|
|
span: Span,
|
|
var_id: ast::NodeId,
|
|
fn_node_id: ast::NodeId)
|
|
-> McResult<cmt> {
|
|
/*!
|
|
* Upvars through a closure are in fact indirect
|
|
* references. That is, when a closure refers to a
|
|
* variable from a parent stack frame like `x = 10`,
|
|
* that is equivalent to `*x_ = 10` where `x_` is a
|
|
* borrowed pointer (`&mut x`) created when the closure
|
|
* was created and store in the environment. This
|
|
* equivalence is expose in the mem-categorization.
|
|
*/
|
|
|
|
let upvar_id = ty::UpvarId { var_id: var_id,
|
|
closure_expr_id: fn_node_id };
|
|
|
|
let upvar_borrow = self.typer.upvar_borrow(upvar_id);
|
|
|
|
let var_ty = if_ok!(self.node_ty(var_id));
|
|
|
|
// We can't actually represent the types of all upvars
|
|
// as user-describable types, since upvars support const
|
|
// and unique-imm borrows! Therefore, we cheat, and just
|
|
// give err type. Nobody should be inspecting this type anyhow.
|
|
let upvar_ty = ty::mk_err();
|
|
|
|
let base_cmt = Rc::new(cmt_ {
|
|
id:id,
|
|
span:span,
|
|
cat:cat_upvar(upvar_id, upvar_borrow),
|
|
mutbl:McImmutable,
|
|
ty:upvar_ty,
|
|
});
|
|
|
|
let ptr = BorrowedPtr(upvar_borrow.kind, upvar_borrow.region);
|
|
|
|
let deref_cmt = Rc::new(cmt_ {
|
|
id:id,
|
|
span:span,
|
|
cat:cat_deref(base_cmt, 0, ptr),
|
|
mutbl:MutabilityCategory::from_borrow_kind(upvar_borrow.kind),
|
|
ty:var_ty,
|
|
});
|
|
|
|
Ok(deref_cmt)
|
|
}
|
|
|
|
pub fn cat_rvalue_node(&self,
|
|
id: ast::NodeId,
|
|
span: Span,
|
|
expr_ty: ty::t)
|
|
-> cmt {
|
|
match self.typer.temporary_scope(id) {
|
|
Some(scope) => {
|
|
self.cat_rvalue(id, span, ty::ReScope(scope), expr_ty)
|
|
}
|
|
None => {
|
|
self.cat_rvalue(id, span, ty::ReStatic, expr_ty)
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn cat_rvalue(&self,
|
|
cmt_id: ast::NodeId,
|
|
span: Span,
|
|
temp_scope: ty::Region,
|
|
expr_ty: ty::t) -> cmt {
|
|
Rc::new(cmt_ {
|
|
id:cmt_id,
|
|
span:span,
|
|
cat:cat_rvalue(temp_scope),
|
|
mutbl:McDeclared,
|
|
ty:expr_ty
|
|
})
|
|
}
|
|
|
|
pub fn cat_field<N:ast_node>(&self,
|
|
node: &N,
|
|
base_cmt: cmt,
|
|
f_name: ast::Ident,
|
|
f_ty: ty::t)
|
|
-> cmt {
|
|
Rc::new(cmt_ {
|
|
id: node.id(),
|
|
span: node.span(),
|
|
mutbl: base_cmt.mutbl.inherit(),
|
|
cat: cat_interior(base_cmt, InteriorField(NamedField(f_name.name))),
|
|
ty: f_ty
|
|
})
|
|
}
|
|
|
|
pub fn cat_deref_obj<N:ast_node>(&self, node: &N, base_cmt: cmt) -> cmt {
|
|
self.cat_deref_common(node, base_cmt, 0, ty::mk_nil())
|
|
}
|
|
|
|
fn cat_deref<N:ast_node>(&self,
|
|
node: &N,
|
|
base_cmt: cmt,
|
|
deref_cnt: uint)
|
|
-> cmt {
|
|
let method_call = typeck::MethodCall {
|
|
expr_id: node.id(),
|
|
autoderef: deref_cnt as u32
|
|
};
|
|
let method_ty = self.typer.node_method_ty(method_call);
|
|
|
|
debug!("cat_deref: method_call={:?} method_ty={}",
|
|
method_call, method_ty.map(|ty| ty.repr(self.tcx())));
|
|
|
|
let base_cmt = match method_ty {
|
|
Some(method_ty) => {
|
|
let ref_ty = ty::ty_fn_ret(method_ty);
|
|
self.cat_rvalue_node(node.id(), node.span(), ref_ty)
|
|
}
|
|
None => base_cmt
|
|
};
|
|
match ty::deref(base_cmt.ty, true) {
|
|
Some(mt) => self.cat_deref_common(node, base_cmt, deref_cnt, mt.ty),
|
|
None => {
|
|
self.tcx().sess.span_bug(
|
|
node.span(),
|
|
format!("Explicit deref of non-derefable type: {}",
|
|
base_cmt.ty.repr(self.tcx())).as_slice());
|
|
}
|
|
}
|
|
}
|
|
|
|
fn cat_deref_common<N:ast_node>(&self,
|
|
node: &N,
|
|
base_cmt: cmt,
|
|
deref_cnt: uint,
|
|
deref_ty: ty::t)
|
|
-> cmt {
|
|
let (m, cat) = match deref_kind(self.tcx(), base_cmt.ty) {
|
|
deref_ptr(ptr) => {
|
|
// for unique ptrs, we inherit mutability from the
|
|
// owning reference.
|
|
(MutabilityCategory::from_pointer_kind(base_cmt.mutbl, ptr),
|
|
cat_deref(base_cmt, deref_cnt, ptr))
|
|
}
|
|
deref_interior(interior) => {
|
|
(base_cmt.mutbl.inherit(), cat_interior(base_cmt, interior))
|
|
}
|
|
};
|
|
Rc::new(cmt_ {
|
|
id: node.id(),
|
|
span: node.span(),
|
|
cat: cat,
|
|
mutbl: m,
|
|
ty: deref_ty
|
|
})
|
|
}
|
|
|
|
pub fn cat_index<N:ast_node>(&self,
|
|
elt: &N,
|
|
base_cmt: cmt,
|
|
derefs: uint)
|
|
-> cmt {
|
|
//! Creates a cmt for an indexing operation (`[]`); this
|
|
//! indexing operation may occurs as part of an
|
|
//! AutoBorrowVec, which when converting a `~[]` to an `&[]`
|
|
//! effectively takes the address of the 0th element.
|
|
//!
|
|
//! One subtle aspect of indexing that may not be
|
|
//! immediately obvious: for anything other than a fixed-length
|
|
//! vector, an operation like `x[y]` actually consists of two
|
|
//! disjoint (from the point of view of borrowck) operations.
|
|
//! The first is a deref of `x` to create a pointer `p` that points
|
|
//! at the first element in the array. The second operation is
|
|
//! an index which adds `y*sizeof(T)` to `p` to obtain the
|
|
//! pointer to `x[y]`. `cat_index` will produce a resulting
|
|
//! cmt containing both this deref and the indexing,
|
|
//! presuming that `base_cmt` is not of fixed-length type.
|
|
//!
|
|
//! In the event that a deref is needed, the "deref count"
|
|
//! is taken from the parameter `derefs`. See the comment
|
|
//! on the def'n of `root_map_key` in borrowck/mod.rs
|
|
//! for more details about deref counts; the summary is
|
|
//! that `derefs` should be 0 for an explicit indexing
|
|
//! operation and N+1 for an indexing that is part of
|
|
//! an auto-adjustment, where N is the number of autoderefs
|
|
//! in that adjustment.
|
|
//!
|
|
//! # Parameters
|
|
//! - `elt`: the AST node being indexed
|
|
//! - `base_cmt`: the cmt of `elt`
|
|
//! - `derefs`: the deref number to be used for
|
|
//! the implicit index deref, if any (see above)
|
|
|
|
let element_ty = match ty::index(base_cmt.ty) {
|
|
Some(ref mt) => mt.ty,
|
|
None => {
|
|
self.tcx().sess.span_bug(
|
|
elt.span(),
|
|
format!("Explicit index of non-index type `{}`",
|
|
base_cmt.ty.repr(self.tcx())).as_slice());
|
|
}
|
|
};
|
|
|
|
return match deref_kind(self.tcx(), base_cmt.ty) {
|
|
deref_ptr(ptr) => {
|
|
// for unique ptrs, we inherit mutability from the
|
|
// owning reference.
|
|
let m = MutabilityCategory::from_pointer_kind(base_cmt.mutbl, ptr);
|
|
|
|
// the deref is explicit in the resulting cmt
|
|
let deref_cmt = Rc::new(cmt_ {
|
|
id:elt.id(),
|
|
span:elt.span(),
|
|
cat:cat_deref(base_cmt.clone(), derefs, ptr),
|
|
mutbl:m,
|
|
ty:element_ty
|
|
});
|
|
|
|
interior(elt, deref_cmt, base_cmt.ty, m.inherit(), element_ty)
|
|
}
|
|
|
|
deref_interior(_) => {
|
|
// fixed-length vectors have no deref
|
|
let m = base_cmt.mutbl.inherit();
|
|
interior(elt, base_cmt.clone(), base_cmt.ty, m, element_ty)
|
|
}
|
|
};
|
|
|
|
fn interior<N: ast_node>(elt: &N,
|
|
of_cmt: cmt,
|
|
vec_ty: ty::t,
|
|
mutbl: MutabilityCategory,
|
|
element_ty: ty::t) -> cmt
|
|
{
|
|
Rc::new(cmt_ {
|
|
id:elt.id(),
|
|
span:elt.span(),
|
|
cat:cat_interior(of_cmt, InteriorElement(element_kind(vec_ty))),
|
|
mutbl:mutbl,
|
|
ty:element_ty
|
|
})
|
|
}
|
|
}
|
|
|
|
pub fn cat_slice_pattern(&self,
|
|
vec_cmt: cmt,
|
|
slice_pat: &ast::Pat)
|
|
-> McResult<(cmt, ast::Mutability, ty::Region)> {
|
|
/*!
|
|
* Given a pattern P like: `[_, ..Q, _]`, where `vec_cmt` is
|
|
* the cmt for `P`, `slice_pat` is the pattern `Q`, returns:
|
|
* - a cmt for `Q`
|
|
* - the mutability and region of the slice `Q`
|
|
*
|
|
* These last two bits of info happen to be things that
|
|
* borrowck needs.
|
|
*/
|
|
|
|
let slice_ty = if_ok!(self.node_ty(slice_pat.id));
|
|
let (slice_mutbl, slice_r) = vec_slice_info(self.tcx(),
|
|
slice_pat,
|
|
slice_ty);
|
|
let cmt_slice = self.cat_index(slice_pat, vec_cmt, 0);
|
|
return Ok((cmt_slice, slice_mutbl, slice_r));
|
|
|
|
fn vec_slice_info(tcx: &ty::ctxt,
|
|
pat: &ast::Pat,
|
|
slice_ty: ty::t)
|
|
-> (ast::Mutability, ty::Region) {
|
|
/*!
|
|
* In a pattern like [a, b, ..c], normally `c` has slice type,
|
|
* but if you have [a, b, ..ref c], then the type of `ref c`
|
|
* will be `&&[]`, so to extract the slice details we have
|
|
* to recurse through rptrs.
|
|
*/
|
|
|
|
match ty::get(slice_ty).sty {
|
|
ty::ty_rptr(r, ref mt) => match ty::get(mt.ty).sty {
|
|
ty::ty_vec(slice_mt, None) => (slice_mt.mutbl, r),
|
|
_ => vec_slice_info(tcx, pat, mt.ty),
|
|
},
|
|
|
|
_ => {
|
|
tcx.sess.span_bug(pat.span,
|
|
"type of slice pattern is not a slice");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn cat_imm_interior<N:ast_node>(&self,
|
|
node: &N,
|
|
base_cmt: cmt,
|
|
interior_ty: ty::t,
|
|
interior: InteriorKind)
|
|
-> cmt {
|
|
Rc::new(cmt_ {
|
|
id: node.id(),
|
|
span: node.span(),
|
|
mutbl: base_cmt.mutbl.inherit(),
|
|
cat: cat_interior(base_cmt, interior),
|
|
ty: interior_ty
|
|
})
|
|
}
|
|
|
|
pub fn cat_downcast<N:ast_node>(&self,
|
|
node: &N,
|
|
base_cmt: cmt,
|
|
downcast_ty: ty::t)
|
|
-> cmt {
|
|
Rc::new(cmt_ {
|
|
id: node.id(),
|
|
span: node.span(),
|
|
mutbl: base_cmt.mutbl.inherit(),
|
|
cat: cat_downcast(base_cmt),
|
|
ty: downcast_ty
|
|
})
|
|
}
|
|
|
|
pub fn cat_pattern(&self,
|
|
cmt: cmt,
|
|
pat: &ast::Pat,
|
|
op: |&MemCategorizationContext<TYPER>,
|
|
cmt,
|
|
&ast::Pat|)
|
|
-> McResult<()> {
|
|
// Here, `cmt` is the categorization for the value being
|
|
// matched and pat is the pattern it is being matched against.
|
|
//
|
|
// In general, the way that this works is that we walk down
|
|
// the pattern, constructing a cmt that represents the path
|
|
// that will be taken to reach the value being matched.
|
|
//
|
|
// When we encounter named bindings, we take the cmt that has
|
|
// been built up and pass it off to guarantee_valid() so that
|
|
// we can be sure that the binding will remain valid for the
|
|
// duration of the arm.
|
|
//
|
|
// (*2) There is subtlety concerning the correspondence between
|
|
// pattern ids and types as compared to *expression* ids and
|
|
// types. This is explained briefly. on the definition of the
|
|
// type `cmt`, so go off and read what it says there, then
|
|
// come back and I'll dive into a bit more detail here. :) OK,
|
|
// back?
|
|
//
|
|
// In general, the id of the cmt should be the node that
|
|
// "produces" the value---patterns aren't executable code
|
|
// exactly, but I consider them to "execute" when they match a
|
|
// value, and I consider them to produce the value that was
|
|
// matched. So if you have something like:
|
|
//
|
|
// let x = @@3;
|
|
// match x {
|
|
// @@y { ... }
|
|
// }
|
|
//
|
|
// In this case, the cmt and the relevant ids would be:
|
|
//
|
|
// CMT Id Type of Id Type of cmt
|
|
//
|
|
// local(x)->@->@
|
|
// ^~~~~~~^ `x` from discr @@int @@int
|
|
// ^~~~~~~~~~^ `@@y` pattern node @@int @int
|
|
// ^~~~~~~~~~~~~^ `@y` pattern node @int int
|
|
//
|
|
// You can see that the types of the id and the cmt are in
|
|
// sync in the first line, because that id is actually the id
|
|
// of an expression. But once we get to pattern ids, the types
|
|
// step out of sync again. So you'll see below that we always
|
|
// get the type of the *subpattern* and use that.
|
|
|
|
debug!("cat_pattern: id={} pat={} cmt={}",
|
|
pat.id, pprust::pat_to_str(pat),
|
|
cmt.repr(self.tcx()));
|
|
|
|
op(self, cmt.clone(), pat);
|
|
|
|
match pat.node {
|
|
ast::PatWild | ast::PatWildMulti => {
|
|
// _
|
|
}
|
|
|
|
ast::PatEnum(_, None) => {
|
|
// variant(..)
|
|
}
|
|
ast::PatEnum(_, Some(ref subpats)) => {
|
|
match self.tcx().def_map.borrow().find(&pat.id) {
|
|
Some(&ast::DefVariant(enum_did, _, _)) => {
|
|
// variant(x, y, z)
|
|
|
|
let downcast_cmt = {
|
|
if ty::enum_is_univariant(self.tcx(), enum_did) {
|
|
cmt // univariant, no downcast needed
|
|
} else {
|
|
self.cat_downcast(pat, cmt.clone(), cmt.ty)
|
|
}
|
|
};
|
|
|
|
for (i, &subpat) in subpats.iter().enumerate() {
|
|
let subpat_ty = if_ok!(self.pat_ty(subpat)); // see (*2)
|
|
|
|
let subcmt =
|
|
self.cat_imm_interior(
|
|
pat, downcast_cmt.clone(), subpat_ty,
|
|
InteriorField(PositionalField(i)));
|
|
|
|
if_ok!(self.cat_pattern(subcmt, subpat, |x,y,z| op(x,y,z)));
|
|
}
|
|
}
|
|
Some(&ast::DefFn(..)) |
|
|
Some(&ast::DefStruct(..)) => {
|
|
for (i, &subpat) in subpats.iter().enumerate() {
|
|
let subpat_ty = if_ok!(self.pat_ty(subpat)); // see (*2)
|
|
let cmt_field =
|
|
self.cat_imm_interior(
|
|
pat, cmt.clone(), subpat_ty,
|
|
InteriorField(PositionalField(i)));
|
|
if_ok!(self.cat_pattern(cmt_field, subpat, |x,y,z| op(x,y,z)));
|
|
}
|
|
}
|
|
Some(&ast::DefStatic(..)) => {
|
|
for &subpat in subpats.iter() {
|
|
if_ok!(self.cat_pattern(cmt.clone(), subpat, |x,y,z| op(x,y,z)));
|
|
}
|
|
}
|
|
_ => {
|
|
self.tcx().sess.span_bug(
|
|
pat.span,
|
|
"enum pattern didn't resolve to enum or struct");
|
|
}
|
|
}
|
|
}
|
|
|
|
ast::PatIdent(_, _, Some(subpat)) => {
|
|
if_ok!(self.cat_pattern(cmt, subpat, op));
|
|
}
|
|
|
|
ast::PatIdent(_, _, None) => {
|
|
// nullary variant or identifier: ignore
|
|
}
|
|
|
|
ast::PatStruct(_, ref field_pats, _) => {
|
|
// {f1: p1, ..., fN: pN}
|
|
for fp in field_pats.iter() {
|
|
let field_ty = if_ok!(self.pat_ty(fp.pat)); // see (*2)
|
|
let cmt_field = self.cat_field(pat, cmt.clone(), fp.ident, field_ty);
|
|
if_ok!(self.cat_pattern(cmt_field, fp.pat, |x,y,z| op(x,y,z)));
|
|
}
|
|
}
|
|
|
|
ast::PatTup(ref subpats) => {
|
|
// (p1, ..., pN)
|
|
for (i, &subpat) in subpats.iter().enumerate() {
|
|
let subpat_ty = if_ok!(self.pat_ty(subpat)); // see (*2)
|
|
let subcmt =
|
|
self.cat_imm_interior(
|
|
pat, cmt.clone(), subpat_ty,
|
|
InteriorField(PositionalField(i)));
|
|
if_ok!(self.cat_pattern(subcmt, subpat, |x,y,z| op(x,y,z)));
|
|
}
|
|
}
|
|
|
|
ast::PatBox(subpat) | ast::PatRegion(subpat) => {
|
|
// @p1, ~p1
|
|
let subcmt = self.cat_deref(pat, cmt, 0);
|
|
if_ok!(self.cat_pattern(subcmt, subpat, op));
|
|
}
|
|
|
|
ast::PatVec(ref before, slice, ref after) => {
|
|
let elt_cmt = self.cat_index(pat, cmt, 0);
|
|
for &before_pat in before.iter() {
|
|
if_ok!(self.cat_pattern(elt_cmt.clone(), before_pat, |x,y,z| op(x,y,z)));
|
|
}
|
|
for &slice_pat in slice.iter() {
|
|
let slice_ty = if_ok!(self.pat_ty(slice_pat));
|
|
let slice_cmt = self.cat_rvalue_node(pat.id(), pat.span(), slice_ty);
|
|
if_ok!(self.cat_pattern(slice_cmt, slice_pat, |x,y,z| op(x,y,z)));
|
|
}
|
|
for &after_pat in after.iter() {
|
|
if_ok!(self.cat_pattern(elt_cmt.clone(), after_pat, |x,y,z| op(x,y,z)));
|
|
}
|
|
}
|
|
|
|
ast::PatLit(_) | ast::PatRange(_, _) => {
|
|
/*always ok*/
|
|
}
|
|
|
|
ast::PatMac(_) => {
|
|
self.tcx().sess.span_bug(pat.span, "unexpanded macro");
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
pub fn cmt_to_str(&self, cmt: &cmt_) -> String {
|
|
match cmt.cat {
|
|
cat_static_item => {
|
|
"static item".to_string()
|
|
}
|
|
cat_copied_upvar(_) => {
|
|
"captured outer variable in a proc".to_string()
|
|
}
|
|
cat_rvalue(..) => {
|
|
"non-lvalue".to_string()
|
|
}
|
|
cat_local(_) => {
|
|
"local variable".to_string()
|
|
}
|
|
cat_arg(..) => {
|
|
"argument".to_string()
|
|
}
|
|
cat_deref(ref base, _, pk) => {
|
|
match base.cat {
|
|
cat_upvar(..) => {
|
|
"captured outer variable".to_string()
|
|
}
|
|
_ => {
|
|
format!("dereference of `{}`-pointer", ptr_sigil(pk))
|
|
}
|
|
}
|
|
}
|
|
cat_interior(_, InteriorField(NamedField(_))) => {
|
|
"field".to_string()
|
|
}
|
|
cat_interior(_, InteriorField(PositionalField(_))) => {
|
|
"anonymous field".to_string()
|
|
}
|
|
cat_interior(_, InteriorElement(VecElement)) => {
|
|
"vec content".to_string()
|
|
}
|
|
cat_interior(_, InteriorElement(StrElement)) => {
|
|
"str content".to_string()
|
|
}
|
|
cat_interior(_, InteriorElement(OtherElement)) => {
|
|
"indexed content".to_string()
|
|
}
|
|
cat_upvar(..) => {
|
|
"captured outer variable".to_string()
|
|
}
|
|
cat_discr(ref cmt, _) => {
|
|
self.cmt_to_str(&**cmt)
|
|
}
|
|
cat_downcast(ref cmt) => {
|
|
self.cmt_to_str(&**cmt)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub enum InteriorSafety {
|
|
InteriorUnsafe,
|
|
InteriorSafe
|
|
}
|
|
|
|
pub enum AliasableReason {
|
|
AliasableManaged,
|
|
AliasableBorrowed,
|
|
AliasableOther,
|
|
AliasableStatic(InteriorSafety),
|
|
AliasableStaticMut(InteriorSafety),
|
|
}
|
|
|
|
impl cmt_ {
|
|
pub fn guarantor(&self) -> cmt {
|
|
//! Returns `self` after stripping away any owned pointer derefs or
|
|
//! interior content. The return value is basically the `cmt` which
|
|
//! determines how long the value in `self` remains live.
|
|
|
|
match self.cat {
|
|
cat_rvalue(..) |
|
|
cat_static_item |
|
|
cat_copied_upvar(..) |
|
|
cat_local(..) |
|
|
cat_arg(..) |
|
|
cat_deref(_, _, UnsafePtr(..)) |
|
|
cat_deref(_, _, GcPtr(..)) |
|
|
cat_deref(_, _, BorrowedPtr(..)) |
|
|
cat_upvar(..) => {
|
|
Rc::new((*self).clone())
|
|
}
|
|
cat_downcast(ref b) |
|
|
cat_discr(ref b, _) |
|
|
cat_interior(ref b, _) |
|
|
cat_deref(ref b, _, OwnedPtr) => {
|
|
b.guarantor()
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn freely_aliasable(&self, ctxt: &ty::ctxt) -> Option<AliasableReason> {
|
|
/*!
|
|
* Returns `Some(_)` if this lvalue represents a freely aliasable
|
|
* pointer type.
|
|
*/
|
|
|
|
// Maybe non-obvious: copied upvars can only be considered
|
|
// non-aliasable in once closures, since any other kind can be
|
|
// aliased and eventually recused.
|
|
|
|
match self.cat {
|
|
cat_deref(ref b, _, BorrowedPtr(ty::MutBorrow, _)) |
|
|
cat_deref(ref b, _, BorrowedPtr(ty::UniqueImmBorrow, _)) |
|
|
cat_downcast(ref b) |
|
|
cat_deref(ref b, _, OwnedPtr) |
|
|
cat_interior(ref b, _) |
|
|
cat_discr(ref b, _) => {
|
|
// Aliasability depends on base cmt
|
|
b.freely_aliasable(ctxt)
|
|
}
|
|
|
|
cat_copied_upvar(CopiedUpvar {onceness: ast::Once, ..}) |
|
|
cat_rvalue(..) |
|
|
cat_local(..) |
|
|
cat_upvar(..) |
|
|
cat_arg(_) |
|
|
cat_deref(_, _, UnsafePtr(..)) => { // yes, it's aliasable, but...
|
|
None
|
|
}
|
|
|
|
cat_copied_upvar(CopiedUpvar {onceness: ast::Many, ..}) => {
|
|
Some(AliasableOther)
|
|
}
|
|
|
|
cat_static_item(..) => {
|
|
let int_safe = if ty::type_interior_is_unsafe(ctxt, self.ty) {
|
|
InteriorUnsafe
|
|
} else {
|
|
InteriorSafe
|
|
};
|
|
|
|
if self.mutbl.is_mutable() {
|
|
Some(AliasableStaticMut(int_safe))
|
|
} else {
|
|
Some(AliasableStatic(int_safe))
|
|
}
|
|
}
|
|
|
|
cat_deref(_, _, GcPtr) => {
|
|
Some(AliasableManaged)
|
|
}
|
|
|
|
cat_deref(_, _, BorrowedPtr(ty::ImmBorrow, _)) => {
|
|
Some(AliasableBorrowed)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Repr for cmt_ {
|
|
fn repr(&self, tcx: &ty::ctxt) -> String {
|
|
format!("\\{{} id:{} m:{:?} ty:{}\\}",
|
|
self.cat.repr(tcx),
|
|
self.id,
|
|
self.mutbl,
|
|
self.ty.repr(tcx))
|
|
}
|
|
}
|
|
|
|
impl Repr for categorization {
|
|
fn repr(&self, tcx: &ty::ctxt) -> String {
|
|
match *self {
|
|
cat_static_item |
|
|
cat_rvalue(..) |
|
|
cat_copied_upvar(..) |
|
|
cat_local(..) |
|
|
cat_upvar(..) |
|
|
cat_arg(..) => {
|
|
format!("{:?}", *self)
|
|
}
|
|
cat_deref(ref cmt, derefs, ptr) => {
|
|
format!("{}-{}{}->", cmt.cat.repr(tcx), ptr_sigil(ptr), derefs)
|
|
}
|
|
cat_interior(ref cmt, interior) => {
|
|
format!("{}.{}", cmt.cat.repr(tcx), interior.repr(tcx))
|
|
}
|
|
cat_downcast(ref cmt) => {
|
|
format!("{}->(enum)", cmt.cat.repr(tcx))
|
|
}
|
|
cat_discr(ref cmt, _) => {
|
|
cmt.cat.repr(tcx)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn ptr_sigil(ptr: PointerKind) -> &'static str {
|
|
match ptr {
|
|
OwnedPtr => "~",
|
|
GcPtr => "@",
|
|
BorrowedPtr(ty::ImmBorrow, _) => "&",
|
|
BorrowedPtr(ty::MutBorrow, _) => "&mut",
|
|
BorrowedPtr(ty::UniqueImmBorrow, _) => "&unique",
|
|
UnsafePtr(_) => "*"
|
|
}
|
|
}
|
|
|
|
impl Repr for InteriorKind {
|
|
fn repr(&self, _tcx: &ty::ctxt) -> String {
|
|
match *self {
|
|
InteriorField(NamedField(fld)) => {
|
|
token::get_name(fld).get().to_str().to_string()
|
|
}
|
|
InteriorField(PositionalField(i)) => format!("\\#{:?}", i),
|
|
InteriorElement(_) => "[]".to_string(),
|
|
}
|
|
}
|
|
}
|
|
|
|
fn element_kind(t: ty::t) -> ElementKind {
|
|
match ty::get(t).sty {
|
|
ty::ty_rptr(_, ty::mt{ty:ty, ..}) |
|
|
ty::ty_uniq(ty) => match ty::get(ty).sty {
|
|
ty::ty_vec(_, None) => VecElement,
|
|
ty::ty_str => StrElement,
|
|
_ => OtherElement
|
|
},
|
|
ty::ty_vec(..) => VecElement,
|
|
_ => OtherElement
|
|
}
|
|
}
|