rust/src/comp/middle/trans.rs

8118 lines
277 KiB
Rust

import std::int;
import std::str;
import std::uint;
import std::vec;
import std::str::rustrt::sbuf;
import std::vec::rustrt::vbuf;
import std::map;
import std::map::hashmap;
import std::option;
import std::option::some;
import std::option::none;
import front::ast;
import front::creader;
import driver::session;
import middle::ty;
import back::link;
import back::x86;
import back::abi;
import back::upcall;
import middle::ty::pat_ty;
import util::common;
import util::common::istr;
import util::common::new_def_hash;
import util::common::new_str_hash;
import util::common::local_rhs_span;
import lib::llvm::llvm;
import lib::llvm::builder;
import lib::llvm::target_data;
import lib::llvm::type_handle;
import lib::llvm::type_names;
import lib::llvm::mk_target_data;
import lib::llvm::mk_type_handle;
import lib::llvm::mk_type_names;
import lib::llvm::llvm::ModuleRef;
import lib::llvm::llvm::ValueRef;
import lib::llvm::llvm::TypeRef;
import lib::llvm::llvm::TypeHandleRef;
import lib::llvm::llvm::BuilderRef;
import lib::llvm::llvm::BasicBlockRef;
import lib::llvm::False;
import lib::llvm::True;
import lib::llvm::Bool;
state obj namegen(mutable int i) {
fn next(str prefix) -> str {
i += 1;
ret prefix + istr(i);
}
}
type derived_tydesc_info = rec(ValueRef lltydesc, bool escapes);
type glue_fns = rec(ValueRef yield_glue,
ValueRef no_op_type_glue,
ValueRef vec_append_glue);
type tydesc_info = rec(ty::t ty,
ValueRef tydesc,
ValueRef size,
ValueRef align,
mutable option::t[ValueRef] take_glue,
mutable option::t[ValueRef] drop_glue,
mutable option::t[ValueRef] free_glue,
mutable option::t[ValueRef] cmp_glue,
vec[uint] ty_params);
/*
* A note on nomenclature of linking: "upcall", "extern" and "native".
*
* An "extern" is an LLVM symbol we wind up emitting an undefined external
* reference to. This means "we don't have the thing in this compilation unit,
* please make sure you link it in at runtime". This could be a reference to
* C code found in a C library, or rust code found in a rust crate.
*
* A "native" is an extern that references C code. Called with cdecl.
*
* An upcall is a native call generated by the compiler (not corresponding to
* any user-written call in the code) into librustrt, to perform some helper
* task such as bringing a task to life, allocating memory, etc.
*
*/
type stats = rec(mutable uint n_static_tydescs,
mutable uint n_derived_tydescs,
mutable uint n_glues_created,
mutable uint n_null_glues,
mutable uint n_real_glues);
state type crate_ctxt = rec(session::session sess,
ModuleRef llmod,
target_data td,
type_names tn,
hashmap[str, ValueRef] externs,
hashmap[str, ValueRef] intrinsics,
hashmap[ast::def_id, ValueRef] item_ids,
hashmap[ast::def_id, @ast::item] items,
hashmap[ast::def_id,
@ast::native_item] native_items,
hashmap[ast::def_id, str] item_symbols,
// TODO: hashmap[tup(tag_id,subtys), @tag_info]
hashmap[ty::t, uint] tag_sizes,
hashmap[ast::def_id, ValueRef] discrims,
hashmap[ast::def_id, str] discrim_symbols,
hashmap[ast::def_id, ValueRef] fn_pairs,
hashmap[ast::def_id, ValueRef] consts,
hashmap[ast::def_id,()] obj_methods,
hashmap[ty::t, @tydesc_info] tydescs,
hashmap[str, ValueRef] module_data,
hashmap[ty::t, TypeRef] lltypes,
@glue_fns glues,
namegen names,
std::sha1::sha1 sha,
hashmap[ty::t, str] type_sha1s,
hashmap[ty::t, metadata::ty_abbrev] type_abbrevs,
hashmap[ty::t, str] type_short_names,
ty::ctxt tcx,
stats stats,
@upcall::upcalls upcalls);
type local_ctxt = rec(vec[str] path,
vec[str] module_path,
vec[ast::ty_param] obj_typarams,
vec[ast::obj_field] obj_fields,
@crate_ctxt ccx);
type self_vt = rec(ValueRef v, ty::t t);
state type fn_ctxt = rec(ValueRef llfn,
ValueRef lltaskptr,
ValueRef llenv,
ValueRef llretptr,
mutable BasicBlockRef llallocas,
mutable BasicBlockRef llcopyargs,
mutable BasicBlockRef llderivedtydescs,
mutable option::t[self_vt] llself,
mutable option::t[ValueRef] lliterbody,
hashmap[ast::def_id, ValueRef] llargs,
hashmap[ast::def_id, ValueRef] llobjfields,
hashmap[ast::def_id, ValueRef] lllocals,
hashmap[ast::def_id, ValueRef] llupvars,
mutable vec[ValueRef] lltydescs,
hashmap[ty::t, derived_tydesc_info] derived_tydescs,
ast::span sp,
@local_ctxt lcx);
tag cleanup {
clean(fn(&@block_ctxt cx) -> result);
}
tag block_kind {
SCOPE_BLOCK;
LOOP_SCOPE_BLOCK(option::t[@block_ctxt], @block_ctxt);
NON_SCOPE_BLOCK;
}
state type block_ctxt = rec(BasicBlockRef llbb,
builder build,
block_parent parent,
block_kind kind,
mutable vec[cleanup] cleanups,
ast::span sp,
@fn_ctxt fcx);
// FIXME: we should be able to use option::t[@block_parent] here but
// the infinite-tag check in rustboot gets upset.
tag block_parent {
parent_none;
parent_some(@block_ctxt);
}
state type result = rec(mutable @block_ctxt bcx,
mutable ValueRef val);
fn sep() -> str {
ret "_";
}
fn extend_path(@local_ctxt cx, &str name) -> @local_ctxt {
ret @rec(path = cx.path + [name] with *cx);
}
fn path_name(&vec[str] path) -> str {
ret str::connect(path, sep());
}
fn get_type_sha1(&@crate_ctxt ccx, &ty::t t) -> str {
auto hash = "";
alt (ccx.type_sha1s.find(t)) {
case (some[str](?h)) { hash = h; }
case (none[str]) {
ccx.sha.reset();
auto f = metadata::def_to_str;
// NB: do *not* use abbrevs here as we want the symbol names
// to be independent of one another in the crate.
auto cx = @rec(ds=f,
tcx=ccx.tcx,
abbrevs=metadata::ac_no_abbrevs);
ccx.sha.input_str(metadata::Encode::ty_str(cx, t));
hash = str::substr(ccx.sha.result_str(), 0u, 16u);
ccx.type_sha1s.insert(t, hash);
}
}
ret hash;
}
fn mangle_name_by_type(&@crate_ctxt ccx, &vec[str] path, &ty::t t) -> str {
auto hash = get_type_sha1(ccx, t);
ret sep() + "rust" + sep() + hash + sep() + path_name(path);
}
fn mangle_name_by_type_only(&@crate_ctxt ccx, &ty::t t, &str name) -> str {
auto f = metadata::def_to_str;
auto cx = @rec(ds=f, tcx=ccx.tcx, abbrevs=metadata::ac_no_abbrevs);
auto s = ty::ty_to_short_str(ccx.tcx, t);
auto hash = get_type_sha1(ccx, t);
ret sep() + "rust" + sep() + hash + sep() + name + "_" + s;
}
fn mangle_name_by_seq(&@crate_ctxt ccx, &vec[str] path,
&str flav) -> str {
ret sep() + "rust" + sep()
+ ccx.names.next(flav) + sep()
+ path_name(path);
}
fn res(@block_ctxt bcx, ValueRef val) -> result {
ret rec(mutable bcx = bcx,
mutable val = val);
}
fn ty_str(type_names tn, TypeRef t) -> str {
ret lib::llvm::type_to_str(tn, t);
}
fn val_ty(ValueRef v) -> TypeRef {
ret llvm::LLVMTypeOf(v);
}
fn val_str(type_names tn, ValueRef v) -> str {
ret ty_str(tn, val_ty(v));
}
// LLVM type constructors.
fn T_void() -> TypeRef {
// Note: For the time being llvm is kinda busted here, it has the notion
// of a 'void' type that can only occur as part of the signature of a
// function, but no general unit type of 0-sized value. This is, afaict,
// vestigial from its C heritage, and we'll be attempting to submit a
// patch upstream to fix it. In the mean time we only model function
// outputs (Rust functions and C functions) using T_void, and model the
// Rust general purpose nil type you can construct as 1-bit (always
// zero). This makes the result incorrect for now -- things like a tuple
// of 10 nil values will have 10-bit size -- but it doesn't seem like we
// have any other options until it's fixed upstream.
ret llvm::LLVMVoidType();
}
fn T_nil() -> TypeRef {
// NB: See above in T_void().
ret llvm::LLVMInt1Type();
}
fn T_i1() -> TypeRef {
ret llvm::LLVMInt1Type();
}
fn T_i8() -> TypeRef {
ret llvm::LLVMInt8Type();
}
fn T_i16() -> TypeRef {
ret llvm::LLVMInt16Type();
}
fn T_i32() -> TypeRef {
ret llvm::LLVMInt32Type();
}
fn T_i64() -> TypeRef {
ret llvm::LLVMInt64Type();
}
fn T_f32() -> TypeRef {
ret llvm::LLVMFloatType();
}
fn T_f64() -> TypeRef {
ret llvm::LLVMDoubleType();
}
fn T_bool() -> TypeRef {
ret T_i1();
}
fn T_int() -> TypeRef {
// FIXME: switch on target type.
ret T_i32();
}
fn T_float() -> TypeRef {
// FIXME: switch on target type.
ret T_f64();
}
fn T_char() -> TypeRef {
ret T_i32();
}
fn T_size_t() -> TypeRef {
// FIXME: switch on target type.
ret T_i32();
}
fn T_fn(vec[TypeRef] inputs, TypeRef output) -> TypeRef {
ret llvm::LLVMFunctionType(output,
vec::buf[TypeRef](inputs),
vec::len[TypeRef](inputs),
False);
}
fn T_fn_pair(&type_names tn, TypeRef tfn) -> TypeRef {
ret T_struct([T_ptr(tfn),
T_opaque_closure_ptr(tn)]);
}
fn T_ptr(TypeRef t) -> TypeRef {
ret llvm::LLVMPointerType(t, 0u);
}
fn T_struct(&vec[TypeRef] elts) -> TypeRef {
ret llvm::LLVMStructType(vec::buf[TypeRef](elts),
vec::len[TypeRef](elts),
False);
}
fn T_opaque() -> TypeRef {
ret llvm::LLVMOpaqueType();
}
fn T_task(&type_names tn) -> TypeRef {
auto s = "task";
if (tn.name_has_type(s)) {
ret tn.get_type(s);
}
auto t = T_struct([T_int(), // Refcount
T_int(), // Delegate pointer
T_int(), // Stack segment pointer
T_int(), // Runtime SP
T_int(), // Rust SP
T_int(), // GC chain
T_int(), // Domain pointer
T_int() // Crate cache pointer
]);
tn.associate(s, t);
ret t;
}
fn T_tydesc_field(&type_names tn, int field) -> TypeRef {
// Bit of a kludge: pick the fn typeref out of the tydesc..
let vec[TypeRef] tydesc_elts =
vec::init_elt[TypeRef](T_nil(), abi::n_tydesc_fields as uint);
llvm::LLVMGetStructElementTypes(T_tydesc(tn),
vec::buf[TypeRef](tydesc_elts));
auto t = llvm::LLVMGetElementType(tydesc_elts.(field));
ret t;
}
fn T_glue_fn(&type_names tn) -> TypeRef {
auto s = "glue_fn";
if (tn.name_has_type(s)) {
ret tn.get_type(s);
}
auto t = T_tydesc_field(tn, abi::tydesc_field_drop_glue);
tn.associate(s, t);
ret t;
}
fn T_dtor(&@crate_ctxt ccx, &ast::span sp, TypeRef llself_ty) -> TypeRef {
ret type_of_fn_full(ccx, sp, ast::proto_fn, some[TypeRef](llself_ty),
vec::empty[ty::arg](), ty::mk_nil(ccx.tcx), 0u);
}
fn T_cmp_glue_fn(&type_names tn) -> TypeRef {
auto s = "cmp_glue_fn";
if (tn.name_has_type(s)) {
ret tn.get_type(s);
}
auto t = T_tydesc_field(tn, abi::tydesc_field_cmp_glue);
tn.associate(s, t);
ret t;
}
fn T_tydesc(&type_names tn) -> TypeRef {
auto s = "tydesc";
if (tn.name_has_type(s)) {
ret tn.get_type(s);
}
auto th = mk_type_handle();
auto abs_tydesc = llvm::LLVMResolveTypeHandle(th.llth);
auto tydescpp = T_ptr(T_ptr(abs_tydesc));
auto pvoid = T_ptr(T_i8());
auto glue_fn_ty = T_ptr(T_fn([T_ptr(T_nil()),
T_taskptr(tn),
T_ptr(T_nil()),
tydescpp,
pvoid], T_void()));
auto cmp_glue_fn_ty = T_ptr(T_fn([T_ptr(T_i1()),
T_taskptr(tn),
T_ptr(T_nil()),
tydescpp,
pvoid,
pvoid,
T_i8()], T_void()));
auto tydesc = T_struct([tydescpp, // first_param
T_int(), // size
T_int(), // align
glue_fn_ty, // take_glue
glue_fn_ty, // drop_glue
glue_fn_ty, // free_glue
glue_fn_ty, // sever_glue
glue_fn_ty, // mark_glue
glue_fn_ty, // obj_drop_glue
glue_fn_ty, // is_stateful
cmp_glue_fn_ty]); // cmp_glue
llvm::LLVMRefineType(abs_tydesc, tydesc);
auto t = llvm::LLVMResolveTypeHandle(th.llth);
tn.associate(s, t);
ret t;
}
fn T_array(TypeRef t, uint n) -> TypeRef {
ret llvm::LLVMArrayType(t, n);
}
fn T_vec(TypeRef t) -> TypeRef {
ret T_struct([T_int(), // Refcount
T_int(), // Alloc
T_int(), // Fill
T_int(), // Pad
T_array(t, 0u) // Body elements
]);
}
fn T_opaque_vec_ptr() -> TypeRef {
ret T_ptr(T_vec(T_int()));
}
fn T_str() -> TypeRef {
ret T_vec(T_i8());
}
fn T_box(TypeRef t) -> TypeRef {
ret T_struct([T_int(), t]);
}
fn T_port(TypeRef t) -> TypeRef {
ret T_struct([T_int()]); // Refcount
}
fn T_chan(TypeRef t) -> TypeRef {
ret T_struct([T_int()]); // Refcount
}
fn T_taskptr(&type_names tn) -> TypeRef {
ret T_ptr(T_task(tn));
}
// This type must never be used directly; it must always be cast away.
fn T_typaram(&type_names tn) -> TypeRef {
auto s = "typaram";
if (tn.name_has_type(s)) {
ret tn.get_type(s);
}
auto t = T_i8();
tn.associate(s, t);
ret t;
}
fn T_typaram_ptr(&type_names tn) -> TypeRef {
ret T_ptr(T_typaram(tn));
}
fn T_closure_ptr(&type_names tn,
TypeRef lltarget_ty,
TypeRef llbindings_ty,
uint n_ty_params) -> TypeRef {
// NB: keep this in sync with code in trans_bind; we're making
// an LLVM typeref structure that has the same "shape" as the ty::t
// it constructs.
ret T_ptr(T_box(T_struct([T_ptr(T_tydesc(tn)),
lltarget_ty,
llbindings_ty,
T_captured_tydescs(tn, n_ty_params)]
)));
}
fn T_opaque_closure_ptr(&type_names tn) -> TypeRef {
auto s = "*closure";
if (tn.name_has_type(s)) {
ret tn.get_type(s);
}
auto t = T_closure_ptr(tn, T_struct([T_ptr(T_nil()),
T_ptr(T_nil())]),
T_nil(),
0u);
tn.associate(s, t);
ret t;
}
fn T_tag(&type_names tn, uint size) -> TypeRef {
auto s = "tag_" + uint::to_str(size, 10u);
if (tn.name_has_type(s)) {
ret tn.get_type(s);
}
auto t = T_struct([T_int(), T_array(T_i8(), size)]);
tn.associate(s, t);
ret t;
}
fn T_opaque_tag(&type_names tn) -> TypeRef {
auto s = "opaque_tag";
if (tn.name_has_type(s)) {
ret tn.get_type(s);
}
auto t = T_struct([T_int(), T_i8()]);
tn.associate(s, t);
ret t;
}
fn T_opaque_tag_ptr(&type_names tn) -> TypeRef {
ret T_ptr(T_opaque_tag(tn));
}
fn T_captured_tydescs(&type_names tn, uint n) -> TypeRef {
ret T_struct(vec::init_elt[TypeRef](T_ptr(T_tydesc(tn)), n));
}
fn T_obj_ptr(&type_names tn, uint n_captured_tydescs) -> TypeRef {
// This function is not publicly exposed because it returns an incomplete
// type. The dynamically-sized fields follow the captured tydescs.
fn T_obj(type_names tn, uint n_captured_tydescs) -> TypeRef {
ret T_struct([T_ptr(T_tydesc(tn)),
T_captured_tydescs(tn, n_captured_tydescs)]);
}
ret T_ptr(T_box(T_obj(tn, n_captured_tydescs)));
}
fn T_opaque_obj_ptr(&type_names tn) -> TypeRef {
ret T_obj_ptr(tn, 0u);
}
fn T_opaque_port_ptr() -> TypeRef { ret T_ptr(T_i8()); }
fn T_opaque_chan_ptr() -> TypeRef { ret T_ptr(T_i8()); }
// This function now fails if called on a type with dynamic size (as its
// return value was always meaningless in that case anyhow). Beware!
//
// TODO: Enforce via a predicate.
fn type_of(&@crate_ctxt cx, &ast::span sp, &ty::t t) -> TypeRef {
if (ty::type_has_dynamic_size(cx.tcx, t)) {
cx.sess.span_err (sp,
"type_of() called on a type with dynamic size: " +
ty::ty_to_str(cx.tcx, t));
fail;
}
ret type_of_inner(cx, sp, t);
}
fn type_of_explicit_args(&@crate_ctxt cx, &ast::span sp,
&vec[ty::arg] inputs) -> vec[TypeRef] {
let vec[TypeRef] atys = [];
for (ty::arg arg in inputs) {
if (ty::type_has_dynamic_size(cx.tcx, arg.ty)) {
assert (arg.mode == ty::mo_alias);
atys += [T_typaram_ptr(cx.tn)];
} else {
let TypeRef t;
alt (arg.mode) {
case (ty::mo_alias) {
t = T_ptr(type_of_inner(cx, sp, arg.ty));
}
case (_) {
t = type_of_inner(cx, sp, arg.ty);
}
}
atys += [t];
}
}
ret atys;
}
// NB: must keep 4 fns in sync:
//
// - type_of_fn_full
// - create_llargs_for_fn_args.
// - new_fn_ctxt
// - trans_args
fn type_of_fn_full(&@crate_ctxt cx,
&ast::span sp,
ast::proto proto,
&option::t[TypeRef] obj_self,
&vec[ty::arg] inputs,
&ty::t output,
uint ty_param_count) -> TypeRef {
let vec[TypeRef] atys = [];
// Arg 0: Output pointer.
if (ty::type_has_dynamic_size(cx.tcx, output)) {
atys += [T_typaram_ptr(cx.tn)];
} else {
atys += [T_ptr(type_of_inner(cx, sp, output))];
}
// Arg 1: task pointer.
atys += [T_taskptr(cx.tn)];
// Arg 2: Env (closure-bindings / self-obj)
alt (obj_self) {
case (some[TypeRef](?t)) {
assert (t as int != 0);
atys += [t];
}
case (_) {
atys += [T_opaque_closure_ptr(cx.tn)];
}
}
// Args >3: ty params, if not acquired via capture...
if (obj_self == none[TypeRef]) {
auto i = 0u;
while (i < ty_param_count) {
atys += [T_ptr(T_tydesc(cx.tn))];
i += 1u;
}
}
if (proto == ast::proto_iter) {
// If it's an iter, the 'output' type of the iter is actually the
// *input* type of the function we're given as our iter-block
// argument.
atys +=
[T_fn_pair(cx.tn,
type_of_fn_full(cx, sp, ast::proto_fn, none[TypeRef],
[rec(mode=ty::mo_alias,
ty=output)],
ty::mk_nil(cx.tcx), 0u))];
}
// ... then explicit args.
atys += type_of_explicit_args(cx, sp, inputs);
ret T_fn(atys, llvm::LLVMVoidType());
}
fn type_of_fn(&@crate_ctxt cx,
&ast::span sp,
ast::proto proto,
&vec[ty::arg] inputs,
&ty::t output,
uint ty_param_count) -> TypeRef {
ret type_of_fn_full(cx, sp, proto, none[TypeRef], inputs, output,
ty_param_count);
}
fn type_of_native_fn(&@crate_ctxt cx, &ast::span sp, ast::native_abi abi,
&vec[ty::arg] inputs,
&ty::t output,
uint ty_param_count) -> TypeRef {
let vec[TypeRef] atys = [];
if (abi == ast::native_abi_rust) {
atys += [T_taskptr(cx.tn)];
auto t = ty::ty_native_fn(abi, inputs, output);
auto i = 0u;
while (i < ty_param_count) {
atys += [T_ptr(T_tydesc(cx.tn))];
i += 1u;
}
}
atys += type_of_explicit_args(cx, sp, inputs);
ret T_fn(atys, type_of_inner(cx, sp, output));
}
fn type_of_inner(&@crate_ctxt cx, &ast::span sp, &ty::t t) -> TypeRef {
// Check the cache.
if (cx.lltypes.contains_key(t)) {
ret cx.lltypes.get(t);
}
let TypeRef llty = 0 as TypeRef;
alt (ty::struct(cx.tcx, t)) {
case (ty::ty_native) { llty = T_ptr(T_i8()); }
case (ty::ty_nil) { llty = T_nil(); }
case (ty::ty_bot) { llty = T_nil(); } /* ...I guess? */
case (ty::ty_bool) { llty = T_bool(); }
case (ty::ty_int) { llty = T_int(); }
case (ty::ty_float) { llty = T_float(); }
case (ty::ty_uint) { llty = T_int(); }
case (ty::ty_machine(?tm)) {
alt (tm) {
case (common::ty_i8) { llty = T_i8(); }
case (common::ty_u8) { llty = T_i8(); }
case (common::ty_i16) { llty = T_i16(); }
case (common::ty_u16) { llty = T_i16(); }
case (common::ty_i32) { llty = T_i32(); }
case (common::ty_u32) { llty = T_i32(); }
case (common::ty_i64) { llty = T_i64(); }
case (common::ty_u64) { llty = T_i64(); }
case (common::ty_f32) { llty = T_f32(); }
case (common::ty_f64) { llty = T_f64(); }
}
}
case (ty::ty_char) { llty = T_char(); }
case (ty::ty_str) { llty = T_ptr(T_str()); }
case (ty::ty_tag(_, _)) {
if (ty::type_has_dynamic_size(cx.tcx, t)) {
llty = T_opaque_tag(cx.tn);
} else {
auto size = static_size_of_tag(cx, sp, t);
llty = T_tag(cx.tn, size);
}
}
case (ty::ty_box(?mt)) {
llty = T_ptr(T_box(type_of_inner(cx, sp, mt.ty)));
}
case (ty::ty_vec(?mt)) {
llty = T_ptr(T_vec(type_of_inner(cx, sp, mt.ty)));
}
case (ty::ty_port(?t)) {
llty = T_ptr(T_port(type_of_inner(cx, sp, t)));
}
case (ty::ty_chan(?t)) {
llty = T_ptr(T_chan(type_of_inner(cx, sp, t)));
}
case (ty::ty_tup(?elts)) {
let vec[TypeRef] tys = [];
for (ty::mt elt in elts) {
tys += [type_of_inner(cx, sp, elt.ty)];
}
llty = T_struct(tys);
}
case (ty::ty_rec(?fields)) {
let vec[TypeRef] tys = [];
for (ty::field f in fields) {
tys += [type_of_inner(cx, sp, f.mt.ty)];
}
llty = T_struct(tys);
}
case (ty::ty_fn(?proto, ?args, ?out, _)) {
llty = T_fn_pair(cx.tn, type_of_fn(cx, sp, proto, args, out, 0u));
}
case (ty::ty_native_fn(?abi, ?args, ?out)) {
auto nft = native_fn_wrapper_type(cx, sp, 0u, t);
llty = T_fn_pair(cx.tn, nft);
}
case (ty::ty_obj(?meths)) {
auto th = mk_type_handle();
auto self_ty = llvm::LLVMResolveTypeHandle(th.llth);
let vec[TypeRef] mtys = [T_ptr(T_i8())];
for (ty::method m in meths) {
let TypeRef mty =
type_of_fn_full(cx, sp, m.proto,
some[TypeRef](self_ty),
m.inputs, m.output, 0u);
mtys += [T_ptr(mty)];
}
let TypeRef vtbl = T_struct(mtys);
let TypeRef pair = T_struct([T_ptr(vtbl),
T_opaque_obj_ptr(cx.tn)]);
auto abs_pair = llvm::LLVMResolveTypeHandle(th.llth);
llvm::LLVMRefineType(abs_pair, pair);
abs_pair = llvm::LLVMResolveTypeHandle(th.llth);
llty = abs_pair;
}
case (ty::ty_var(_)) {
cx.tcx.sess.span_err(sp, "ty_var in trans::type_of");
}
case (ty::ty_param(_)) {
llty = T_i8();
}
case (ty::ty_bound_param(_)) {
log_err "ty_bound_param in trans::type_of";
fail;
}
case (ty::ty_type) { llty = T_ptr(T_tydesc(cx.tn)); }
}
assert (llty as int != 0);
if (cx.sess.get_opts().save_temps) {
llvm::LLVMAddTypeName(cx.llmod,
str::buf(ty::ty_to_short_str(cx.tcx, t)),
llty);
}
cx.lltypes.insert(t, llty);
ret llty;
}
fn type_of_arg(@local_ctxt cx, &ast::span sp, &ty::arg arg) -> TypeRef {
alt (ty::struct(cx.ccx.tcx, arg.ty)) {
case (ty::ty_param(_)) {
if (arg.mode == ty::mo_alias) {
ret T_typaram_ptr(cx.ccx.tn);
}
}
case (_) {
// fall through
}
}
auto typ;
if (arg.mode == ty::mo_alias) {
typ = T_ptr(type_of_inner(cx.ccx, sp, arg.ty));
} else {
typ = type_of_inner(cx.ccx, sp, arg.ty);
}
ret typ;
}
fn type_of_ty_param_count_and_ty(@local_ctxt lcx, &ast::span sp,
&ty::ty_param_count_and_ty tpt) -> TypeRef {
alt (ty::struct(lcx.ccx.tcx, tpt._1)) {
case (ty::ty_fn(?proto, ?inputs, ?output, _)) {
auto llfnty = type_of_fn(lcx.ccx, sp, proto,
inputs, output, tpt._0);
ret T_fn_pair(lcx.ccx.tn, llfnty);
}
case (_) {
// fall through
}
}
ret type_of(lcx.ccx, sp, tpt._1);
}
// Name sanitation. LLVM will happily accept identifiers with weird names, but
// gas doesn't!
fn sanitize(&str s) -> str {
auto result = "";
for (u8 c in s) {
if (c == ('@' as u8)) {
result += "boxed_";
} else {
if (c == (',' as u8)) {
result += "_";
} else {
if (c == ('{' as u8) || c == ('(' as u8)) {
result += "_of_";
} else {
if (c != 10u8 && c != ('}' as u8) && c != (')' as u8) &&
c != (' ' as u8) && c != ('\t' as u8) &&
c != (';' as u8)) {
auto v = [c];
result += str::from_bytes(v);
}
}
}
}
}
ret result;
}
// LLVM constant constructors.
fn C_null(TypeRef t) -> ValueRef {
ret llvm::LLVMConstNull(t);
}
fn C_integral(TypeRef t, uint u, Bool sign_extend) -> ValueRef {
// FIXME: We can't use LLVM::ULongLong with our existing minimal native
// API, which only knows word-sized args.
//
// ret llvm::LLVMConstInt(T_int(), t as LLVM::ULongLong, False);
//
ret llvm::LLVMRustConstSmallInt(t, u, sign_extend);
}
fn C_float(&str s) -> ValueRef {
ret llvm::LLVMConstRealOfString(T_float(), str::buf(s));
}
fn C_floating(&str s, TypeRef t) -> ValueRef {
ret llvm::LLVMConstRealOfString(t, str::buf(s));
}
fn C_nil() -> ValueRef {
// NB: See comment above in T_void().
ret C_integral(T_i1(), 0u, False);
}
fn C_bool(bool b) -> ValueRef {
if (b) {
ret C_integral(T_bool(), 1u, False);
} else {
ret C_integral(T_bool(), 0u, False);
}
}
fn C_int(int i) -> ValueRef {
ret C_integral(T_int(), i as uint, True);
}
fn C_u8(uint i) -> ValueRef {
ret C_integral(T_i8(), i, False);
}
// This is a 'c-like' raw string, which differs from
// our boxed-and-length-annotated strings.
fn C_cstr(&@crate_ctxt cx, &str s) -> ValueRef {
auto sc = llvm::LLVMConstString(str::buf(s), str::byte_len(s), False);
auto g = llvm::LLVMAddGlobal(cx.llmod, val_ty(sc),
str::buf(cx.names.next("str")));
llvm::LLVMSetInitializer(g, sc);
llvm::LLVMSetGlobalConstant(g, True);
llvm::LLVMSetLinkage(g, lib::llvm::LLVMInternalLinkage
as llvm::Linkage);
ret g;
}
// A rust boxed-and-length-annotated string.
fn C_str(&@crate_ctxt cx, &str s) -> ValueRef {
auto len = str::byte_len(s);
auto box = C_struct([C_int(abi::const_refcount as int),
C_int(len + 1u as int), // 'alloc'
C_int(len + 1u as int), // 'fill'
C_int(0), // 'pad'
llvm::LLVMConstString(str::buf(s),
len, False)]);
auto g = llvm::LLVMAddGlobal(cx.llmod, val_ty(box),
str::buf(cx.names.next("str")));
llvm::LLVMSetInitializer(g, box);
llvm::LLVMSetGlobalConstant(g, True);
llvm::LLVMSetLinkage(g, lib::llvm::LLVMInternalLinkage
as llvm::Linkage);
ret llvm::LLVMConstPointerCast(g, T_ptr(T_str()));
}
fn C_zero_byte_arr(uint size) -> ValueRef {
auto i = 0u;
let vec[ValueRef] elts = [];
while (i < size) {
elts += [C_u8(0u)];
i += 1u;
}
ret llvm::LLVMConstArray(T_i8(), vec::buf[ValueRef](elts),
vec::len[ValueRef](elts));
}
fn C_struct(&vec[ValueRef] elts) -> ValueRef {
ret llvm::LLVMConstStruct(vec::buf[ValueRef](elts),
vec::len[ValueRef](elts),
False);
}
fn C_array(TypeRef ty, &vec[ValueRef] elts) -> ValueRef {
ret llvm::LLVMConstArray(ty, vec::buf[ValueRef](elts),
vec::len[ValueRef](elts));
}
fn decl_fn(ModuleRef llmod, &str name, uint cc, TypeRef llty) -> ValueRef {
let ValueRef llfn =
llvm::LLVMAddFunction(llmod, str::buf(name), llty);
llvm::LLVMSetFunctionCallConv(llfn, cc);
ret llfn;
}
fn decl_cdecl_fn(ModuleRef llmod, &str name, TypeRef llty) -> ValueRef {
ret decl_fn(llmod, name, lib::llvm::LLVMCCallConv, llty);
}
fn decl_fastcall_fn(ModuleRef llmod, &str name, TypeRef llty) -> ValueRef {
ret decl_fn(llmod, name, lib::llvm::LLVMFastCallConv, llty);
}
// Only use this if you are going to actually define the function. It's
// not valid to simply declare a function as internal.
fn decl_internal_fastcall_fn(ModuleRef llmod,
&str name, TypeRef llty) -> ValueRef {
auto llfn = decl_fn(llmod, name, lib::llvm::LLVMFastCallConv, llty);
llvm::LLVMSetLinkage(llfn, lib::llvm::LLVMInternalLinkage
as llvm::Linkage);
ret llfn;
}
fn decl_glue(ModuleRef llmod, type_names tn, &str s) -> ValueRef {
ret decl_cdecl_fn(llmod, s, T_fn([T_taskptr(tn)], T_void()));
}
fn get_extern_fn(&hashmap[str, ValueRef] externs,
ModuleRef llmod, &str name,
uint cc, TypeRef ty) -> ValueRef {
if (externs.contains_key(name)) {
ret externs.get(name);
}
auto f = decl_fn(llmod, name, cc, ty);
externs.insert(name, f);
ret f;
}
fn get_extern_const(&hashmap[str, ValueRef] externs,
ModuleRef llmod, &str name, TypeRef ty) -> ValueRef {
if (externs.contains_key(name)) {
ret externs.get(name);
}
auto c = llvm::LLVMAddGlobal(llmod, ty, str::buf(name));
externs.insert(name, c);
ret c;
}
fn get_simple_extern_fn(&hashmap[str, ValueRef] externs,
ModuleRef llmod, &str name,
int n_args) -> ValueRef {
auto inputs = vec::init_elt[TypeRef](T_int(), n_args as uint);
auto output = T_int();
auto t = T_fn(inputs, output);
ret get_extern_fn(externs, llmod, name, lib::llvm::LLVMCCallConv, t);
}
fn trans_native_call(&builder b, @glue_fns glues, ValueRef lltaskptr,
&hashmap[str, ValueRef] externs,
&type_names tn, ModuleRef llmod, &str name,
bool pass_task, &vec[ValueRef] args) -> ValueRef {
let int n = (vec::len[ValueRef](args) as int);
let ValueRef llnative = get_simple_extern_fn(externs, llmod, name, n);
let vec[ValueRef] call_args = [];
for (ValueRef a in args) {
call_args += [b.ZExtOrBitCast(a, T_int())];
}
ret b.Call(llnative, call_args);
}
fn trans_non_gc_free(&@block_ctxt cx, ValueRef v) -> result {
cx.build.Call(cx.fcx.lcx.ccx.upcalls.free,
[cx.fcx.lltaskptr,
cx.build.PointerCast(v, T_ptr(T_i8())), C_int(0)]);
ret res(cx, C_int(0));
}
fn find_scope_cx(&@block_ctxt cx) -> @block_ctxt {
if (cx.kind != NON_SCOPE_BLOCK) {
ret cx;
}
alt (cx.parent) {
case (parent_some(?b)) {
be find_scope_cx(b);
}
case (parent_none) {
fail;
}
}
}
fn find_outer_scope_cx(&@block_ctxt cx) -> @block_ctxt {
auto scope_cx = find_scope_cx(cx);
alt (cx.parent) {
case (parent_some(?b)) {
be find_scope_cx(b);
}
case (parent_none) {
fail;
}
}
}
fn umax(&@block_ctxt cx, ValueRef a, ValueRef b) -> ValueRef {
auto cond = cx.build.ICmp(lib::llvm::LLVMIntULT, a, b);
ret cx.build.Select(cond, b, a);
}
fn umin(&@block_ctxt cx, ValueRef a, ValueRef b) -> ValueRef {
auto cond = cx.build.ICmp(lib::llvm::LLVMIntULT, a, b);
ret cx.build.Select(cond, a, b);
}
fn align_to(&@block_ctxt cx, ValueRef off, ValueRef align) -> ValueRef {
auto mask = cx.build.Sub(align, C_int(1));
auto bumped = cx.build.Add(off, mask);
ret cx.build.And(bumped, cx.build.Not(mask));
}
// Returns the real size of the given type for the current target.
fn llsize_of_real(&@crate_ctxt cx, TypeRef t) -> uint {
ret llvm::LLVMStoreSizeOfType(cx.td.lltd, t);
}
fn llsize_of(TypeRef t) -> ValueRef {
ret llvm::LLVMConstIntCast(lib::llvm::llvm::LLVMSizeOf(t),
T_int(), False);
}
fn llalign_of(TypeRef t) -> ValueRef {
ret llvm::LLVMConstIntCast(lib::llvm::llvm::LLVMAlignOf(t),
T_int(), False);
}
fn size_of(&@block_ctxt cx, &ty::t t) -> result {
if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) {
ret res(cx, llsize_of(type_of(cx.fcx.lcx.ccx, cx.sp, t)));
}
ret dynamic_size_of(cx, t);
}
fn align_of(&@block_ctxt cx, &ty::t t) -> result {
if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) {
ret res(cx, llalign_of(type_of(cx.fcx.lcx.ccx, cx.sp, t)));
}
ret dynamic_align_of(cx, t);
}
fn alloca(&@block_ctxt cx, TypeRef t) -> ValueRef {
ret new_builder(cx.fcx.llallocas).Alloca(t);
}
fn array_alloca(&@block_ctxt cx, TypeRef t, ValueRef n) -> ValueRef {
ret new_builder(cx.fcx.llallocas).ArrayAlloca(t, n);
}
// Creates a simpler, size-equivalent type. The resulting type is guaranteed
// to have (a) the same size as the type that was passed in; (b) to be non-
// recursive. This is done by replacing all boxes in a type with boxed unit
// types.
fn simplify_type(&@crate_ctxt ccx, &ty::t typ) -> ty::t {
fn simplifier(@crate_ctxt ccx, ty::t typ) -> ty::t {
alt (ty::struct(ccx.tcx, typ)) {
case (ty::ty_box(_)) {
ret ty::mk_imm_box(ccx.tcx, ty::mk_nil(ccx.tcx));
}
case (ty::ty_vec(_)) {
ret ty::mk_imm_vec(ccx.tcx, ty::mk_nil(ccx.tcx));
}
case (_) { ret typ; }
}
}
auto f = bind simplifier(ccx, _);
ret ty::fold_ty(ccx.tcx, f, typ);
}
// Computes the size of the data part of a non-dynamically-sized tag.
fn static_size_of_tag(&@crate_ctxt cx, &ast::span sp, &ty::t t) -> uint {
if (ty::type_has_dynamic_size(cx.tcx, t)) {
log_err "dynamically sized type passed to static_size_of_tag()";
fail;
}
if (cx.tag_sizes.contains_key(t)) {
ret cx.tag_sizes.get(t);
}
auto tid;
let vec[ty::t] subtys;
alt (ty::struct(cx.tcx, t)) {
case (ty::ty_tag(?tid_, ?subtys_)) {
tid = tid_;
subtys = subtys_;
}
case (_) {
log_err "non-tag passed to static_size_of_tag()";
fail;
}
}
// Compute max(variant sizes).
auto max_size = 0u;
auto variants = ty::tag_variants(cx.tcx, tid);
for (ty::variant_info variant in variants) {
auto tup_ty = simplify_type(cx, ty::mk_imm_tup(cx.tcx, variant.args));
// Perform any type parameter substitutions.
tup_ty = ty::bind_params_in_type(cx.tcx, tup_ty);
tup_ty = ty::substitute_type_params(cx.tcx, subtys, tup_ty);
// Here we possibly do a recursive call.
auto this_size = llsize_of_real(cx, type_of(cx, sp, tup_ty));
if (max_size < this_size) {
max_size = this_size;
}
}
cx.tag_sizes.insert(t, max_size);
ret max_size;
}
fn dynamic_size_of(&@block_ctxt cx, ty::t t) -> result {
fn align_elements(&@block_ctxt cx, &vec[ty::t] elts) -> result {
//
// C padding rules:
//
//
// - Pad after each element so that next element is aligned.
// - Pad after final structure member so that whole structure
// is aligned to max alignment of interior.
//
auto off = C_int(0);
auto max_align = C_int(1);
auto bcx = cx;
for (ty::t e in elts) {
auto elt_align = align_of(bcx, e);
bcx = elt_align.bcx;
auto elt_size = size_of(bcx, e);
bcx = elt_size.bcx;
auto aligned_off = align_to(bcx, off, elt_align.val);
off = bcx.build.Add(aligned_off, elt_size.val);
max_align = umax(bcx, max_align, elt_align.val);
}
off = align_to(bcx, off, max_align);
ret res(bcx, off);
}
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_param(?p)) {
auto szptr = field_of_tydesc(cx, t, false,
abi::tydesc_field_size);
ret res(szptr.bcx, szptr.bcx.build.Load(szptr.val));
}
case (ty::ty_tup(?elts)) {
let vec[ty::t] tys = [];
for (ty::mt mt in elts) {
tys += [mt.ty];
}
ret align_elements(cx, tys);
}
case (ty::ty_rec(?flds)) {
let vec[ty::t] tys = [];
for (ty::field f in flds) {
tys += [f.mt.ty];
}
ret align_elements(cx, tys);
}
case (ty::ty_tag(?tid, ?tps)) {
auto bcx = cx;
// Compute max(variant sizes).
let ValueRef max_size = alloca(bcx, T_int());
bcx.build.Store(C_int(0), max_size);
auto variants = ty::tag_variants(bcx.fcx.lcx.ccx.tcx, tid);
for (ty::variant_info variant in variants) {
// Perform type substitution on the raw argument types.
let vec[ty::t] raw_tys = variant.args;
let vec[ty::t] tys = [];
for (ty::t raw_ty in raw_tys) {
auto t = ty::bind_params_in_type(cx.fcx.lcx.ccx.tcx,
raw_ty);
t = ty::substitute_type_params(cx.fcx.lcx.ccx.tcx, tps,
t);
tys += [t];
}
auto rslt = align_elements(bcx, tys);
bcx = rslt.bcx;
auto this_size = rslt.val;
auto old_max_size = bcx.build.Load(max_size);
bcx.build.Store(umax(bcx, this_size, old_max_size), max_size);
}
auto max_size_val = bcx.build.Load(max_size);
auto total_size = bcx.build.Add(max_size_val, llsize_of(T_int()));
ret res(bcx, total_size);
}
}
}
fn dynamic_align_of(&@block_ctxt cx, &ty::t t) -> result {
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_param(?p)) {
auto aptr = field_of_tydesc(cx, t, false,
abi::tydesc_field_align);
ret res(aptr.bcx, aptr.bcx.build.Load(aptr.val));
}
case (ty::ty_tup(?elts)) {
auto a = C_int(1);
auto bcx = cx;
for (ty::mt e in elts) {
auto align = align_of(bcx, e.ty);
bcx = align.bcx;
a = umax(bcx, a, align.val);
}
ret res(bcx, a);
}
case (ty::ty_rec(?flds)) {
auto a = C_int(1);
auto bcx = cx;
for (ty::field f in flds) {
auto align = align_of(bcx, f.mt.ty);
bcx = align.bcx;
a = umax(bcx, a, align.val);
}
ret res(bcx, a);
}
case (ty::ty_tag(_, _)) {
ret res(cx, C_int(1)); // FIXME: stub
}
}
}
// Replacement for the LLVM 'GEP' instruction when field-indexing into a
// tuple-like structure (tup, rec) with a static index. This one is driven off
// ty::struct and knows what to do when it runs into a ty_param stuck in the
// middle of the thing it's GEP'ing into. Much like size_of and align_of,
// above.
fn GEP_tup_like(&@block_ctxt cx, &ty::t t,
ValueRef base, &vec[int] ixs) -> result {
assert (ty::type_is_tup_like(cx.fcx.lcx.ccx.tcx, t));
// It might be a static-known type. Handle this.
if (! ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) {
let vec[ValueRef] v = [];
for (int i in ixs) {
v += [C_int(i)];
}
ret res(cx, cx.build.GEP(base, v));
}
// It is a dynamic-containing type that, if we convert directly to an LLVM
// TypeRef, will be all wrong; there's no proper LLVM type to represent
// it, and the lowering function will stick in i8* values for each
// ty_param, which is not right; the ty_params are all of some dynamic
// size.
//
// What we must do instead is sadder. We must look through the indices
// manually and split the input type into a prefix and a target. We then
// measure the prefix size, bump the input pointer by that amount, and
// cast to a pointer-to-target type.
// Given a type, an index vector and an element number N in that vector,
// calculate index X and the type that results by taking the first X-1
// elements of the type and splitting the Xth off. Return the prefix as
// well as the innermost Xth type.
fn split_type(&@crate_ctxt ccx, &ty::t t, &vec[int] ixs, uint n)
-> rec(vec[ty::t] prefix, ty::t target) {
let uint len = vec::len[int](ixs);
// We don't support 0-index or 1-index GEPs: The former is nonsense
// and the latter would only be meaningful if we supported non-0
// values for the 0th index (we don't).
assert (len > 1u);
if (n == 0u) {
// Since we're starting from a value that's a pointer to a
// *single* structure, the first index (in GEP-ese) should just be
// 0, to yield the pointee.
assert (ixs.(n) == 0);
ret split_type(ccx, t, ixs, n+1u);
}
assert (n < len);
let int ix = ixs.(n);
let vec[ty::t] prefix = [];
let int i = 0;
while (i < ix) {
vec::push[ty::t](prefix,
ty::get_element_type(ccx.tcx, t, i as uint));
i += 1 ;
}
auto selected = ty::get_element_type(ccx.tcx, t, i as uint);
if (n == len-1u) {
// We are at the innermost index.
ret rec(prefix=prefix, target=selected);
} else {
// Not the innermost index; call self recursively to dig deeper.
// Once we get an inner result, append it current prefix and
// return to caller.
auto inner = split_type(ccx, selected, ixs, n+1u);
prefix += inner.prefix;
ret rec(prefix=prefix with inner);
}
}
// We make a fake prefix tuple-type here; luckily for measuring sizes
// the tuple parens are associative so it doesn't matter that we've
// flattened the incoming structure.
auto s = split_type(cx.fcx.lcx.ccx, t, ixs, 0u);
auto prefix_ty = ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx, s.prefix);
auto bcx = cx;
auto sz = size_of(bcx, prefix_ty);
bcx = sz.bcx;
auto raw = bcx.build.PointerCast(base, T_ptr(T_i8()));
auto bumped = bcx.build.GEP(raw, [sz.val]);
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, s.target)) {
ret res(bcx, bumped);
}
auto typ = T_ptr(type_of(bcx.fcx.lcx.ccx, bcx.sp, s.target));
ret res(bcx, bcx.build.PointerCast(bumped, typ));
}
// Replacement for the LLVM 'GEP' instruction when field indexing into a tag.
// This function uses GEP_tup_like() above and automatically performs casts as
// appropriate. @llblobptr is the data part of a tag value; its actual type is
// meaningless, as it will be cast away.
fn GEP_tag(@block_ctxt cx,
ValueRef llblobptr,
&ast::def_id tag_id,
&ast::def_id variant_id,
&vec[ty::t] ty_substs,
int ix)
-> result {
auto variant = ty::tag_variant_with_id(cx.fcx.lcx.ccx.tcx,
tag_id, variant_id);
// Synthesize a tuple type so that GEP_tup_like() can work its magic.
// Separately, store the type of the element we're interested in.
auto arg_tys = variant.args;
auto elem_ty = ty::mk_nil(cx.fcx.lcx.ccx.tcx); // typestate infelicity
auto i = 0;
let vec[ty::t] true_arg_tys = [];
for (ty::t aty in arg_tys) {
auto arg_ty = ty::bind_params_in_type(cx.fcx.lcx.ccx.tcx, aty);
arg_ty = ty::substitute_type_params(cx.fcx.lcx.ccx.tcx, ty_substs,
arg_ty);
true_arg_tys += [arg_ty];
if (i == ix) {
elem_ty = arg_ty;
}
i += 1;
}
auto tup_ty = ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx, true_arg_tys);
// Cast the blob pointer to the appropriate type, if we need to (i.e. if
// the blob pointer isn't dynamically sized).
let ValueRef llunionptr;
if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, tup_ty)) {
auto llty = type_of(cx.fcx.lcx.ccx, cx.sp, tup_ty);
llunionptr = cx.build.TruncOrBitCast(llblobptr, T_ptr(llty));
} else {
llunionptr = llblobptr;
}
// Do the GEP_tup_like().
auto rslt = GEP_tup_like(cx, tup_ty, llunionptr, [0, ix]);
// Cast the result to the appropriate type, if necessary.
auto val;
if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, elem_ty)) {
auto llelemty = type_of(rslt.bcx.fcx.lcx.ccx, cx.sp, elem_ty);
val = rslt.bcx.build.PointerCast(rslt.val, T_ptr(llelemty));
} else {
val = rslt.val;
}
ret res(rslt.bcx, val);
}
fn trans_raw_malloc(&@block_ctxt cx, TypeRef llptr_ty, ValueRef llsize)
-> result {
// FIXME: need a table to collect tydesc globals.
auto tydesc = C_null(T_ptr(T_tydesc(cx.fcx.lcx.ccx.tn)));
auto rval = cx.build.Call(cx.fcx.lcx.ccx.upcalls.malloc,
[cx.fcx.lltaskptr, llsize, tydesc]);
ret res(cx, cx.build.PointerCast(rval, llptr_ty));
}
fn trans_malloc_boxed(&@block_ctxt cx, ty::t t) -> result {
// Synthesize a fake box type structurally so we have something
// to measure the size of.
auto boxed_body = ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx,
[ty::mk_int(cx.fcx.lcx.ccx.tcx), t]);
auto box_ptr = ty::mk_imm_box(cx.fcx.lcx.ccx.tcx, t);
auto sz = size_of(cx, boxed_body);
auto llty = type_of(cx.fcx.lcx.ccx, cx.sp, box_ptr);
ret trans_raw_malloc(sz.bcx, llty, sz.val);
}
// Type descriptor and type glue stuff
// Given a type and a field index into its corresponding type descriptor,
// returns an LLVM ValueRef of that field from the tydesc, generating the
// tydesc if necessary.
fn field_of_tydesc(&@block_ctxt cx, &ty::t t, bool escapes, int field)
-> result {
auto ti = none[@tydesc_info];
auto tydesc = get_tydesc(cx, t, escapes, ti);
ret res(tydesc.bcx,
tydesc.bcx.build.GEP(tydesc.val, [C_int(0), C_int(field)]));
}
// Given a type containing ty params, build a vector containing a ValueRef for
// each of the ty params it uses (from the current frame) and a vector of the
// indices of the ty params present in the type. This is used solely for
// constructing derived tydescs.
fn linearize_ty_params(&@block_ctxt cx, &ty::t t) ->
tup(vec[uint], vec[ValueRef]) {
let vec[ValueRef] param_vals = [];
let vec[uint] param_defs = [];
type rr = rec(@block_ctxt cx,
mutable vec[ValueRef] vals,
mutable vec[uint] defs);
fn linearizer(@rr r, ty::t t) {
alt(ty::struct(r.cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_param(?pid)) {
let bool seen = false;
for (uint d in r.defs) {
if (d == pid) {
seen = true;
}
}
if (!seen) {
r.vals += [r.cx.fcx.lltydescs.(pid)];
r.defs += [pid];
}
}
case (_) { }
}
}
auto x = @rec(cx = cx,
mutable vals = param_vals,
mutable defs = param_defs);
auto f = bind linearizer(x, _);
ty::walk_ty(cx.fcx.lcx.ccx.tcx, f, t);
ret tup(x.defs, x.vals);
}
fn trans_stack_local_derived_tydesc(&@block_ctxt cx, ValueRef llsz,
ValueRef llalign,
ValueRef llroottydesc,
ValueRef llparamtydescs)
-> ValueRef {
auto llmyroottydesc = alloca(cx, T_tydesc(cx.fcx.lcx.ccx.tn));
// By convention, desc 0 is the root descriptor.
llroottydesc = cx.build.Load(llroottydesc);
cx.build.Store(llroottydesc, llmyroottydesc);
// Store a pointer to the rest of the descriptors.
auto llfirstparam = cx.build.GEP(llparamtydescs, [C_int(0), C_int(0)]);
cx.build.Store(llfirstparam,
cx.build.GEP(llmyroottydesc, [C_int(0), C_int(0)]));
cx.build.Store(llsz,
cx.build.GEP(llmyroottydesc, [C_int(0), C_int(1)]));
cx.build.Store(llalign,
cx.build.GEP(llmyroottydesc, [C_int(0), C_int(2)]));
ret llmyroottydesc;
}
fn get_derived_tydesc(&@block_ctxt cx, &ty::t t, bool escapes,
&mutable option::t[@tydesc_info] static_ti) -> result {
alt (cx.fcx.derived_tydescs.find(t)) {
case (some[derived_tydesc_info](?info)) {
// If the tydesc escapes in this context, the cached derived
// tydesc also has to be one that was marked as escaping.
if (!(escapes && !info.escapes)) { ret res(cx, info.lltydesc); }
}
case (none[derived_tydesc_info]) { /* fall through */ }
}
cx.fcx.lcx.ccx.stats.n_derived_tydescs += 1u;
auto bcx = new_raw_block_ctxt(cx.fcx, cx.fcx.llderivedtydescs);
let uint n_params = ty::count_ty_params(bcx.fcx.lcx.ccx.tcx, t);
auto tys = linearize_ty_params(bcx, t);
assert (n_params == vec::len[uint](tys._0));
assert (n_params == vec::len[ValueRef](tys._1));
auto root_ti = get_static_tydesc(bcx, t, tys._0);
static_ti = some[@tydesc_info](root_ti);
lazily_emit_all_tydesc_glue(cx, static_ti);
auto root = root_ti.tydesc;
auto sz = size_of(bcx, t);
bcx = sz.bcx;
auto align = align_of(bcx, t);
bcx = align.bcx;
auto v;
if (escapes) {
auto tydescs = alloca(bcx,
T_array(T_ptr(T_tydesc(bcx.fcx.lcx.ccx.tn)),
1u /* for root*/ + n_params));
auto i = 0;
auto tdp = bcx.build.GEP(tydescs, [C_int(0), C_int(i)]);
bcx.build.Store(root, tdp);
i += 1;
for (ValueRef td in tys._1) {
auto tdp = bcx.build.GEP(tydescs, [C_int(0), C_int(i)]);
bcx.build.Store(td, tdp);
i += 1;
}
auto lltydescsptr = bcx.build.PointerCast(tydescs,
T_ptr(T_ptr(T_tydesc(bcx.fcx.lcx.ccx.tn))));
auto td_val = bcx.build.Call(bcx.fcx.lcx.ccx.upcalls.get_type_desc,
[bcx.fcx.lltaskptr,
C_null(T_ptr(T_nil())),
sz.val,
align.val,
C_int((1u + n_params) as int),
lltydescsptr]);
v = td_val;
} else {
auto llparamtydescs = alloca(bcx,
T_array(T_ptr(T_tydesc(bcx.fcx.lcx.ccx.tn)), n_params));
auto i = 0;
for (ValueRef td in tys._1) {
auto tdp = bcx.build.GEP(llparamtydescs,
[C_int(0), C_int(i)]);
bcx.build.Store(td, tdp);
i += 1;
}
v = trans_stack_local_derived_tydesc(bcx, sz.val, align.val, root,
llparamtydescs);
}
bcx.fcx.derived_tydescs.insert(t, rec(lltydesc=v, escapes=escapes));
ret res(cx, v);
}
fn get_tydesc(&@block_ctxt cx, &ty::t t, bool escapes,
&mutable option::t[@tydesc_info] static_ti) -> result {
// Is the supplied type a type param? If so, return the passed-in tydesc.
alt (ty::type_param(cx.fcx.lcx.ccx.tcx, t)) {
case (some[uint](?id)) { ret res(cx, cx.fcx.lltydescs.(id)); }
case (none[uint]) { /* fall through */ }
}
// Does it contain a type param? If so, generate a derived tydesc.
if (ty::type_contains_params(cx.fcx.lcx.ccx.tcx, t)) {
ret get_derived_tydesc(cx, t, escapes, static_ti);
}
// Otherwise, generate a tydesc if necessary, and return it.
let vec[uint] tps = [];
auto info = get_static_tydesc(cx, t, tps);
static_ti = some[@tydesc_info](info);
ret res(cx, info.tydesc);
}
fn get_static_tydesc(&@block_ctxt cx,
&ty::t t, &vec[uint] ty_params) -> @tydesc_info {
alt (cx.fcx.lcx.ccx.tydescs.find(t)) {
case (some[@tydesc_info](?info)) {
ret info;
}
case (none[@tydesc_info]) {
cx.fcx.lcx.ccx.stats.n_static_tydescs += 1u;
auto info = declare_tydesc(cx.fcx.lcx, cx.sp, t, ty_params);
cx.fcx.lcx.ccx.tydescs.insert(t, info);
ret info;
}
}
}
fn set_no_inline(ValueRef f) {
llvm::LLVMAddFunctionAttr(f, lib::llvm::LLVMNoInlineAttribute as
lib::llvm::llvm::Attribute);
}
fn set_always_inline(ValueRef f) {
llvm::LLVMAddFunctionAttr(f, lib::llvm::LLVMAlwaysInlineAttribute as
lib::llvm::llvm::Attribute);
}
fn set_glue_inlining(&@local_ctxt cx, ValueRef f, &ty::t t) {
if (ty::type_is_structural(cx.ccx.tcx, t)) {
set_no_inline(f);
} else {
set_always_inline(f);
}
}
// Generates the declaration for (but doesn't emit) a type descriptor.
fn declare_tydesc(&@local_ctxt cx, &ast::span sp, &ty::t t,
vec[uint] ty_params) -> @tydesc_info {
log "+++ declare_tydesc " + ty::ty_to_str(cx.ccx.tcx, t);
auto ccx = cx.ccx;
auto llsize;
auto llalign;
if (!ty::type_has_dynamic_size(ccx.tcx, t)) {
auto llty = type_of(ccx, sp, t);
llsize = llsize_of(llty);
llalign = llalign_of(llty);
} else {
// These will be overwritten as the derived tydesc is generated, so
// we create placeholder values.
llsize = C_int(0);
llalign = C_int(0);
}
auto name;
if (cx.ccx.sess.get_opts().debuginfo) {
name = mangle_name_by_type_only(cx.ccx, t, "tydesc");
name = sanitize(name);
} else {
name = mangle_name_by_seq(cx.ccx, cx.path, "tydesc");
}
auto gvar = llvm::LLVMAddGlobal(ccx.llmod, T_tydesc(ccx.tn),
str::buf(name));
auto info = @rec(ty = t,
tydesc = gvar,
size = llsize,
align = llalign,
mutable take_glue = none[ValueRef],
mutable drop_glue = none[ValueRef],
mutable free_glue = none[ValueRef],
mutable cmp_glue = none[ValueRef],
ty_params = ty_params);
log "--- declare_tydesc " + ty::ty_to_str(cx.ccx.tcx, t);
ret info;
}
tag make_generic_glue_helper_fn {
mgghf_single(fn(&@block_ctxt cx, ValueRef v, &ty::t t));
mgghf_cmp;
}
fn declare_generic_glue(&@local_ctxt cx,
&ty::t t,
TypeRef llfnty,
&str name) -> ValueRef {
auto fn_nm;
if (cx.ccx.sess.get_opts().debuginfo) {
fn_nm = mangle_name_by_type_only(cx.ccx, t, "glue_" + name);
fn_nm = sanitize(fn_nm);
} else {
fn_nm = mangle_name_by_seq(cx.ccx, cx.path, "glue_" + name);
}
auto llfn = decl_fastcall_fn(cx.ccx.llmod, fn_nm, llfnty);
set_glue_inlining(cx, llfn, t);
ret llfn;
}
fn make_generic_glue(&@local_ctxt cx, &ast::span sp,
&ty::t t,
ValueRef llfn,
&make_generic_glue_helper_fn helper,
&vec[uint] ty_params) -> ValueRef {
auto fcx = new_fn_ctxt(cx, sp, llfn);
llvm::LLVMSetLinkage(llfn, lib::llvm::LLVMInternalLinkage
as llvm::Linkage);
cx.ccx.stats.n_glues_created += 1u;
// Any nontrivial glue is with values passed *by alias*; this is a
// requirement since in many contexts glue is invoked indirectly and
// the caller has no idea if it's dealing with something that can be
// passed by value.
auto llty;
if (ty::type_has_dynamic_size(cx.ccx.tcx, t)) {
llty = T_ptr(T_i8());
} else {
llty = T_ptr(type_of(cx.ccx, sp, t));
}
auto ty_param_count = vec::len[uint](ty_params);
auto lltyparams = llvm::LLVMGetParam(llfn, 3u);
auto copy_args_bcx = new_raw_block_ctxt(fcx, fcx.llcopyargs);
auto lltydescs = vec::empty_mut[ValueRef]();
auto p = 0u;
while (p < ty_param_count) {
auto llparam = copy_args_bcx.build.GEP(lltyparams,
[C_int(p as int)]);
llparam = copy_args_bcx.build.Load(llparam);
vec::grow_set[ValueRef](lltydescs, ty_params.(p), 0 as ValueRef,
llparam);
p += 1u;
}
fcx.lltydescs = vec::freeze[ValueRef](lltydescs);
auto bcx = new_top_block_ctxt(fcx);
auto lltop = bcx.llbb;
auto llrawptr0 = llvm::LLVMGetParam(llfn, 4u);
auto llval0 = bcx.build.BitCast(llrawptr0, llty);
alt (helper) {
case (mgghf_single(?single_fn)) {
single_fn(bcx, llval0, t);
}
case (mgghf_cmp) {
auto llrawptr1 = llvm::LLVMGetParam(llfn, 5u);
auto llval1 = bcx.build.BitCast(llrawptr1, llty);
auto llcmpval = llvm::LLVMGetParam(llfn, 6u);
make_cmp_glue(bcx, llval0, llval1, t, llcmpval);
}
}
finish_fn(fcx, lltop);
ret llfn;
}
fn emit_tydescs(&@crate_ctxt ccx) {
for each (@tup(ty::t, @tydesc_info) pair in ccx.tydescs.items()) {
auto glue_fn_ty = T_ptr(T_glue_fn(ccx.tn));
auto cmp_fn_ty = T_ptr(T_cmp_glue_fn(ccx.tn));
auto ti = pair._1;
auto take_glue = alt (ti.take_glue) {
case (none[ValueRef]) {
ccx.stats.n_null_glues += 1u;
C_null(glue_fn_ty)
}
case (some[ValueRef](?v)) {
ccx.stats.n_real_glues += 1u;
v
}
};
auto drop_glue = alt (ti.drop_glue) {
case (none[ValueRef]) {
ccx.stats.n_null_glues += 1u;
C_null(glue_fn_ty)
}
case (some[ValueRef](?v)) {
ccx.stats.n_real_glues += 1u;
v
}
};
auto free_glue = alt (ti.free_glue) {
case (none[ValueRef]) {
ccx.stats.n_null_glues += 1u;
C_null(glue_fn_ty)
}
case (some[ValueRef](?v)) {
ccx.stats.n_real_glues += 1u;
v
}
};
auto cmp_glue = alt (ti.cmp_glue) {
case (none[ValueRef]) {
ccx.stats.n_null_glues += 1u;
C_null(cmp_fn_ty)
}
case (some[ValueRef](?v)) {
ccx.stats.n_real_glues += 1u;
v
}
};
auto tydesc = C_struct([C_null(T_ptr(T_ptr(T_tydesc(ccx.tn)))),
ti.size,
ti.align,
take_glue, // take_glue
drop_glue, // drop_glue
free_glue, // free_glue
C_null(glue_fn_ty), // sever_glue
C_null(glue_fn_ty), // mark_glue
C_null(glue_fn_ty), // obj_drop_glue
C_null(glue_fn_ty), // is_stateful
cmp_glue]); // cmp_glue
auto gvar = ti.tydesc;
llvm::LLVMSetInitializer(gvar, tydesc);
llvm::LLVMSetGlobalConstant(gvar, True);
llvm::LLVMSetLinkage(gvar, lib::llvm::LLVMInternalLinkage
as llvm::Linkage);
}
}
fn make_take_glue(&@block_ctxt cx, ValueRef v, &ty::t t) {
// NB: v is an *alias* of type t here, not a direct value.
auto bcx;
if (ty::type_is_boxed(cx.fcx.lcx.ccx.tcx, t)) {
bcx = incr_refcnt_of_boxed(cx, cx.build.Load(v)).bcx;
} else if (ty::type_is_structural(cx.fcx.lcx.ccx.tcx, t)) {
bcx = iter_structural_ty(cx, v, t,
bind take_ty(_, _, _)).bcx;
} else {
bcx = cx;
}
bcx.build.RetVoid();
}
fn incr_refcnt_of_boxed(&@block_ctxt cx, ValueRef box_ptr) -> result {
auto rc_ptr = cx.build.GEP(box_ptr, [C_int(0),
C_int(abi::box_rc_field_refcnt)]);
auto rc = cx.build.Load(rc_ptr);
auto rc_adj_cx = new_sub_block_ctxt(cx, "rc++");
auto next_cx = new_sub_block_ctxt(cx, "next");
auto const_test = cx.build.ICmp(lib::llvm::LLVMIntEQ,
C_int(abi::const_refcount as int), rc);
cx.build.CondBr(const_test, next_cx.llbb, rc_adj_cx.llbb);
rc = rc_adj_cx.build.Add(rc, C_int(1));
rc_adj_cx.build.Store(rc, rc_ptr);
rc_adj_cx.build.Br(next_cx.llbb);
ret res(next_cx, C_nil());
}
fn make_free_glue(&@block_ctxt cx, ValueRef v0, &ty::t t) {
// NB: v is an *alias* of type t here, not a direct value.
auto rslt;
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_str) {
auto v = cx.build.Load(v0);
rslt = trans_non_gc_free(cx, v);
}
case (ty::ty_vec(_)) {
auto v = cx.build.Load(v0);
auto res = iter_sequence(cx, v, t,
bind drop_ty(_,_,_));
// FIXME: switch gc/non-gc on layer of the type.
rslt = trans_non_gc_free(res.bcx, v);
}
case (ty::ty_box(?body_mt)) {
auto v = cx.build.Load(v0);
auto body = cx.build.GEP(v,
[C_int(0),
C_int(abi::box_rc_field_body)]);
auto body_ty = body_mt.ty;
auto body_val = load_if_immediate(cx, body, body_ty);
auto res = drop_ty(cx, body_val, body_ty);
// FIXME: switch gc/non-gc on layer of the type.
rslt = trans_non_gc_free(res.bcx, v);
}
case (ty::ty_port(_)) {
auto v = cx.build.Load(v0);
cx.build.Call(cx.fcx.lcx.ccx.upcalls.del_port,
[cx.fcx.lltaskptr,
cx.build.PointerCast(v,
T_opaque_port_ptr())]);
rslt = res(cx, C_int(0));
}
case (ty::ty_chan(_)) {
auto v = cx.build.Load(v0);
cx.build.Call(cx.fcx.lcx.ccx.upcalls.del_chan,
[cx.fcx.lltaskptr,
cx.build.PointerCast(v,
T_opaque_chan_ptr())]);
rslt = res(cx, C_int(0));
}
case (ty::ty_obj(_)) {
auto box_cell =
cx.build.GEP(v0,
[C_int(0),
C_int(abi::obj_field_box)]);
auto b = cx.build.Load(box_cell);
auto body =
cx.build.GEP(b,
[C_int(0),
C_int(abi::box_rc_field_body)]);
auto tydescptr =
cx.build.GEP(body,
[C_int(0),
C_int(abi::obj_body_elt_tydesc)]);
auto tydesc = cx.build.Load(tydescptr);
auto cx_ = maybe_call_dtor(cx, v0);
// Call through the obj's own fields-drop glue first.
auto ti = none[@tydesc_info];
call_tydesc_glue_full(cx_, body, tydesc,
abi::tydesc_field_drop_glue, ti);
// Then free the body.
// FIXME: switch gc/non-gc on layer of the type.
rslt = trans_non_gc_free(cx_, b);
}
case (ty::ty_fn(_,_,_,_)) {
auto box_cell =
cx.build.GEP(v0,
[C_int(0),
C_int(abi::fn_field_box)]);
auto v = cx.build.Load(box_cell);
// Call through the closure's own fields-drop glue first.
auto body =
cx.build.GEP(v,
[C_int(0),
C_int(abi::box_rc_field_body)]);
auto bindings =
cx.build.GEP(body,
[C_int(0),
C_int(abi::closure_elt_bindings)]);
auto tydescptr =
cx.build.GEP(body,
[C_int(0),
C_int(abi::closure_elt_tydesc)]);
auto ti = none[@tydesc_info];
call_tydesc_glue_full(cx, bindings, cx.build.Load(tydescptr),
abi::tydesc_field_drop_glue, ti);
// Then free the body.
// FIXME: switch gc/non-gc on layer of the type.
rslt = trans_non_gc_free(cx, v);
}
case (_) { rslt = res(cx, C_nil()); }
}
rslt.bcx.build.RetVoid();
}
fn make_drop_glue(&@block_ctxt cx, ValueRef v0, &ty::t t) {
// NB: v0 is an *alias* of type t here, not a direct value.
auto rslt;
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_str) {
rslt = decr_refcnt_maybe_free(cx, v0, v0, t);
}
case (ty::ty_vec(_)) {
rslt = decr_refcnt_maybe_free(cx, v0, v0, t);
}
case (ty::ty_box(_)) {
rslt = decr_refcnt_maybe_free(cx, v0, v0, t);
}
case (ty::ty_port(_)) {
rslt = decr_refcnt_maybe_free(cx, v0, v0, t);
}
case (ty::ty_chan(_)) {
rslt = decr_refcnt_maybe_free(cx, v0, v0, t);
}
case (ty::ty_obj(_)) {
auto box_cell =
cx.build.GEP(v0,
[C_int(0),
C_int(abi::obj_field_box)]);
rslt = decr_refcnt_maybe_free(cx, box_cell, v0, t);
}
case (ty::ty_fn(_,_,_,_)) {
auto box_cell =
cx.build.GEP(v0,
[C_int(0),
C_int(abi::fn_field_box)]);
rslt = decr_refcnt_maybe_free(cx, box_cell, v0, t);
}
case (_) {
if (ty::type_has_pointers(cx.fcx.lcx.ccx.tcx, t) &&
ty::type_is_structural(cx.fcx.lcx.ccx.tcx, t)) {
rslt = iter_structural_ty(cx, v0, t,
bind drop_ty(_, _, _));
} else {
rslt = res(cx, C_nil());
}
}
}
rslt.bcx.build.RetVoid();
}
fn decr_refcnt_maybe_free(&@block_ctxt cx,
ValueRef box_ptr_alias,
ValueRef full_alias,
&ty::t t) -> result {
auto load_rc_cx = new_sub_block_ctxt(cx, "load rc");
auto rc_adj_cx = new_sub_block_ctxt(cx, "rc--");
auto free_cx = new_sub_block_ctxt(cx, "free");
auto next_cx = new_sub_block_ctxt(cx, "next");
auto box_ptr = cx.build.Load(box_ptr_alias);
auto null_test = cx.build.IsNull(box_ptr);
cx.build.CondBr(null_test, next_cx.llbb, load_rc_cx.llbb);
auto rc_ptr = load_rc_cx.build.GEP(box_ptr,
[C_int(0),
C_int(abi::box_rc_field_refcnt)]);
auto rc = load_rc_cx.build.Load(rc_ptr);
auto const_test =
load_rc_cx.build.ICmp(lib::llvm::LLVMIntEQ,
C_int(abi::const_refcount as int), rc);
load_rc_cx.build.CondBr(const_test, next_cx.llbb, rc_adj_cx.llbb);
rc = rc_adj_cx.build.Sub(rc, C_int(1));
rc_adj_cx.build.Store(rc, rc_ptr);
auto zero_test = rc_adj_cx.build.ICmp(lib::llvm::LLVMIntEQ, C_int(0), rc);
rc_adj_cx.build.CondBr(zero_test, free_cx.llbb, next_cx.llbb);
auto free_res = free_ty(free_cx,
load_if_immediate(free_cx, full_alias, t), t);
free_res.bcx.build.Br(next_cx.llbb);
auto t_else = T_nil();
auto v_else = C_nil();
auto phi = next_cx.build.Phi(t_else,
[v_else, v_else, v_else, free_res.val],
[cx.llbb,
load_rc_cx.llbb,
rc_adj_cx.llbb,
free_res.bcx.llbb]);
ret res(next_cx, phi);
}
// Structural comparison: a rather involved form of glue.
fn maybe_name_value(&@crate_ctxt cx, ValueRef v, &str s) {
if (cx.sess.get_opts().save_temps) {
llvm::LLVMSetValueName(v, str::buf(s));
}
}
fn make_cmp_glue(&@block_ctxt cx,
ValueRef lhs0,
ValueRef rhs0,
&ty::t t,
ValueRef llop) {
auto lhs = load_if_immediate(cx, lhs0, t);
auto rhs = load_if_immediate(cx, rhs0, t);
if (ty::type_is_scalar(cx.fcx.lcx.ccx.tcx, t)) {
make_scalar_cmp_glue(cx, lhs, rhs, t, llop);
} else if (ty::type_is_box(cx.fcx.lcx.ccx.tcx, t)) {
lhs = cx.build.GEP(lhs, [C_int(0), C_int(abi::box_rc_field_body)]);
rhs = cx.build.GEP(rhs, [C_int(0), C_int(abi::box_rc_field_body)]);
auto t_inner = alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_box(?ti)) { ti.ty }
};
auto rslt = call_cmp_glue(cx, lhs, rhs, t_inner, llop);
rslt.bcx.build.Store(rslt.val, cx.fcx.llretptr);
rslt.bcx.build.RetVoid();
} else if (ty::type_is_structural(cx.fcx.lcx.ccx.tcx, t)
|| ty::type_is_sequence(cx.fcx.lcx.ccx.tcx, t)) {
auto scx = new_sub_block_ctxt(cx, "structural compare start");
auto next = new_sub_block_ctxt(cx, "structural compare end");
cx.build.Br(scx.llbb);
/*
* We're doing lexicographic comparison here. We start with the
* assumption that the two input elements are equal. Depending on
* operator, this means that the result is either true or false;
* equality produces 'true' for ==, <= and >=. It produces 'false' for
* !=, < and >.
*
* We then move one element at a time through the structure checking
* for pairwise element equality: If we have equality, our assumption
* about overall sequence equality is not modified, so we have to move
* to the next element.
*
* If we do not have pairwise element equality, we have reached an
* element that 'decides' the lexicographic comparison. So we exit the
* loop with a flag that indicates the true/false sense of that
* decision, by testing the element again with the operator we're
* interested in.
*
* When we're lucky, LLVM should be able to fold some of these two
* tests together (as they're applied to the same operands and in some
* cases are sometimes redundant). But we don't bother trying to
* optimize combinations like that, at this level.
*/
auto flag = alloca(scx, T_i1());
maybe_name_value(cx.fcx.lcx.ccx, flag, "flag");
auto r;
if (ty::type_is_sequence(cx.fcx.lcx.ccx.tcx, t)) {
// If we hit == all the way through the minimum-shared-length
// section, default to judging the relative sequence lengths.
r = compare_integral_values(scx,
vec_fill(scx, lhs),
vec_fill(scx, rhs),
false,
llop);
r.bcx.build.Store(r.val, flag);
} else {
// == and <= default to true if they find == all the way. <
// defaults to false if it finds == all the way.
auto result_if_equal = scx.build.ICmp(lib::llvm::LLVMIntNE, llop,
C_u8(abi::cmp_glue_op_lt));
scx.build.Store(result_if_equal, flag);
r = res(scx, C_nil());
}
fn inner(@block_ctxt last_cx,
bool load_inner,
ValueRef flag,
ValueRef llop,
&@block_ctxt cx,
ValueRef av0,
ValueRef bv0,
ty::t t) -> result {
auto cnt_cx = new_sub_block_ctxt(cx, "continue_comparison");
auto stop_cx = new_sub_block_ctxt(cx, "stop_comparison");
auto av = av0;
auto bv = bv0;
if (load_inner) {
// If `load_inner` is true, then the pointer type will always
// be i8, because the data part of a vector always has type
// i8[]. So we need to cast it to the proper type.
if (!ty::type_has_dynamic_size(last_cx.fcx.lcx.ccx.tcx, t)) {
auto llelemty = T_ptr(type_of(last_cx.fcx.lcx.ccx,
last_cx.sp, t));
av = cx.build.PointerCast(av, llelemty);
bv = cx.build.PointerCast(bv, llelemty);
}
av = load_if_immediate(cx, av, t);
bv = load_if_immediate(cx, bv, t);
}
// First 'eq' comparison: if so, continue to next elts.
auto eq_r = call_cmp_glue(cx, av, bv, t,
C_u8(abi::cmp_glue_op_eq));
eq_r.bcx.build.CondBr(eq_r.val, cnt_cx.llbb, stop_cx.llbb);
// Second 'op' comparison: find out how this elt-pair decides.
auto stop_r = call_cmp_glue(stop_cx, av, bv, t, llop);
stop_r.bcx.build.Store(stop_r.val, flag);
stop_r.bcx.build.Br(last_cx.llbb);
ret res(cnt_cx, C_nil());
}
if (ty::type_is_structural(cx.fcx.lcx.ccx.tcx, t)) {
r = iter_structural_ty_full(r.bcx, lhs, rhs, t,
bind inner(next, false, flag, llop,
_, _, _, _));
} else {
auto lhs_p0 = vec_p0(r.bcx, lhs);
auto rhs_p0 = vec_p0(r.bcx, rhs);
auto min_len = umin(r.bcx, vec_fill(r.bcx, lhs),
vec_fill(r.bcx, rhs));
auto rhs_lim = r.bcx.build.GEP(rhs_p0, [min_len]);
auto elt_ty = ty::sequence_element_type(cx.fcx.lcx.ccx.tcx, t);
r = size_of(r.bcx, elt_ty);
r = iter_sequence_raw(r.bcx, lhs_p0, rhs_p0, rhs_lim, r.val,
bind inner(next, true, flag, llop,
_, _, _, elt_ty));
}
r.bcx.build.Br(next.llbb);
auto v = next.build.Load(flag);
next.build.Store(v, cx.fcx.llretptr);
next.build.RetVoid();
} else {
// FIXME: compare obj, fn by pointer?
trans_fail(cx, none[common::span],
"attempt to compare values of type " +
ty::ty_to_str(cx.fcx.lcx.ccx.tcx, t));
}
}
// A helper function to create scalar comparison glue.
fn make_scalar_cmp_glue(&@block_ctxt cx, ValueRef lhs, ValueRef rhs,
&ty::t t, ValueRef llop) {
if (ty::type_is_fp(cx.fcx.lcx.ccx.tcx, t)) {
make_fp_cmp_glue(cx, lhs, rhs, t, llop);
ret;
}
if (ty::type_is_integral(cx.fcx.lcx.ccx.tcx, t) ||
ty::type_is_bool(cx.fcx.lcx.ccx.tcx, t)) {
make_integral_cmp_glue(cx, lhs, rhs, t, llop);
ret;
}
if (ty::type_is_nil(cx.fcx.lcx.ccx.tcx, t)) {
cx.build.Store(C_bool(true), cx.fcx.llretptr);
cx.build.RetVoid();
ret;
}
trans_fail(cx, none[common::span],
"attempt to compare values of type " +
ty::ty_to_str(cx.fcx.lcx.ccx.tcx, t));
}
// A helper function to create floating point comparison glue.
fn make_fp_cmp_glue(&@block_ctxt cx, ValueRef lhs, ValueRef rhs,
&ty::t fptype, ValueRef llop) {
auto last_cx = new_sub_block_ctxt(cx, "last");
auto eq_cx = new_sub_block_ctxt(cx, "eq");
auto eq_result = eq_cx.build.FCmp(lib::llvm::LLVMRealUEQ, lhs, rhs);
eq_cx.build.Br(last_cx.llbb);
auto lt_cx = new_sub_block_ctxt(cx, "lt");
auto lt_result = lt_cx.build.FCmp(lib::llvm::LLVMRealULT, lhs, rhs);
lt_cx.build.Br(last_cx.llbb);
auto le_cx = new_sub_block_ctxt(cx, "le");
auto le_result = le_cx.build.FCmp(lib::llvm::LLVMRealULE, lhs, rhs);
le_cx.build.Br(last_cx.llbb);
auto unreach_cx = new_sub_block_ctxt(cx, "unreach");
unreach_cx.build.Unreachable();
auto llswitch = cx.build.Switch(llop, unreach_cx.llbb, 3u);
llvm::LLVMAddCase(llswitch, C_u8(abi::cmp_glue_op_eq), eq_cx.llbb);
llvm::LLVMAddCase(llswitch, C_u8(abi::cmp_glue_op_lt), lt_cx.llbb);
llvm::LLVMAddCase(llswitch, C_u8(abi::cmp_glue_op_le), le_cx.llbb);
auto last_result =
last_cx.build.Phi(T_i1(), [eq_result, lt_result, le_result],
[eq_cx.llbb, lt_cx.llbb, le_cx.llbb]);
last_cx.build.Store(last_result, cx.fcx.llretptr);
last_cx.build.RetVoid();
}
// A helper function to compare integral values. This is used by both
// `make_integral_cmp_glue` and `make_cmp_glue`.
fn compare_integral_values(&@block_ctxt cx, ValueRef lhs, ValueRef rhs,
bool signed, ValueRef llop) -> result {
auto lt_cmp; auto le_cmp;
if (signed) {
lt_cmp = lib::llvm::LLVMIntSLT;
le_cmp = lib::llvm::LLVMIntSLE;
} else {
lt_cmp = lib::llvm::LLVMIntULT;
le_cmp = lib::llvm::LLVMIntULE;
}
auto last_cx = new_sub_block_ctxt(cx, "last");
auto eq_cx = new_sub_block_ctxt(cx, "eq");
auto eq_result = eq_cx.build.ICmp(lib::llvm::LLVMIntEQ, lhs, rhs);
eq_cx.build.Br(last_cx.llbb);
auto lt_cx = new_sub_block_ctxt(cx, "lt");
auto lt_result = lt_cx.build.ICmp(lt_cmp, lhs, rhs);
lt_cx.build.Br(last_cx.llbb);
auto le_cx = new_sub_block_ctxt(cx, "le");
auto le_result = le_cx.build.ICmp(le_cmp, lhs, rhs);
le_cx.build.Br(last_cx.llbb);
auto unreach_cx = new_sub_block_ctxt(cx, "unreach");
unreach_cx.build.Unreachable();
auto llswitch = cx.build.Switch(llop, unreach_cx.llbb, 3u);
llvm::LLVMAddCase(llswitch, C_u8(abi::cmp_glue_op_eq), eq_cx.llbb);
llvm::LLVMAddCase(llswitch, C_u8(abi::cmp_glue_op_lt), lt_cx.llbb);
llvm::LLVMAddCase(llswitch, C_u8(abi::cmp_glue_op_le), le_cx.llbb);
auto last_result =
last_cx.build.Phi(T_i1(), [eq_result, lt_result, le_result],
[eq_cx.llbb, lt_cx.llbb, le_cx.llbb]);
ret res(last_cx, last_result);
}
// A helper function to create integral comparison glue.
fn make_integral_cmp_glue(&@block_ctxt cx, ValueRef lhs, ValueRef rhs,
&ty::t intype, ValueRef llop) {
auto r = compare_integral_values(cx, lhs, rhs,
ty::type_is_signed(cx.fcx.lcx.ccx.tcx, intype), llop);
r.bcx.build.Store(r.val, r.bcx.fcx.llretptr);
r.bcx.build.RetVoid();
}
type val_pair_fn = fn(&@block_ctxt cx, ValueRef dst, ValueRef src) -> result;
type val_and_ty_fn = fn(&@block_ctxt cx, ValueRef v, ty::t t) -> result;
type val_pair_and_ty_fn =
fn(&@block_ctxt cx, ValueRef av, ValueRef bv, ty::t t) -> result;
// Iterates through the elements of a structural type.
fn iter_structural_ty(&@block_ctxt cx,
ValueRef v,
&ty::t t,
val_and_ty_fn f)
-> result {
fn adaptor_fn(val_and_ty_fn f,
&@block_ctxt cx,
ValueRef av,
ValueRef bv,
ty::t t) -> result {
ret f(cx, av, t);
}
be iter_structural_ty_full(cx, v, v, t,
bind adaptor_fn(f, _, _, _, _));
}
fn iter_structural_ty_full(&@block_ctxt cx,
ValueRef av,
ValueRef bv,
&ty::t t,
&val_pair_and_ty_fn f)
-> result {
let result r = res(cx, C_nil());
fn iter_boxpp(@block_ctxt cx,
ValueRef box_a_cell,
ValueRef box_b_cell,
&val_pair_and_ty_fn f) -> result {
auto box_a_ptr = cx.build.Load(box_a_cell);
auto box_b_ptr = cx.build.Load(box_b_cell);
auto tnil = ty::mk_nil(cx.fcx.lcx.ccx.tcx);
auto tbox = ty::mk_imm_box(cx.fcx.lcx.ccx.tcx, tnil);
auto inner_cx = new_sub_block_ctxt(cx, "iter box");
auto next_cx = new_sub_block_ctxt(cx, "next");
auto null_test = cx.build.IsNull(box_a_ptr);
cx.build.CondBr(null_test, next_cx.llbb, inner_cx.llbb);
auto r = f(inner_cx, box_a_ptr, box_b_ptr, tbox);
r.bcx.build.Br(next_cx.llbb);
ret res(next_cx, C_nil());
}
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_tup(?args)) {
let int i = 0;
for (ty::mt arg in args) {
r = GEP_tup_like(r.bcx, t, av, [0, i]);
auto elt_a = r.val;
r = GEP_tup_like(r.bcx, t, bv, [0, i]);
auto elt_b = r.val;
r = f(r.bcx,
load_if_immediate(r.bcx, elt_a, arg.ty),
load_if_immediate(r.bcx, elt_b, arg.ty),
arg.ty);
i += 1;
}
}
case (ty::ty_rec(?fields)) {
let int i = 0;
for (ty::field fld in fields) {
r = GEP_tup_like(r.bcx, t, av, [0, i]);
auto llfld_a = r.val;
r = GEP_tup_like(r.bcx, t, bv, [0, i]);
auto llfld_b = r.val;
r = f(r.bcx,
load_if_immediate(r.bcx, llfld_a, fld.mt.ty),
load_if_immediate(r.bcx, llfld_b, fld.mt.ty),
fld.mt.ty);
i += 1;
}
}
case (ty::ty_tag(?tid, ?tps)) {
auto variants = ty::tag_variants(cx.fcx.lcx.ccx.tcx, tid);
auto n_variants = vec::len[ty::variant_info](variants);
// Cast the tags to types we can GEP into.
auto lltagty = T_opaque_tag_ptr(cx.fcx.lcx.ccx.tn);
auto av_tag = cx.build.PointerCast(av, lltagty);
auto bv_tag = cx.build.PointerCast(bv, lltagty);
auto lldiscrim_a_ptr = cx.build.GEP(av_tag,
[C_int(0), C_int(0)]);
auto llunion_a_ptr = cx.build.GEP(av_tag,
[C_int(0), C_int(1)]);
auto lldiscrim_a = cx.build.Load(lldiscrim_a_ptr);
auto lldiscrim_b_ptr = cx.build.GEP(bv_tag,
[C_int(0), C_int(0)]);
auto llunion_b_ptr = cx.build.GEP(bv_tag,
[C_int(0), C_int(1)]);
auto lldiscrim_b = cx.build.Load(lldiscrim_b_ptr);
// NB: we must hit the discriminant first so that structural
// comparison know not to proceed when the discriminants differ.
auto bcx = cx;
bcx = f(bcx, lldiscrim_a, lldiscrim_b,
ty::mk_int(cx.fcx.lcx.ccx.tcx)).bcx;
auto unr_cx = new_sub_block_ctxt(bcx, "tag-iter-unr");
unr_cx.build.Unreachable();
auto llswitch = bcx.build.Switch(lldiscrim_a, unr_cx.llbb,
n_variants);
auto next_cx = new_sub_block_ctxt(bcx, "tag-iter-next");
auto i = 0u;
for (ty::variant_info variant in variants) {
auto variant_cx = new_sub_block_ctxt(bcx,
"tag-iter-variant-" +
uint::to_str(i, 10u));
llvm::LLVMAddCase(llswitch, C_int(i as int), variant_cx.llbb);
if (vec::len[ty::t](variant.args) > 0u) {
// N-ary variant.
auto fn_ty = variant.ctor_ty;
alt (ty::struct(bcx.fcx.lcx.ccx.tcx, fn_ty)) {
case (ty::ty_fn(_, ?args, _, _)) {
auto j = 0;
for (ty::arg a in args) {
auto v = [C_int(0), C_int(j as int)];
auto rslt = GEP_tag(variant_cx, llunion_a_ptr,
tid, variant.id, tps, j);
auto llfldp_a = rslt.val;
variant_cx = rslt.bcx;
rslt = GEP_tag(variant_cx, llunion_b_ptr, tid,
variant.id, tps, j);
auto llfldp_b = rslt.val;
variant_cx = rslt.bcx;
auto ty_subst = ty::bind_params_in_type(
cx.fcx.lcx.ccx.tcx, a.ty);
ty_subst = ty::substitute_type_params(
cx.fcx.lcx.ccx.tcx, tps, ty_subst);
auto llfld_a =
load_if_immediate(variant_cx,
llfldp_a,
ty_subst);
auto llfld_b =
load_if_immediate(variant_cx,
llfldp_b,
ty_subst);
auto res = f(variant_cx,
llfld_a, llfld_b, ty_subst);
variant_cx = res.bcx;
j += 1;
}
}
case (_) { fail; }
}
variant_cx.build.Br(next_cx.llbb);
} else {
// Nullary variant; nothing to do.
variant_cx.build.Br(next_cx.llbb);
}
i += 1u;
}
ret res(next_cx, C_nil());
}
case (ty::ty_fn(_,_,_,_)) {
auto box_cell_a =
cx.build.GEP(av,
[C_int(0),
C_int(abi::fn_field_box)]);
auto box_cell_b =
cx.build.GEP(bv,
[C_int(0),
C_int(abi::fn_field_box)]);
ret iter_boxpp(cx, box_cell_a, box_cell_b, f);
}
case (ty::ty_obj(_)) {
auto box_cell_a =
cx.build.GEP(av,
[C_int(0),
C_int(abi::obj_field_box)]);
auto box_cell_b =
cx.build.GEP(bv,
[C_int(0),
C_int(abi::obj_field_box)]);
ret iter_boxpp(cx, box_cell_a, box_cell_b, f);
}
case (_) {
cx.fcx.lcx.ccx.sess.unimpl("type in iter_structural_ty_full");
}
}
ret r;
}
// Iterates through a pointer range, until the src* hits the src_lim*.
fn iter_sequence_raw(@block_ctxt cx,
ValueRef dst, // elt*
ValueRef src, // elt*
ValueRef src_lim, // elt*
ValueRef elt_sz,
&val_pair_fn f) -> result {
auto bcx = cx;
let ValueRef dst_int = vp2i(bcx, dst);
let ValueRef src_int = vp2i(bcx, src);
let ValueRef src_lim_int = vp2i(bcx, src_lim);
auto cond_cx = new_scope_block_ctxt(cx, "sequence-iter cond");
auto body_cx = new_scope_block_ctxt(cx, "sequence-iter body");
auto next_cx = new_sub_block_ctxt(cx, "next");
bcx.build.Br(cond_cx.llbb);
let ValueRef dst_curr = cond_cx.build.Phi(T_int(),
[dst_int], [bcx.llbb]);
let ValueRef src_curr = cond_cx.build.Phi(T_int(),
[src_int], [bcx.llbb]);
auto end_test = cond_cx.build.ICmp(lib::llvm::LLVMIntULT,
src_curr, src_lim_int);
cond_cx.build.CondBr(end_test, body_cx.llbb, next_cx.llbb);
auto dst_curr_ptr = vi2p(body_cx, dst_curr, T_ptr(T_i8()));
auto src_curr_ptr = vi2p(body_cx, src_curr, T_ptr(T_i8()));
auto body_res = f(body_cx, dst_curr_ptr, src_curr_ptr);
body_cx = body_res.bcx;
auto dst_next = body_cx.build.Add(dst_curr, elt_sz);
auto src_next = body_cx.build.Add(src_curr, elt_sz);
body_cx.build.Br(cond_cx.llbb);
cond_cx.build.AddIncomingToPhi(dst_curr, [dst_next],
[body_cx.llbb]);
cond_cx.build.AddIncomingToPhi(src_curr, [src_next],
[body_cx.llbb]);
ret res(next_cx, C_nil());
}
fn iter_sequence_inner(&@block_ctxt cx,
ValueRef src, // elt*
ValueRef src_lim, // elt*
&ty::t elt_ty,
&val_and_ty_fn f) -> result {
fn adaptor_fn(val_and_ty_fn f,
ty::t elt_ty,
&@block_ctxt cx,
ValueRef dst,
ValueRef src) -> result {
auto llptrty;
if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, elt_ty)) {
auto llty = type_of(cx.fcx.lcx.ccx, cx.sp, elt_ty);
llptrty = T_ptr(llty);
} else {
llptrty = T_ptr(T_ptr(T_i8()));
}
auto p = cx.build.PointerCast(src, llptrty);
ret f(cx, load_if_immediate(cx, p, elt_ty), elt_ty);
}
auto elt_sz = size_of(cx, elt_ty);
be iter_sequence_raw(elt_sz.bcx, src, src, src_lim, elt_sz.val,
bind adaptor_fn(f, elt_ty, _, _, _));
}
// Iterates through the elements of a vec or str.
fn iter_sequence(@block_ctxt cx,
ValueRef v,
&ty::t t,
&val_and_ty_fn f) -> result {
fn iter_sequence_body(@block_ctxt cx,
ValueRef v,
&ty::t elt_ty,
&val_and_ty_fn f,
bool trailing_null) -> result {
auto p0 = cx.build.GEP(v, [C_int(0),
C_int(abi::vec_elt_data)]);
auto lenptr = cx.build.GEP(v, [C_int(0),
C_int(abi::vec_elt_fill)]);
auto llunit_ty;
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, elt_ty)) {
llunit_ty = T_i8();
} else {
llunit_ty = type_of(cx.fcx.lcx.ccx, cx.sp, elt_ty);
}
auto bcx = cx;
auto len = bcx.build.Load(lenptr);
if (trailing_null) {
auto unit_sz = size_of(bcx, elt_ty);
bcx = unit_sz.bcx;
len = bcx.build.Sub(len, unit_sz.val);
}
auto p1 = vi2p(bcx, bcx.build.Add(vp2i(bcx, p0), len),
T_ptr(llunit_ty));
ret iter_sequence_inner(bcx, p0, p1, elt_ty, f);
}
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_vec(?elt)) {
ret iter_sequence_body(cx, v, elt.ty, f, false);
}
case (ty::ty_str) {
auto et = ty::mk_mach(cx.fcx.lcx.ccx.tcx, common::ty_u8);
ret iter_sequence_body(cx, v, et, f, true);
}
case (_) {
cx.fcx.lcx.ccx.sess.bug("unexpected type in " +
"trans::iter_sequence: " +
ty::ty_to_str(cx.fcx.lcx.ccx.tcx, t));
fail;
}
}
}
fn lazily_emit_all_tydesc_glue(&@block_ctxt cx,
&option::t[@tydesc_info] static_ti) {
lazily_emit_tydesc_glue(cx, abi::tydesc_field_take_glue, static_ti);
lazily_emit_tydesc_glue(cx, abi::tydesc_field_drop_glue, static_ti);
lazily_emit_tydesc_glue(cx, abi::tydesc_field_free_glue, static_ti);
lazily_emit_tydesc_glue(cx, abi::tydesc_field_cmp_glue, static_ti);
}
fn lazily_emit_all_generic_info_tydesc_glues(&@block_ctxt cx,
&generic_info gi) {
for (option::t[@tydesc_info] ti in gi. static_tis) {
lazily_emit_all_tydesc_glue(cx, ti);
}
}
fn lazily_emit_tydesc_glue(&@block_ctxt cx, int field,
&option::t[@tydesc_info] static_ti) {
alt (static_ti) {
case (none[@tydesc_info]) { }
case (some[@tydesc_info](?ti)) {
if(field == abi::tydesc_field_take_glue) {
alt (ti.take_glue) {
case (some[ValueRef](_)) {}
case (none[ValueRef]) {
log #fmt("+++ lazily_emit_tydesc_glue TAKE %s",
ty::ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty));
auto lcx = cx.fcx.lcx;
auto glue_fn =
declare_generic_glue(lcx, ti.ty,
T_glue_fn(lcx.ccx.tn),
"take");
ti.take_glue = some[ValueRef](glue_fn);
auto tg = make_take_glue;
make_generic_glue(lcx, cx.sp, ti.ty, glue_fn,
mgghf_single(tg), ti.ty_params);
log #fmt("--- lazily_emit_tydesc_glue TAKE %s",
ty::ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty));
}
}
} else if (field == abi::tydesc_field_drop_glue) {
alt (ti.drop_glue) {
case (some[ValueRef](_)) { }
case (none[ValueRef]) {
log #fmt("+++ lazily_emit_tydesc_glue DROP %s",
ty::ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty));
auto lcx = cx.fcx.lcx;
auto glue_fn =
declare_generic_glue(lcx, ti.ty,
T_glue_fn(lcx.ccx.tn),
"drop");
ti.drop_glue = some[ValueRef](glue_fn);
auto dg = make_drop_glue;
make_generic_glue(lcx, cx.sp, ti.ty, glue_fn,
mgghf_single(dg), ti.ty_params);
log #fmt("--- lazily_emit_tydesc_glue DROP %s",
ty::ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty));
}
}
} else if (field == abi::tydesc_field_free_glue) {
alt (ti.free_glue) {
case (some[ValueRef](_)) { }
case (none[ValueRef]) {
log #fmt("+++ lazily_emit_tydesc_glue FREE %s",
ty::ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty));
auto lcx = cx.fcx.lcx;
auto glue_fn =
declare_generic_glue(lcx, ti.ty,
T_glue_fn(lcx.ccx.tn),
"free");
ti.free_glue = some[ValueRef](glue_fn);
auto dg = make_free_glue;
make_generic_glue(lcx, cx.sp, ti.ty, glue_fn,
mgghf_single(dg), ti.ty_params);
log #fmt("--- lazily_emit_tydesc_glue FREE %s",
ty::ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty));
}
}
} else if (field == abi::tydesc_field_cmp_glue) {
alt (ti.cmp_glue) {
case (some[ValueRef](_)) { }
case (none[ValueRef]) {
log #fmt("+++ lazily_emit_tydesc_glue CMP %s",
ty::ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty));
auto lcx = cx.fcx.lcx;
auto glue_fn =
declare_generic_glue(lcx, ti.ty,
T_cmp_glue_fn(lcx.ccx.tn),
"cmp");
ti.cmp_glue = some[ValueRef](glue_fn);
make_generic_glue(lcx, cx.sp, ti.ty, glue_fn,
mgghf_cmp, ti.ty_params);
log #fmt("--- lazily_emit_tydesc_glue CMP %s",
ty::ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty));
}
}
}
}
}
}
fn call_tydesc_glue_full(&@block_ctxt cx, ValueRef v,
ValueRef tydesc, int field,
&option::t[@tydesc_info] static_ti) {
lazily_emit_tydesc_glue(cx, field, static_ti);
auto llrawptr = cx.build.BitCast(v, T_ptr(T_i8()));
auto lltydescs = cx.build.GEP(tydesc,
[C_int(0),
C_int(abi::tydesc_field_first_param)]);
lltydescs = cx.build.Load(lltydescs);
auto llfnptr = cx.build.GEP(tydesc, [C_int(0), C_int(field)]);
auto llfn = cx.build.Load(llfnptr);
cx.build.FastCall(llfn, [C_null(T_ptr(T_nil())),
cx.fcx.lltaskptr,
C_null(T_ptr(T_nil())),
lltydescs,
llrawptr]);
}
fn call_tydesc_glue(&@block_ctxt cx, ValueRef v,
&ty::t t, int field) -> result {
let option::t[@tydesc_info] ti = none[@tydesc_info];
auto td = get_tydesc(cx, t, false, ti);
call_tydesc_glue_full(td.bcx,
spill_if_immediate(td.bcx, v, t),
td.val, field, ti);
ret res(td.bcx, C_nil());
}
fn maybe_call_dtor(&@block_ctxt cx, ValueRef v) -> @block_ctxt {
auto vtbl = cx.build.GEP(v, [C_int(0), C_int(abi::obj_field_vtbl)]);
vtbl = cx.build.Load(vtbl);
auto dtor_ptr = cx.build.GEP(vtbl, [C_int(0), C_int(0)]);
dtor_ptr = cx.build.Load(dtor_ptr);
auto self_t = llvm::LLVMGetElementType(val_ty(v));
dtor_ptr = cx.build.BitCast(dtor_ptr,
T_ptr(T_dtor(cx.fcx.lcx.ccx, cx.sp, self_t)));
auto dtor_cx = new_sub_block_ctxt(cx, "dtor");
auto after_cx = new_sub_block_ctxt(cx, "after_dtor");
auto test = cx.build.ICmp(lib::llvm::LLVMIntNE, dtor_ptr,
C_null(val_ty(dtor_ptr)));
cx.build.CondBr(test, dtor_cx.llbb, after_cx.llbb);
auto me = dtor_cx.build.Load(v);
dtor_cx.build.FastCall(dtor_ptr, [C_null(T_ptr(T_nil())),
cx.fcx.lltaskptr, me]);
dtor_cx.build.Br(after_cx.llbb);
ret after_cx;
}
fn call_cmp_glue(&@block_ctxt cx,
ValueRef lhs,
ValueRef rhs,
&ty::t t,
ValueRef llop) -> result {
// We can't use call_tydesc_glue_full() and friends here because compare
// glue has a special signature.
auto lllhs = spill_if_immediate(cx, lhs, t);
auto llrhs = spill_if_immediate(cx, rhs, t);
auto llrawlhsptr = cx.build.BitCast(lllhs, T_ptr(T_i8()));
auto llrawrhsptr = cx.build.BitCast(llrhs, T_ptr(T_i8()));
auto ti = none[@tydesc_info];
auto r = get_tydesc(cx, t, false, ti);
lazily_emit_tydesc_glue(cx, abi::tydesc_field_cmp_glue, ti);
auto lltydescs =
r.bcx.build.GEP(r.val, [C_int(0),
C_int(abi::tydesc_field_first_param)]);
lltydescs = r.bcx.build.Load(lltydescs);
auto llfnptr =
r.bcx.build.GEP(r.val, [C_int(0),
C_int(abi::tydesc_field_cmp_glue)]);
auto llfn = r.bcx.build.Load(llfnptr);
auto llcmpresultptr = r.bcx.build.Alloca(T_i1());
let vec[ValueRef] llargs = [llcmpresultptr,
r.bcx.fcx.lltaskptr,
C_null(T_ptr(T_nil())),
lltydescs,
llrawlhsptr,
llrawrhsptr,
llop];
r.bcx.build.FastCall(llfn, llargs);
ret res(r.bcx, r.bcx.build.Load(llcmpresultptr));
}
fn take_ty(&@block_ctxt cx, ValueRef v, ty::t t) -> result {
if (ty::type_has_pointers(cx.fcx.lcx.ccx.tcx, t)) {
ret call_tydesc_glue(cx, v, t, abi::tydesc_field_take_glue);
}
ret res(cx, C_nil());
}
fn drop_slot(&@block_ctxt cx,
ValueRef slot,
&ty::t t) -> result {
auto llptr = load_if_immediate(cx, slot, t);
auto re = drop_ty(cx, llptr, t);
auto llty = val_ty(slot);
auto llelemty = lib::llvm::llvm::LLVMGetElementType(llty);
re.bcx.build.Store(C_null(llelemty), slot);
ret re;
}
fn drop_ty(&@block_ctxt cx,
ValueRef v,
ty::t t) -> result {
if (ty::type_has_pointers(cx.fcx.lcx.ccx.tcx, t)) {
ret call_tydesc_glue(cx, v, t, abi::tydesc_field_drop_glue);
}
ret res(cx, C_nil());
}
fn free_ty(&@block_ctxt cx,
ValueRef v,
ty::t t) -> result {
if (ty::type_has_pointers(cx.fcx.lcx.ccx.tcx, t)) {
ret call_tydesc_glue(cx, v, t, abi::tydesc_field_free_glue);
}
ret res(cx, C_nil());
}
fn call_memmove(&@block_ctxt cx,
ValueRef dst,
ValueRef src,
ValueRef n_bytes,
ValueRef align_bytes) -> result {
// FIXME: switch to the 64-bit variant when on such a platform.
auto i = cx.fcx.lcx.ccx.intrinsics;
assert (i.contains_key("llvm.memmove.p0i8.p0i8.i32"));
auto memmove = i.get("llvm.memmove.p0i8.p0i8.i32");
auto src_ptr = cx.build.PointerCast(src, T_ptr(T_i8()));
auto dst_ptr = cx.build.PointerCast(dst, T_ptr(T_i8()));
auto size = cx.build.IntCast(n_bytes, T_i32());
auto align =
if (lib::llvm::llvm::LLVMIsConstant(align_bytes) == True)
{ cx.build.IntCast(align_bytes, T_i32()) }
else
{ cx.build.IntCast(C_int(0), T_i32()) };
auto volatile = C_bool(false);
ret res(cx, cx.build.Call(memmove,
[dst_ptr, src_ptr,
size, align, volatile]));
}
fn call_bzero(&@block_ctxt cx,
ValueRef dst,
ValueRef n_bytes,
ValueRef align_bytes) -> result {
// FIXME: switch to the 64-bit variant when on such a platform.
auto i = cx.fcx.lcx.ccx.intrinsics;
assert (i.contains_key("llvm.memset.p0i8.i32"));
auto memset = i.get("llvm.memset.p0i8.i32");
auto dst_ptr = cx.build.PointerCast(dst, T_ptr(T_i8()));
auto size = cx.build.IntCast(n_bytes, T_i32());
auto align =
if (lib::llvm::llvm::LLVMIsConstant(align_bytes) == True)
{ cx.build.IntCast(align_bytes, T_i32()) }
else
{ cx.build.IntCast(C_int(0), T_i32()) };
auto volatile = C_bool(false);
ret res(cx, cx.build.Call(memset,
[dst_ptr, C_u8(0u),
size, align, volatile]));
}
fn memmove_ty(&@block_ctxt cx,
ValueRef dst,
ValueRef src,
&ty::t t) -> result {
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) {
auto llsz = size_of(cx, t);
auto llalign = align_of(llsz.bcx, t);
ret call_memmove(llalign.bcx, dst, src, llsz.val, llalign.val);
} else {
ret res(cx, cx.build.Store(cx.build.Load(src), dst));
}
}
tag copy_action {
INIT;
DROP_EXISTING;
}
fn copy_ty(&@block_ctxt cx,
copy_action action,
ValueRef dst,
ValueRef src,
&ty::t t) -> result {
if (ty::type_is_scalar(cx.fcx.lcx.ccx.tcx, t) ||
ty::type_is_native(cx.fcx.lcx.ccx.tcx, t)) {
ret res(cx, cx.build.Store(src, dst));
} else if (ty::type_is_nil(cx.fcx.lcx.ccx.tcx, t) ||
ty::type_is_bot(cx.fcx.lcx.ccx.tcx, t)) {
ret res(cx, C_nil());
} else if (ty::type_is_boxed(cx.fcx.lcx.ccx.tcx, t)) {
auto r = take_ty(cx, src, t);
if (action == DROP_EXISTING) {
r = drop_ty(r.bcx, r.bcx.build.Load(dst), t);
}
ret res(r.bcx, r.bcx.build.Store(src, dst));
} else if (ty::type_is_structural(cx.fcx.lcx.ccx.tcx, t) ||
ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) {
auto r = take_ty(cx, src, t);
if (action == DROP_EXISTING) {
r = drop_ty(r.bcx, dst, t);
}
ret memmove_ty(r.bcx, dst, src, t);
}
cx.fcx.lcx.ccx.sess.bug("unexpected type in trans::copy_ty: " +
ty::ty_to_str(cx.fcx.lcx.ccx.tcx, t));
fail;
}
fn trans_lit(&@crate_ctxt cx, &ast::lit lit, &ast::ann ann) -> ValueRef {
alt (lit.node) {
case (ast::lit_int(?i)) {
ret C_int(i);
}
case (ast::lit_uint(?u)) {
ret C_int(u as int);
}
case (ast::lit_mach_int(?tm, ?i)) {
// FIXME: the entire handling of mach types falls apart
// if target int width is larger than host, at the moment;
// re-do the mach-int types using 'big' when that works.
auto t = T_int();
auto s = True;
alt (tm) {
case (common::ty_u8) { t = T_i8(); s = False; }
case (common::ty_u16) { t = T_i16(); s = False; }
case (common::ty_u32) { t = T_i32(); s = False; }
case (common::ty_u64) { t = T_i64(); s = False; }
case (common::ty_i8) { t = T_i8(); }
case (common::ty_i16) { t = T_i16(); }
case (common::ty_i32) { t = T_i32(); }
case (common::ty_i64) { t = T_i64(); }
}
ret C_integral(t, i as uint, s);
}
case(ast::lit_float(?fs)) {
ret C_float(fs);
}
case(ast::lit_mach_float(?tm, ?s)) {
auto t = T_float();
alt(tm) {
case(common::ty_f32) { t = T_f32(); }
case(common::ty_f64) { t = T_f64(); }
}
ret C_floating(s, t);
}
case (ast::lit_char(?c)) {
ret C_integral(T_char(), c as uint, False);
}
case (ast::lit_bool(?b)) {
ret C_bool(b);
}
case (ast::lit_nil) {
ret C_nil();
}
case (ast::lit_str(?s)) {
ret C_str(cx, s);
}
}
}
// Converts an annotation to a type
fn node_ann_type(&@crate_ctxt cx, &ast::ann a) -> ty::t {
ret ty::ann_to_monotype(cx.tcx, a);
}
fn node_type(&@crate_ctxt cx, &ast::span sp, &ast::ann a) -> TypeRef {
ret type_of(cx, sp, node_ann_type(cx, a));
}
fn trans_unary(&@block_ctxt cx, ast::unop op,
&@ast::expr e, &ast::ann a) -> result {
auto sub = trans_expr(cx, e);
auto e_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, e);
alt (op) {
case (ast::bitnot) {
sub = autoderef(sub.bcx, sub.val,
ty::expr_ty(cx.fcx.lcx.ccx.tcx, e));
ret res(sub.bcx, sub.bcx.build.Not(sub.val));
}
case (ast::not) {
sub = autoderef(sub.bcx, sub.val,
ty::expr_ty(cx.fcx.lcx.ccx.tcx, e));
ret res(sub.bcx, sub.bcx.build.Not(sub.val));
}
case (ast::neg) {
sub = autoderef(sub.bcx, sub.val,
ty::expr_ty(cx.fcx.lcx.ccx.tcx, e));
if(ty::struct(cx.fcx.lcx.ccx.tcx, e_ty) == ty::ty_float) {
ret res(sub.bcx, sub.bcx.build.FNeg(sub.val));
}
else {
ret res(sub.bcx, sub.bcx.build.Neg(sub.val));
}
}
case (ast::box(_)) {
auto e_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, e);
auto e_val = sub.val;
auto box_ty = node_ann_type(sub.bcx.fcx.lcx.ccx, a);
sub = trans_malloc_boxed(sub.bcx, e_ty);
find_scope_cx(cx).cleanups +=
[clean(bind drop_ty(_, sub.val, box_ty))];
auto box = sub.val;
auto rc = sub.bcx.build.GEP(box,
[C_int(0),
C_int(abi::box_rc_field_refcnt)]);
auto body = sub.bcx.build.GEP(box,
[C_int(0),
C_int(abi::box_rc_field_body)]);
sub.bcx.build.Store(C_int(1), rc);
// Cast the body type to the type of the value. This is needed to
// make tags work, since tags have a different LLVM type depending
// on whether they're boxed or not.
if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, e_ty)) {
auto llety = T_ptr(type_of(sub.bcx.fcx.lcx.ccx, e.span,
e_ty));
body = sub.bcx.build.PointerCast(body, llety);
}
sub = copy_ty(sub.bcx, INIT, body, e_val, e_ty);
ret res(sub.bcx, box);
}
case (ast::deref) {
log_err "deref expressions should have been translated using " +
"trans_lval(), not trans_unary()";
fail;
}
}
fail;
}
fn trans_compare(&@block_ctxt cx0, ast::binop op, &ty::t t0,
ValueRef lhs0, ValueRef rhs0) -> result {
// Autoderef both sides.
auto cx = cx0;
auto lhs_r = autoderef(cx, lhs0, t0);
auto lhs = lhs_r.val;
cx = lhs_r.bcx;
auto rhs_r = autoderef(cx, rhs0, t0);
auto rhs = rhs_r.val;
cx = rhs_r.bcx;
auto t = autoderefed_ty(cx.fcx.lcx.ccx, t0);
// Determine the operation we need.
// FIXME: Use or-patterns when we have them.
auto llop;
alt (op) {
case (ast::eq) { llop = C_u8(abi::cmp_glue_op_eq); }
case (ast::lt) { llop = C_u8(abi::cmp_glue_op_lt); }
case (ast::le) { llop = C_u8(abi::cmp_glue_op_le); }
case (ast::ne) { llop = C_u8(abi::cmp_glue_op_eq); }
case (ast::ge) { llop = C_u8(abi::cmp_glue_op_lt); }
case (ast::gt) { llop = C_u8(abi::cmp_glue_op_le); }
}
auto rslt = call_cmp_glue(cx, lhs, rhs, t, llop);
// Invert the result if necessary.
// FIXME: Use or-patterns when we have them.
alt (op) {
case (ast::eq) { ret res(rslt.bcx, rslt.val); }
case (ast::lt) { ret res(rslt.bcx, rslt.val); }
case (ast::le) { ret res(rslt.bcx, rslt.val); }
case (ast::ne) { ret res(rslt.bcx, rslt.bcx.build.Not(rslt.val)); }
case (ast::ge) { ret res(rslt.bcx, rslt.bcx.build.Not(rslt.val)); }
case (ast::gt) { ret res(rslt.bcx, rslt.bcx.build.Not(rslt.val)); }
}
}
fn trans_vec_append(&@block_ctxt cx, &ty::t t,
ValueRef lhs, ValueRef rhs) -> result {
auto elt_ty = ty::sequence_element_type(cx.fcx.lcx.ccx.tcx, t);
auto skip_null = C_bool(false);
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_str) { skip_null = C_bool(true); }
case (_) { }
}
auto bcx = cx;
auto ti = none[@tydesc_info];
auto llvec_tydesc = get_tydesc(bcx, t, false, ti);
bcx = llvec_tydesc.bcx;
ti = none[@tydesc_info];
auto llelt_tydesc = get_tydesc(bcx, elt_ty, false, ti);
lazily_emit_tydesc_glue(cx, abi::tydesc_field_take_glue, ti);
lazily_emit_tydesc_glue(cx, abi::tydesc_field_drop_glue, ti);
lazily_emit_tydesc_glue(cx, abi::tydesc_field_free_glue, ti);
bcx = llelt_tydesc.bcx;
auto dst = bcx.build.PointerCast(lhs, T_ptr(T_opaque_vec_ptr()));
auto src = bcx.build.PointerCast(rhs, T_opaque_vec_ptr());
ret res(bcx, bcx.build.FastCall(cx.fcx.lcx.ccx.glues.vec_append_glue,
[cx.fcx.lltaskptr,
llvec_tydesc.val,
llelt_tydesc.val,
dst, src, skip_null]));
}
fn trans_vec_add(&@block_ctxt cx, &ty::t t,
ValueRef lhs, ValueRef rhs) -> result {
auto r = alloc_ty(cx, t);
auto tmp = r.val;
r = copy_ty(r.bcx, INIT, tmp, lhs, t);
auto bcx = trans_vec_append(r.bcx, t, tmp, rhs).bcx;
tmp = load_if_immediate(bcx, tmp, t);
find_scope_cx(cx).cleanups +=
[clean(bind drop_ty(_, tmp, t))];
ret res(bcx, tmp);
}
fn trans_eager_binop(&@block_ctxt cx, ast::binop op, &ty::t intype,
ValueRef lhs, ValueRef rhs) -> result {
auto is_float = false;
alt (ty::struct(cx.fcx.lcx.ccx.tcx, intype)) {
case (ty::ty_float) {
is_float = true;
}
case (_) {
is_float = false;
}
}
alt (op) {
case (ast::add) {
if (ty::type_is_sequence(cx.fcx.lcx.ccx.tcx, intype)) {
ret trans_vec_add(cx, intype, lhs, rhs);
}
if (is_float) {
ret res(cx, cx.build.FAdd(lhs, rhs));
}
else {
ret res(cx, cx.build.Add(lhs, rhs));
}
}
case (ast::sub) {
if (is_float) {
ret res(cx, cx.build.FSub(lhs, rhs));
}
else {
ret res(cx, cx.build.Sub(lhs, rhs));
}
}
case (ast::mul) {
if (is_float) {
ret res(cx, cx.build.FMul(lhs, rhs));
}
else {
ret res(cx, cx.build.Mul(lhs, rhs));
}
}
case (ast::div) {
if (is_float) {
ret res(cx, cx.build.FDiv(lhs, rhs));
}
if (ty::type_is_signed(cx.fcx.lcx.ccx.tcx, intype)) {
ret res(cx, cx.build.SDiv(lhs, rhs));
} else {
ret res(cx, cx.build.UDiv(lhs, rhs));
}
}
case (ast::rem) {
if (is_float) {
ret res(cx, cx.build.FRem(lhs, rhs));
}
if (ty::type_is_signed(cx.fcx.lcx.ccx.tcx, intype)) {
ret res(cx, cx.build.SRem(lhs, rhs));
} else {
ret res(cx, cx.build.URem(lhs, rhs));
}
}
case (ast::bitor) { ret res(cx, cx.build.Or(lhs, rhs)); }
case (ast::bitand) { ret res(cx, cx.build.And(lhs, rhs)); }
case (ast::bitxor) { ret res(cx, cx.build.Xor(lhs, rhs)); }
case (ast::lsl) { ret res(cx, cx.build.Shl(lhs, rhs)); }
case (ast::lsr) { ret res(cx, cx.build.LShr(lhs, rhs)); }
case (ast::asr) { ret res(cx, cx.build.AShr(lhs, rhs)); }
case (_) {
ret trans_compare(cx, op, intype, lhs, rhs);
}
}
fail;
}
fn autoderef(&@block_ctxt cx, ValueRef v, &ty::t t) -> result {
let ValueRef v1 = v;
let ty::t t1 = t;
while (true) {
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t1)) {
case (ty::ty_box(?mt)) {
auto body = cx.build.GEP(v1,
[C_int(0),
C_int(abi::box_rc_field_body)]);
t1 = mt.ty;
// Since we're changing levels of box indirection, we may have
// to cast this pointer, since statically-sized tag types have
// different types depending on whether they're behind a box
// or not.
if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, mt.ty)) {
auto llty = type_of(cx.fcx.lcx.ccx, cx.sp, mt.ty);
v1 = cx.build.PointerCast(body, T_ptr(llty));
} else {
v1 = body;
}
v1 = load_if_immediate(cx, v1, t1);
}
case (_) {
ret res(cx, v1);
}
}
}
fail; // fools the return-checker
}
fn autoderefed_ty(&@crate_ctxt ccx, &ty::t t) -> ty::t {
let ty::t t1 = t;
while (true) {
alt (ty::struct(ccx.tcx, t1)) {
case (ty::ty_box(?mt)) {
t1 = mt.ty;
}
case (_) {
ret t1;
}
}
}
fail; // fools the return-checker
}
fn trans_binary(&@block_ctxt cx, ast::binop op,
&@ast::expr a, &@ast::expr b) -> result {
// First couple cases are lazy:
alt (op) {
case (ast::and) {
// Lazy-eval and
auto lhs_res = trans_expr(cx, a);
lhs_res = autoderef(lhs_res.bcx, lhs_res.val,
ty::expr_ty(cx.fcx.lcx.ccx.tcx, a));
auto rhs_cx = new_scope_block_ctxt(cx, "rhs");
auto rhs_res = trans_expr(rhs_cx, b);
rhs_res = autoderef(rhs_res.bcx, rhs_res.val,
ty::expr_ty(cx.fcx.lcx.ccx.tcx, b));
auto lhs_false_cx = new_scope_block_ctxt(cx, "lhs false");
auto lhs_false_res = res(lhs_false_cx, C_bool(false));
// The following line ensures that any cleanups for rhs
// are done within the block for rhs. This is necessary
// because and/or are lazy. So the rhs may never execute,
// and the cleanups can't be pushed into later code.
auto rhs_bcx = trans_block_cleanups(rhs_res.bcx, rhs_cx);
lhs_res.bcx.build.CondBr(lhs_res.val,
rhs_cx.llbb,
lhs_false_cx.llbb);
ret join_results(cx, T_bool(),
[lhs_false_res, rec(bcx=rhs_bcx with rhs_res)]);
}
case (ast::or) {
// Lazy-eval or
auto lhs_res = trans_expr(cx, a);
lhs_res = autoderef(lhs_res.bcx, lhs_res.val,
ty::expr_ty(cx.fcx.lcx.ccx.tcx, a));
auto rhs_cx = new_scope_block_ctxt(cx, "rhs");
auto rhs_res = trans_expr(rhs_cx, b);
rhs_res = autoderef(rhs_res.bcx, rhs_res.val,
ty::expr_ty(cx.fcx.lcx.ccx.tcx, b));
auto lhs_true_cx = new_scope_block_ctxt(cx, "lhs true");
auto lhs_true_res = res(lhs_true_cx, C_bool(true));
// see the and case for an explanation
auto rhs_bcx = trans_block_cleanups(rhs_res.bcx, rhs_cx);
lhs_res.bcx.build.CondBr(lhs_res.val,
lhs_true_cx.llbb,
rhs_cx.llbb);
ret join_results(cx, T_bool(),
[lhs_true_res, rec(bcx=rhs_bcx with rhs_res)]);
}
case (_) {
// Remaining cases are eager:
auto lhs = trans_expr(cx, a);
auto lhty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, a);
lhs = autoderef(lhs.bcx, lhs.val, lhty);
auto rhs = trans_expr(lhs.bcx, b);
auto rhty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, b);
rhs = autoderef(rhs.bcx, rhs.val, rhty);
ret trans_eager_binop(rhs.bcx, op,
autoderefed_ty(cx.fcx.lcx.ccx, lhty), lhs.val, rhs.val);
}
}
fail;
}
fn join_results(&@block_ctxt parent_cx,
TypeRef t,
&vec[result] ins)
-> result {
let vec[result] live = [];
let vec[ValueRef] vals = [];
let vec[BasicBlockRef] bbs = [];
for (result r in ins) {
if (! is_terminated(r.bcx)) {
live += [r];
vals += [r.val];
bbs += [r.bcx.llbb];
}
}
alt (vec::len[result](live)) {
case (0u) {
// No incoming edges are live, so we're in dead-code-land.
// Arbitrarily pick the first dead edge, since the caller
// is just going to propagate it outward.
assert (vec::len[result](ins) >= 1u);
ret ins.(0);
}
case (_) { /* fall through */ }
}
// We have >1 incoming edges. Make a join block and br+phi them into it.
auto join_cx = new_sub_block_ctxt(parent_cx, "join");
for (result r in live) {
r.bcx.build.Br(join_cx.llbb);
}
auto phi = join_cx.build.Phi(t, vals, bbs);
ret res(join_cx, phi);
}
fn trans_if(&@block_ctxt cx, &@ast::expr cond,
&ast::block thn, &option::t[@ast::expr] els,
&ast::ann ann) -> result {
auto cond_res = trans_expr(cx, cond);
auto then_cx = new_scope_block_ctxt(cx, "then");
auto then_res = trans_block(then_cx, thn);
auto else_cx = new_scope_block_ctxt(cx, "else");
auto else_res;
auto expr_llty;
alt (els) {
case (some[@ast::expr](?elexpr)) {
alt (elexpr.node) {
case (ast::expr_if(_, _, _, ?ann)) {
// Synthesize a block here to act as the else block
// containing an if expression. Needed in order for the
// else scope to behave like a normal block scope. A tad
// ugly.
let ast::block_ elseif_blk_
= rec(stmts = [],
expr = some[@ast::expr](elexpr),
a = ann);
auto elseif_blk = rec(node = elseif_blk_,
span = elexpr.span);
else_res = trans_block(else_cx, elseif_blk);
}
case (ast::expr_block(?blk, _)) {
// Calling trans_block directly instead of trans_expr
// because trans_expr will create another scope block
// context for the block, but we've already got the
// 'else' context
else_res = trans_block(else_cx, blk);
}
}
// FIXME: This isn't quite right, particularly re: dynamic types
auto expr_ty = ty::ann_to_type(cx.fcx.lcx.ccx.tcx.node_types,
ann);
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, expr_ty)) {
expr_llty = T_typaram_ptr(cx.fcx.lcx.ccx.tn);
} else {
expr_llty = type_of(cx.fcx.lcx.ccx, elexpr.span, expr_ty);
if (ty::type_is_structural(cx.fcx.lcx.ccx.tcx, expr_ty)) {
expr_llty = T_ptr(expr_llty);
}
}
}
case (_) {
else_res = res(else_cx, C_nil());
expr_llty = T_nil();
}
}
cond_res.bcx.build.CondBr(cond_res.val,
then_cx.llbb,
else_cx.llbb);
ret join_results(cx, expr_llty,
[then_res, else_res]);
}
fn trans_for(&@block_ctxt cx,
&@ast::decl decl,
&@ast::expr seq,
&ast::block body) -> result {
fn inner(&@block_ctxt cx,
@ast::local local, ValueRef curr,
ty::t t, ast::block body,
@block_ctxt outer_next_cx) -> result {
auto next_cx = new_sub_block_ctxt(cx, "next");
auto scope_cx =
new_loop_scope_block_ctxt(cx, option::some[@block_ctxt](next_cx),
outer_next_cx, "for loop scope");
cx.build.Br(scope_cx.llbb);
auto local_res = alloc_local(scope_cx, local);
auto bcx = copy_ty(local_res.bcx, INIT, local_res.val, curr, t).bcx;
scope_cx.cleanups +=
[clean(bind drop_slot(_, local_res.val, t))];
bcx = trans_block(bcx, body).bcx;
bcx.build.Br(next_cx.llbb);
ret res(next_cx, C_nil());
}
let @ast::local local;
alt (decl.node) {
case (ast::decl_local(?loc)) {
local = loc;
}
}
auto next_cx = new_sub_block_ctxt(cx, "next");
auto seq_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, seq);
auto seq_res = trans_expr(cx, seq);
auto it = iter_sequence(seq_res.bcx, seq_res.val, seq_ty,
bind inner(_, local, _, _, body, next_cx));
it.bcx.build.Br(next_cx.llbb);
ret res(next_cx, it.val);
}
// Iterator translation
// Searches through a block for all references to locals or upvars in this
// frame and returns the list of definition IDs thus found.
fn collect_upvars(&@block_ctxt cx, &ast::block bloc,
&ast::def_id initial_decl) -> vec[ast::def_id] {
type env = @rec(
mutable vec[ast::def_id] refs,
hashmap[ast::def_id,()] decls,
resolve::def_map def_map
);
fn walk_expr(env e, &@ast::expr expr) {
alt (expr.node) {
case (ast::expr_path(?path, ?ann)) {
alt (e.def_map.get(ann.id)) {
case (ast::def_arg(?did)) {
vec::push[ast::def_id](e.refs, did);
}
case (ast::def_local(?did)) {
vec::push[ast::def_id](e.refs, did);
}
case (_) {}
}
}
case (_) {}
}
}
fn walk_decl(env e, &@ast::decl decl) {
alt (decl.node) {
case (ast::decl_local(?local)) {
e.decls.insert(local.id, ());
}
case (_) {}
}
}
let vec[ast::def_id] refs = [];
let hashmap[ast::def_id,()] decls = new_def_hash[()]();
decls.insert(initial_decl, ());
let env e = @rec(mutable refs=refs,
decls=decls,
def_map=cx.fcx.lcx.ccx.tcx.def_map);
auto visitor = @rec(visit_decl_pre = bind walk_decl(e, _),
visit_expr_pre = bind walk_expr(e, _)
with walk::default_visitor());
walk::walk_block(*visitor, bloc);
// Calculate (refs - decls). This is the set of captured upvars.
let vec[ast::def_id] result = [];
for (ast::def_id ref_id in e.refs) {
if (!decls.contains_key(ref_id)) {
result += [ref_id];
}
}
ret result;
}
fn trans_for_each(&@block_ctxt cx,
&@ast::decl decl,
&@ast::expr seq,
&ast::block body) -> result {
/*
* The translation is a little .. complex here. Code like:
*
* let ty1 p = ...;
*
* let ty1 q = ...;
*
* foreach (ty v in foo(a,b)) { body(p,q,v) }
*
*
* Turns into a something like so (C/Rust mishmash):
*
* type env = { *ty1 p, *ty2 q, ... };
*
* let env e = { &p, &q, ... };
*
* fn foreach123_body(env* e, ty v) { body(*(e->p),*(e->q),v) }
*
* foo([foreach123_body, env*], a, b);
*
*/
// Step 1: walk body and figure out which references it makes
// escape. This could be determined upstream, and probably ought
// to be so, eventualy. For first cut, skip this. Null env.
auto lcx = cx.fcx.lcx;
// FIXME: possibly support alias-mode here?
auto decl_ty = ty::mk_nil(lcx.ccx.tcx);
auto decl_id;
alt (decl.node) {
case (ast::decl_local(?local)) {
decl_ty = node_ann_type(lcx.ccx, local.ann);
decl_id = local.id;
}
}
auto upvars = collect_upvars(cx, body, decl_id);
auto upvar_count = vec::len[ast::def_id](upvars);
auto llbindingsptr;
if (upvar_count > 0u) {
// Gather up the upvars.
let vec[ValueRef] llbindings = [];
let vec[TypeRef] llbindingtys = [];
for (ast::def_id did in upvars) {
auto llbinding;
alt (cx.fcx.lllocals.find(did)) {
case (none[ValueRef]) {
alt (cx.fcx.llupvars.find(did)) {
case (none[ValueRef]) {
llbinding = cx.fcx.llargs.get(did);
}
case (some[ValueRef](?llval)) { llbinding = llval; }
}
}
case (some[ValueRef](?llval)) { llbinding = llval; }
}
llbindings += [llbinding];
llbindingtys += [val_ty(llbinding)];
}
// Create an array of bindings and copy in aliases to the upvars.
llbindingsptr = alloca(cx, T_struct(llbindingtys));
auto i = 0u;
while (i < upvar_count) {
auto llbindingptr = cx.build.GEP(llbindingsptr,
[C_int(0), C_int(i as int)]);
cx.build.Store(llbindings.(i), llbindingptr);
i += 1u;
}
} else {
// Null bindings.
llbindingsptr = C_null(T_ptr(T_i8()));
}
// Create an environment and populate it with the bindings.
auto tydesc_count = vec::len[ValueRef](cx.fcx.lltydescs);
auto llenvptrty = T_closure_ptr(lcx.ccx.tn, T_ptr(T_nil()),
val_ty(llbindingsptr), tydesc_count);
auto llenvptr = alloca(cx, llvm::LLVMGetElementType(llenvptrty));
auto llbindingsptrptr = cx.build.GEP(llenvptr,
[C_int(0),
C_int(abi::box_rc_field_body),
C_int(2)]);
cx.build.Store(llbindingsptr, llbindingsptrptr);
// Copy in our type descriptors, in case the iterator body needs to refer
// to them.
auto lltydescsptr = cx.build.GEP(llenvptr,
[C_int(0),
C_int(abi::box_rc_field_body),
C_int(abi::closure_elt_ty_params)]);
auto i = 0u;
while (i < tydesc_count) {
auto lltydescptr = cx.build.GEP(lltydescsptr,
[C_int(0), C_int(i as int)]);
cx.build.Store(cx.fcx.lltydescs.(i), lltydescptr);
i += 1u;
}
// Step 2: Declare foreach body function.
let str s = mangle_name_by_seq(lcx.ccx, lcx.path, "foreach");
// The 'env' arg entering the body function is a fake env member (as in
// the env-part of the normal rust calling convention) that actually
// points to a stack allocated env in this frame. We bundle that env
// pointer along with the foreach-body-fn pointer into a 'normal' fn pair
// and pass it in as a first class fn-arg to the iterator.
auto iter_body_llty =
type_of_fn_full(lcx.ccx, cx.sp, ast::proto_fn,
none[TypeRef],
[rec(mode=ty::mo_alias, ty=decl_ty)],
ty::mk_nil(lcx.ccx.tcx), 0u);
let ValueRef lliterbody = decl_internal_fastcall_fn(lcx.ccx.llmod,
s, iter_body_llty);
auto fcx = new_fn_ctxt(lcx, cx.sp, lliterbody);
auto copy_args_bcx = new_raw_block_ctxt(fcx, fcx.llcopyargs);
// Populate the upvars from the environment.
auto llremoteenvptr = copy_args_bcx.build.PointerCast(fcx.llenv,
llenvptrty);
auto llremotebindingsptrptr =
copy_args_bcx.build.GEP(llremoteenvptr,
[C_int(0),
C_int(abi::box_rc_field_body),
C_int(abi::closure_elt_bindings)]);
auto llremotebindingsptr =
copy_args_bcx.build.Load(llremotebindingsptrptr);
i = 0u;
while (i < upvar_count) {
auto upvar_id = upvars.(i);
auto llupvarptrptr =
copy_args_bcx.build.GEP(llremotebindingsptr,
[C_int(0), C_int(i as int)]);
auto llupvarptr = copy_args_bcx.build.Load(llupvarptrptr);
fcx.llupvars.insert(upvar_id, llupvarptr);
i += 1u;
}
// Populate the type parameters from the environment.
auto llremotetydescsptr =
copy_args_bcx.build.GEP(llremoteenvptr,
[C_int(0),
C_int(abi::box_rc_field_body),
C_int(abi::closure_elt_ty_params)]);
i = 0u;
while (i < tydesc_count) {
auto llremotetydescptr =
copy_args_bcx.build.GEP(llremotetydescsptr, [C_int(0),
C_int(i as int)]);
auto llremotetydesc = copy_args_bcx.build.Load(llremotetydescptr);
fcx.lltydescs += [llremotetydesc];
i += 1u;
}
// Add an upvar for the loop variable alias.
fcx.llupvars.insert(decl_id, llvm::LLVMGetParam(fcx.llfn, 3u));
auto bcx = new_top_block_ctxt(fcx);
auto lltop = bcx.llbb;
auto r = trans_block(bcx, body);
finish_fn(fcx, lltop);
r.bcx.build.RetVoid();
// Step 3: Call iter passing [lliterbody, llenv], plus other args.
alt (seq.node) {
case (ast::expr_call(?f, ?args, ?ann)) {
auto pair = alloca(cx, T_fn_pair(lcx.ccx.tn,
iter_body_llty));
auto code_cell = cx.build.GEP(pair,
[C_int(0),
C_int(abi::fn_field_code)]);
cx.build.Store(lliterbody, code_cell);
auto env_cell = cx.build.GEP(pair, [C_int(0),
C_int(abi::fn_field_box)]);
auto llenvblobptr = cx.build.PointerCast(llenvptr,
T_opaque_closure_ptr(lcx.ccx.tn));
cx.build.Store(llenvblobptr, env_cell);
// log "lliterbody: " + val_str(lcx.ccx.tn, lliterbody);
r = trans_call(cx, f,
some[ValueRef](cx.build.Load(pair)),
args,
ann);
ret res(r.bcx, C_nil());
}
}
fail;
}
fn trans_while(&@block_ctxt cx, &@ast::expr cond,
&ast::block body) -> result {
auto cond_cx = new_scope_block_ctxt(cx, "while cond");
auto next_cx = new_sub_block_ctxt(cx, "next");
auto body_cx = new_loop_scope_block_ctxt(cx, option::none[@block_ctxt],
next_cx, "while loop body");
auto body_res = trans_block(body_cx, body);
auto cond_res = trans_expr(cond_cx, cond);
body_res.bcx.build.Br(cond_cx.llbb);
auto cond_bcx = trans_block_cleanups(cond_res.bcx, cond_cx);
cond_bcx.build.CondBr(cond_res.val, body_cx.llbb, next_cx.llbb);
cx.build.Br(cond_cx.llbb);
ret res(next_cx, C_nil());
}
fn trans_do_while(&@block_ctxt cx, &ast::block body,
&@ast::expr cond) -> result {
auto next_cx = new_sub_block_ctxt(cx, "next");
auto body_cx = new_loop_scope_block_ctxt(cx, option::none[@block_ctxt],
next_cx, "do-while loop body");
auto body_res = trans_block(body_cx, body);
auto cond_res = trans_expr(body_res.bcx, cond);
cond_res.bcx.build.CondBr(cond_res.val,
body_cx.llbb,
next_cx.llbb);
cx.build.Br(body_cx.llbb);
ret res(next_cx, body_res.val);
}
// Pattern matching translation
fn trans_pat_match(&@block_ctxt cx, &@ast::pat pat, ValueRef llval,
&@block_ctxt next_cx) -> result {
alt (pat.node) {
case (ast::pat_wild(_)) { ret res(cx, llval); }
case (ast::pat_bind(_, _, _)) { ret res(cx, llval); }
case (ast::pat_lit(?lt, ?ann)) {
auto lllit = trans_lit(cx.fcx.lcx.ccx, *lt, ann);
auto lltype = ty::ann_to_type(cx.fcx.lcx.ccx.tcx.node_types, ann);
auto lleq = trans_compare(cx, ast::eq, lltype, llval, lllit);
auto matched_cx = new_sub_block_ctxt(lleq.bcx, "matched_cx");
lleq.bcx.build.CondBr(lleq.val, matched_cx.llbb, next_cx.llbb);
ret res(matched_cx, llval);
}
case (ast::pat_tag(?id, ?subpats, ?ann)) {
auto lltagptr = cx.build.PointerCast(llval,
T_opaque_tag_ptr(cx.fcx.lcx.ccx.tn));
auto lldiscrimptr = cx.build.GEP(lltagptr,
[C_int(0), C_int(0)]);
auto lldiscrim = cx.build.Load(lldiscrimptr);
auto vdef = ast::variant_def_ids
(cx.fcx.lcx.ccx.tcx.def_map.get(ann.id));
auto variant_tag = 0;
auto variants = ty::tag_variants(cx.fcx.lcx.ccx.tcx, vdef._0);
auto i = 0;
for (ty::variant_info v in variants) {
auto this_variant_id = v.id;
if (vdef._1._0 == this_variant_id._0 &&
vdef._1._1 == this_variant_id._1) {
variant_tag = i;
}
i += 1;
}
auto matched_cx = new_sub_block_ctxt(cx, "matched_cx");
auto lleq = cx.build.ICmp(lib::llvm::LLVMIntEQ, lldiscrim,
C_int(variant_tag));
cx.build.CondBr(lleq, matched_cx.llbb, next_cx.llbb);
auto ty_params =
ty::ann_to_type_params(cx.fcx.lcx.ccx.tcx.node_types, ann);
if (vec::len[@ast::pat](subpats) > 0u) {
auto llblobptr = matched_cx.build.GEP(lltagptr,
[C_int(0), C_int(1)]);
auto i = 0;
for (@ast::pat subpat in subpats) {
auto rslt = GEP_tag(matched_cx, llblobptr, vdef._0,
vdef._1, ty_params, i);
auto llsubvalptr = rslt.val;
matched_cx = rslt.bcx;
auto llsubval = load_if_immediate(matched_cx,
llsubvalptr, pat_ty(cx.fcx.lcx.ccx.tcx, subpat));
auto subpat_res = trans_pat_match(matched_cx, subpat,
llsubval, next_cx);
matched_cx = subpat_res.bcx;
i += 1;
}
}
ret res(matched_cx, llval);
}
}
fail;
}
fn trans_pat_binding(&@block_ctxt cx, &@ast::pat pat,
ValueRef llval, bool bind_alias)
-> result {
alt (pat.node) {
case (ast::pat_wild(_)) { ret res(cx, llval); }
case (ast::pat_lit(_, _)) { ret res(cx, llval); }
case (ast::pat_bind(?id, ?def_id, ?ann)) {
if (bind_alias) {
cx.fcx.lllocals.insert(def_id, llval);
ret res(cx, llval);
} else {
auto t = node_ann_type(cx.fcx.lcx.ccx, ann);
auto rslt = alloc_ty(cx, t);
auto dst = rslt.val;
auto bcx = rslt.bcx;
maybe_name_value(cx.fcx.lcx.ccx, dst, id);
bcx.fcx.lllocals.insert(def_id, dst);
bcx.cleanups +=
[clean(bind drop_slot(_, dst, t))];
ret copy_ty(bcx, INIT, dst, llval, t);
}
}
case (ast::pat_tag(_, ?subpats, ?ann)) {
if (vec::len[@ast::pat](subpats) == 0u) { ret res(cx, llval); }
// Get the appropriate variant for this tag.
auto vdef = ast::variant_def_ids
(cx.fcx.lcx.ccx.tcx.def_map.get(ann.id));
auto lltagptr = cx.build.PointerCast(llval,
T_opaque_tag_ptr(cx.fcx.lcx.ccx.tn));
auto llblobptr = cx.build.GEP(lltagptr, [C_int(0), C_int(1)]);
auto ty_param_substs =
ty::ann_to_type_params(cx.fcx.lcx.ccx.tcx.node_types, ann);
auto this_cx = cx;
auto i = 0;
for (@ast::pat subpat in subpats) {
auto rslt = GEP_tag(this_cx, llblobptr, vdef._0, vdef._1,
ty_param_substs, i);
this_cx = rslt.bcx;
auto subpat_res = trans_pat_binding(this_cx, subpat,
rslt.val, true);
this_cx = subpat_res.bcx;
i += 1;
}
ret res(this_cx, llval);
}
}
}
fn trans_alt(&@block_ctxt cx, &@ast::expr expr,
&vec[ast::arm] arms, &ast::ann ann) -> result {
auto expr_res = trans_expr(cx, expr);
auto this_cx = expr_res.bcx;
let vec[result] arm_results = [];
for (ast::arm arm in arms) {
auto next_cx = new_sub_block_ctxt(expr_res.bcx, "next");
auto match_res = trans_pat_match(this_cx, arm.pat, expr_res.val,
next_cx);
auto binding_cx = new_scope_block_ctxt(match_res.bcx, "binding");
match_res.bcx.build.Br(binding_cx.llbb);
auto binding_res = trans_pat_binding(binding_cx, arm.pat,
expr_res.val, false);
auto block_res = trans_block(binding_res.bcx, arm.block);
arm_results += [block_res];
this_cx = next_cx;
}
auto default_cx = this_cx;
auto default_res = trans_fail(default_cx, some[common::span](expr.span),
"non-exhaustive match failure");
// FIXME: This isn't quite right, particularly re: dynamic types
auto expr_ty = ty::ann_to_type(cx.fcx.lcx.ccx.tcx.node_types, ann);
auto expr_llty;
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, expr_ty)) {
expr_llty = T_typaram_ptr(cx.fcx.lcx.ccx.tn);
} else {
expr_llty = type_of(cx.fcx.lcx.ccx, expr.span, expr_ty);
if (ty::type_is_structural(cx.fcx.lcx.ccx.tcx, expr_ty)) {
expr_llty = T_ptr(expr_llty);
}
}
ret join_results(cx, expr_llty, arm_results);
}
type generic_info = rec(ty::t item_type,
vec[option::t[@tydesc_info]] static_tis,
vec[ValueRef] tydescs);
type lval_result = rec(result res,
bool is_mem,
option::t[generic_info] generic,
option::t[ValueRef] llobj,
option::t[ty::t] method_ty);
fn lval_mem(&@block_ctxt cx, ValueRef val) -> lval_result {
ret rec(res=res(cx, val),
is_mem=true,
generic=none[generic_info],
llobj=none[ValueRef],
method_ty=none[ty::t]);
}
fn lval_val(&@block_ctxt cx, ValueRef val) -> lval_result {
ret rec(res=res(cx, val),
is_mem=false,
generic=none[generic_info],
llobj=none[ValueRef],
method_ty=none[ty::t]);
}
fn trans_external_path(&@block_ctxt cx, &ast::def_id did,
&ty::ty_param_count_and_ty tpt) -> lval_result {
auto lcx = cx.fcx.lcx;
auto name = creader::get_symbol(lcx.ccx.sess, did);
auto v = get_extern_const(lcx.ccx.externs, lcx.ccx.llmod,
name,
type_of_ty_param_count_and_ty(lcx, cx.sp, tpt));
ret lval_val(cx, v);
}
fn lval_generic_fn(&@block_ctxt cx,
&ty::ty_param_count_and_ty tpt,
&ast::def_id fn_id,
&ast::ann ann)
-> lval_result {
auto lv;
if (cx.fcx.lcx.ccx.sess.get_targ_crate_num() == fn_id._0) {
// Internal reference.
assert (cx.fcx.lcx.ccx.fn_pairs.contains_key(fn_id));
lv = lval_val(cx, cx.fcx.lcx.ccx.fn_pairs.get(fn_id));
} else {
// External reference.
lv = trans_external_path(cx, fn_id, tpt);
}
auto tys = ty::ann_to_type_params(cx.fcx.lcx.ccx.tcx.node_types, ann);
auto monoty = ty::ann_to_type(cx.fcx.lcx.ccx.tcx.node_types, ann);
if (vec::len[ty::t](tys) != 0u) {
auto bcx = lv.res.bcx;
let vec[ValueRef] tydescs = [];
let vec[option::t[@tydesc_info]] tis = [];
for (ty::t t in tys) {
// TODO: Doesn't always escape.
auto ti = none[@tydesc_info];
auto td = get_tydesc(bcx, t, true, ti);
tis += [ti];
bcx = td.bcx;
vec::push[ValueRef](tydescs, td.val);
}
auto gen = rec( item_type = tpt._1,
static_tis = tis,
tydescs = tydescs );
lv = rec(res = res(bcx, lv.res.val),
generic = some[generic_info](gen)
with lv);
}
ret lv;
}
fn lookup_discriminant(&@local_ctxt lcx, &ast::def_id tid, &ast::def_id vid)
-> ValueRef {
alt (lcx.ccx.discrims.find(vid)) {
case (none[ValueRef]) {
// It's an external discriminant that we haven't seen yet.
assert (lcx.ccx.sess.get_targ_crate_num() != vid._0);
auto sym = creader::get_symbol(lcx.ccx.sess, vid);
auto gvar = llvm::LLVMAddGlobal(lcx.ccx.llmod, T_int(),
str::buf(sym));
llvm::LLVMSetLinkage(gvar, lib::llvm::LLVMExternalLinkage
as llvm::Linkage);
llvm::LLVMSetGlobalConstant(gvar, True);
lcx.ccx.discrims.insert(vid, gvar);
ret gvar;
}
case (some[ValueRef](?llval)) { ret llval; }
}
}
fn trans_path(&@block_ctxt cx, &ast::path p, &ast::ann ann) -> lval_result {
alt (cx.fcx.lcx.ccx.tcx.def_map.get(ann.id)) {
case (ast::def_arg(?did)) {
alt (cx.fcx.llargs.find(did)) {
case (none[ValueRef]) {
assert (cx.fcx.llupvars.contains_key(did));
ret lval_mem(cx, cx.fcx.llupvars.get(did));
}
case (some[ValueRef](?llval)) {
ret lval_mem(cx, llval);
}
}
}
case (ast::def_local(?did)) {
alt (cx.fcx.lllocals.find(did)) {
case (none[ValueRef]) {
assert (cx.fcx.llupvars.contains_key(did));
ret lval_mem(cx, cx.fcx.llupvars.get(did));
}
case (some[ValueRef](?llval)) {
ret lval_mem(cx, llval);
}
}
}
case (ast::def_binding(?did)) {
assert (cx.fcx.lllocals.contains_key(did));
ret lval_mem(cx, cx.fcx.lllocals.get(did));
}
case (ast::def_obj_field(?did)) {
assert (cx.fcx.llobjfields.contains_key(did));
ret lval_mem(cx, cx.fcx.llobjfields.get(did));
}
case (ast::def_fn(?did)) {
auto tyt = ty::lookup_item_type(cx.fcx.lcx.ccx.tcx, did);
ret lval_generic_fn(cx, tyt, did, ann);
}
case (ast::def_obj(?did)) {
auto tyt = ty::lookup_item_type(cx.fcx.lcx.ccx.tcx, did);
ret lval_generic_fn(cx, tyt, did, ann);
}
case (ast::def_variant(?tid, ?vid)) {
auto v_tyt = ty::lookup_item_type(cx.fcx.lcx.ccx.tcx, vid);
alt (ty::struct(cx.fcx.lcx.ccx.tcx, v_tyt._1)) {
case (ty::ty_fn(_, _, _, _)) {
// N-ary variant.
ret lval_generic_fn(cx, v_tyt, vid, ann);
}
case (_) {
// Nullary variant.
auto tag_ty = node_ann_type(cx.fcx.lcx.ccx, ann);
auto lldiscrim_gv =
lookup_discriminant(cx.fcx.lcx, tid, vid);
auto lldiscrim = cx.build.Load(lldiscrim_gv);
auto alloc_result = alloc_ty(cx, tag_ty);
auto lltagblob = alloc_result.val;
auto lltagty;
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx,
tag_ty)) {
lltagty = T_opaque_tag(cx.fcx.lcx.ccx.tn);
} else {
lltagty = type_of(cx.fcx.lcx.ccx, p.span, tag_ty);
}
auto lltagptr = alloc_result.bcx.build.
PointerCast(lltagblob, T_ptr(lltagty));
auto lldiscrimptr = alloc_result.bcx.build.GEP
(lltagptr, [C_int(0), C_int(0)]);
alloc_result.bcx.build.Store(lldiscrim,
lldiscrimptr);
ret lval_val(alloc_result.bcx, lltagptr);
}
}
}
case (ast::def_const(?did)) {
// TODO: externals
assert (cx.fcx.lcx.ccx.consts.contains_key(did));
ret lval_mem(cx, cx.fcx.lcx.ccx.consts.get(did));
}
case (ast::def_native_fn(?did)) {
auto tyt = ty::lookup_item_type(cx.fcx.lcx.ccx.tcx, did);
ret lval_generic_fn(cx, tyt, did, ann);
}
case (_) {
cx.fcx.lcx.ccx.sess.span_unimpl(cx.sp, "def variant in trans");
}
}
}
fn trans_field(&@block_ctxt cx, &ast::span sp, ValueRef v, &ty::t t0,
&ast::ident field, &ast::ann ann) -> lval_result {
auto r = autoderef(cx, v, t0);
auto t = autoderefed_ty(cx.fcx.lcx.ccx, t0);
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_tup(_)) {
let uint ix = ty::field_num(cx.fcx.lcx.ccx.sess, sp, field);
auto v = GEP_tup_like(r.bcx, t, r.val, [0, ix as int]);
ret lval_mem(v.bcx, v.val);
}
case (ty::ty_rec(?fields)) {
let uint ix = ty::field_idx(cx.fcx.lcx.ccx.sess, sp, field,
fields);
auto v = GEP_tup_like(r.bcx, t, r.val, [0, ix as int]);
ret lval_mem(v.bcx, v.val);
}
case (ty::ty_obj(?methods)) {
let uint ix = ty::method_idx(cx.fcx.lcx.ccx.sess, sp, field,
methods);
auto vtbl = r.bcx.build.GEP(r.val,
[C_int(0),
C_int(abi::obj_field_vtbl)]);
vtbl = r.bcx.build.Load(vtbl);
// +1 because slot #0 contains the destructor
auto v = r.bcx.build.GEP(vtbl, [C_int(0),
C_int((ix + 1u) as int)]);
auto lvo = lval_mem(r.bcx, v);
let ty::t fn_ty = ty::method_ty_to_fn_ty(cx.fcx.lcx.ccx.tcx,
methods.(ix));
ret rec(llobj = some[ValueRef](r.val),
method_ty = some[ty::t](fn_ty)
with lvo);
}
case (_) {cx.fcx.lcx.ccx.sess.unimpl("field variant in trans_field");}
}
fail;
}
fn trans_index(&@block_ctxt cx, &ast::span sp, &@ast::expr base,
&@ast::expr idx, &ast::ann ann) -> lval_result {
auto lv = trans_expr(cx, base);
lv = autoderef(lv.bcx, lv.val, ty::expr_ty(cx.fcx.lcx.ccx.tcx, base));
auto ix = trans_expr(lv.bcx, idx);
auto v = lv.val;
auto bcx = ix.bcx;
// Cast to an LLVM integer. Rust is less strict than LLVM in this regard.
auto ix_val;
auto ix_size = llsize_of_real(cx.fcx.lcx.ccx, val_ty(ix.val));
auto int_size = llsize_of_real(cx.fcx.lcx.ccx, T_int());
if (ix_size < int_size) {
ix_val = bcx.build.ZExt(ix.val, T_int());
} else if (ix_size > int_size) {
ix_val = bcx.build.Trunc(ix.val, T_int());
} else {
ix_val = ix.val;
}
auto unit_ty = node_ann_type(cx.fcx.lcx.ccx, ann);
auto unit_sz = size_of(bcx, unit_ty);
bcx = unit_sz.bcx;
maybe_name_value(cx.fcx.lcx.ccx, unit_sz.val, "unit_sz");
auto scaled_ix = bcx.build.Mul(ix_val, unit_sz.val);
maybe_name_value(cx.fcx.lcx.ccx, scaled_ix, "scaled_ix");
auto lim = bcx.build.GEP(v, [C_int(0), C_int(abi::vec_elt_fill)]);
lim = bcx.build.Load(lim);
auto bounds_check = bcx.build.ICmp(lib::llvm::LLVMIntULT,
scaled_ix, lim);
auto fail_cx = new_sub_block_ctxt(bcx, "fail");
auto next_cx = new_sub_block_ctxt(bcx, "next");
bcx.build.CondBr(bounds_check, next_cx.llbb, fail_cx.llbb);
// fail: bad bounds check.
auto fail_res = trans_fail(fail_cx, some[common::span](sp),
"bounds check");
auto body = next_cx.build.GEP(v, [C_int(0), C_int(abi::vec_elt_data)]);
auto elt;
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, unit_ty)) {
body = next_cx.build.PointerCast(body, T_ptr(T_array(T_i8(), 0u)));
elt = next_cx.build.GEP(body, [C_int(0), scaled_ix]);
} else {
elt = next_cx.build.GEP(body, [C_int(0), ix_val]);
// We're crossing a box boundary here, so we may need to pointer cast.
auto llunitty = type_of(next_cx.fcx.lcx.ccx, sp, unit_ty);
elt = next_cx.build.PointerCast(elt, T_ptr(llunitty));
}
ret lval_mem(next_cx, elt);
}
// The additional bool returned indicates whether it's mem (that is
// represented as an alloca or heap, hence needs a 'load' to be used as an
// immediate).
fn trans_lval(&@block_ctxt cx, &@ast::expr e) -> lval_result {
alt (e.node) {
case (ast::expr_path(?p, ?ann)) {
ret trans_path(cx, p, ann);
}
case (ast::expr_field(?base, ?ident, ?ann)) {
auto r = trans_expr(cx, base);
auto t = ty::expr_ty(cx.fcx.lcx.ccx.tcx, base);
ret trans_field(r.bcx, e.span, r.val, t, ident, ann);
}
case (ast::expr_index(?base, ?idx, ?ann)) {
ret trans_index(cx, e.span, base, idx, ann);
}
case (ast::expr_unary(?unop, ?base, ?ann)) {
assert (unop == ast::deref);
auto sub = trans_expr(cx, base);
auto val = sub.bcx.build.GEP(sub.val,
[C_int(0),
C_int(abi::box_rc_field_body)]);
ret lval_mem(sub.bcx, val);
}
case (ast::expr_self_method(?ident, ?ann)) {
alt (cx.fcx.llself) {
case (some[self_vt](?s_vt)) {
auto r = s_vt.v;
auto t = s_vt.t;
ret trans_field(cx, e.span, r, t, ident, ann);
}
case (_) {
// Shouldn't happen.
fail;
}
}
}
case (_) {
cx.fcx.lcx.ccx.sess.span_unimpl(e.span,
"expr variant in trans_lval: "
+ util::common::expr_to_str(e));
}
}
fail;
}
fn int_cast(&@block_ctxt bcx, TypeRef lldsttype, TypeRef llsrctype,
ValueRef llsrc, bool signed) -> ValueRef {
if (llvm::LLVMGetIntTypeWidth(lldsttype) >
llvm::LLVMGetIntTypeWidth(llsrctype)) {
if (signed) {
// Widening signed cast.
ret bcx.build.SExtOrBitCast(llsrc, lldsttype);
}
// Widening unsigned cast.
ret bcx.build.ZExtOrBitCast(llsrc, lldsttype);
}
ret bcx.build.TruncOrBitCast(llsrc, lldsttype);
}
fn trans_cast(&@block_ctxt cx, &@ast::expr e, &ast::ann ann) -> result {
auto e_res = trans_expr(cx, e);
auto llsrctype = val_ty(e_res.val);
auto t = node_ann_type(cx.fcx.lcx.ccx, ann);
auto lldsttype = type_of(cx.fcx.lcx.ccx, e.span, t);
if (!ty::type_is_fp(cx.fcx.lcx.ccx.tcx, t)) {
// TODO: native-to-native casts
if (ty::type_is_native(cx.fcx.lcx.ccx.tcx,
ty::expr_ty(cx.fcx.lcx.ccx.tcx, e))) {
e_res.val = e_res.bcx.build.PtrToInt(e_res.val, lldsttype);
} else if (ty::type_is_native(cx.fcx.lcx.ccx.tcx, t)) {
e_res.val = e_res.bcx.build.IntToPtr(e_res.val, lldsttype);
} else {
e_res.val = int_cast(e_res.bcx, lldsttype, llsrctype, e_res.val,
ty::type_is_signed(cx.fcx.lcx.ccx.tcx, t));
}
} else {
cx.fcx.lcx.ccx.sess.unimpl("fp cast");
}
ret e_res;
}
fn trans_bind_thunk(&@local_ctxt cx,
&ast::span sp,
&ty::t incoming_fty,
&ty::t outgoing_fty,
&vec[option::t[@ast::expr]] args,
&ty::t closure_ty,
&vec[ty::t] bound_tys,
uint ty_param_count) -> ValueRef {
// Construct a thunk-call with signature incoming_fty, and that copies
// args forward into a call to outgoing_fty:
let str s = mangle_name_by_seq(cx.ccx, cx.path, "thunk");
let TypeRef llthunk_ty = get_pair_fn_ty(type_of(cx.ccx, sp,
incoming_fty));
let ValueRef llthunk = decl_internal_fastcall_fn(cx.ccx.llmod,
s, llthunk_ty);
auto fcx = new_fn_ctxt(cx, sp, llthunk);
auto bcx = new_top_block_ctxt(fcx);
auto lltop = bcx.llbb;
auto llclosure_ptr_ty =
type_of(cx.ccx, sp, ty::mk_imm_box(cx.ccx.tcx, closure_ty));
auto llclosure = bcx.build.PointerCast(fcx.llenv, llclosure_ptr_ty);
auto lltarget = GEP_tup_like(bcx, closure_ty, llclosure,
[0,
abi::box_rc_field_body,
abi::closure_elt_target]);
bcx = lltarget.bcx;
auto lltargetclosure = bcx.build.GEP(lltarget.val,
[C_int(0),
C_int(abi::fn_field_box)]);
lltargetclosure = bcx.build.Load(lltargetclosure);
auto outgoing_ret_ty = ty::ty_fn_ret(cx.ccx.tcx, outgoing_fty);
auto outgoing_args = ty::ty_fn_args(cx.ccx.tcx, outgoing_fty);
auto llretptr = fcx.llretptr;
if (ty::type_has_dynamic_size(cx.ccx.tcx, outgoing_ret_ty)) {
llretptr = bcx.build.PointerCast(llretptr, T_typaram_ptr(cx.ccx.tn));
}
let vec[ValueRef] llargs = [llretptr,
fcx.lltaskptr,
lltargetclosure];
// Copy in the type parameters.
let uint i = 0u;
while (i < ty_param_count) {
auto lltyparam_ptr =
GEP_tup_like(bcx, closure_ty, llclosure,
[0,
abi::box_rc_field_body,
abi::closure_elt_ty_params,
(i as int)]);
bcx = lltyparam_ptr.bcx;
auto td = bcx.build.Load(lltyparam_ptr.val);
llargs += [td];
fcx.lltydescs += [td];
i += 1u;
}
let uint a = 3u; // retptr, task ptr, env come first
let int b = 0;
let uint outgoing_arg_index = 0u;
let vec[TypeRef] llout_arg_tys =
type_of_explicit_args(cx.ccx, sp, outgoing_args);
for (option::t[@ast::expr] arg in args) {
auto out_arg = outgoing_args.(outgoing_arg_index);
auto llout_arg_ty = llout_arg_tys.(outgoing_arg_index);
alt (arg) {
// Arg provided at binding time; thunk copies it from closure.
case (some[@ast::expr](?e)) {
auto e_ty = ty::expr_ty(cx.ccx.tcx, e);
auto bound_arg =
GEP_tup_like(bcx, closure_ty, llclosure,
[0,
abi::box_rc_field_body,
abi::closure_elt_bindings,
b]);
bcx = bound_arg.bcx;
auto val = bound_arg.val;
if (out_arg.mode == ty::mo_val) {
if (type_is_immediate(cx.ccx, e_ty)) {
val = bcx.build.Load(val);
bcx = take_ty(bcx, val, e_ty).bcx;
} else {
bcx = take_ty(bcx, val, e_ty).bcx;
val = bcx.build.Load(val);
}
} else if (ty::type_contains_params(cx.ccx.tcx,
out_arg.ty)) {
assert (out_arg.mode == ty::mo_alias);
val = bcx.build.PointerCast(val, llout_arg_ty);
}
llargs += [val];
b += 1;
}
// Arg will be provided when the thunk is invoked.
case (none[@ast::expr]) {
let ValueRef passed_arg = llvm::LLVMGetParam(llthunk, a);
if (ty::type_contains_params(cx.ccx.tcx, out_arg.ty)) {
assert (out_arg.mode == ty::mo_alias);
passed_arg = bcx.build.PointerCast(passed_arg,
llout_arg_ty);
}
llargs += [passed_arg];
a += 1u;
}
}
outgoing_arg_index += 1u;
}
// FIXME: turn this call + ret into a tail call.
auto lltargetfn = bcx.build.GEP(lltarget.val,
[C_int(0),
C_int(abi::fn_field_code)]);
// Cast the outgoing function to the appropriate type (see the comments in
// trans_bind below for why this is necessary).
auto lltargetty = type_of_fn(bcx.fcx.lcx.ccx, sp,
ty::ty_fn_proto(bcx.fcx.lcx.ccx.tcx,
outgoing_fty),
outgoing_args,
outgoing_ret_ty,
ty_param_count);
lltargetfn = bcx.build.PointerCast(lltargetfn, T_ptr(T_ptr(lltargetty)));
lltargetfn = bcx.build.Load(lltargetfn);
auto r = bcx.build.FastCall(lltargetfn, llargs);
bcx.build.RetVoid();
finish_fn(fcx, lltop);
ret llthunk;
}
fn trans_bind(&@block_ctxt cx, &@ast::expr f,
&vec[option::t[@ast::expr]] args,
&ast::ann ann) -> result {
auto f_res = trans_lval(cx, f);
if (f_res.is_mem) {
cx.fcx.lcx.ccx.sess.unimpl("re-binding existing function");
} else {
let vec[@ast::expr] bound = [];
for (option::t[@ast::expr] argopt in args) {
alt (argopt) {
case (none[@ast::expr]) {
}
case (some[@ast::expr](?e)) {
vec::push[@ast::expr](bound, e);
}
}
}
// Figure out which tydescs we need to pass, if any.
let ty::t outgoing_fty;
let vec[ValueRef] lltydescs;
alt (f_res.generic) {
case (none[generic_info]) {
outgoing_fty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, f);
lltydescs = [];
}
case (some[generic_info](?ginfo)) {
lazily_emit_all_generic_info_tydesc_glues(cx, ginfo);
outgoing_fty = ginfo.item_type;
lltydescs = ginfo.tydescs;
}
}
auto ty_param_count = vec::len[ValueRef](lltydescs);
if (vec::len[@ast::expr](bound) == 0u && ty_param_count == 0u) {
// Trivial 'binding': just return the static pair-ptr.
ret f_res.res;
} else {
auto bcx = f_res.res.bcx;
auto pair_t = node_type(cx.fcx.lcx.ccx, cx.sp, ann);
auto pair_v = alloca(bcx, pair_t);
// Translate the bound expressions.
let vec[ty::t] bound_tys = [];
let vec[ValueRef] bound_vals = [];
auto i = 0u;
for (@ast::expr e in bound) {
auto arg = trans_expr(bcx, e);
bcx = arg.bcx;
vec::push[ValueRef](bound_vals, arg.val);
vec::push[ty::t](bound_tys,
ty::expr_ty(cx.fcx.lcx.ccx.tcx, e));
i += 1u;
}
// Synthesize a closure type.
let ty::t bindings_ty = ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx,
bound_tys);
// NB: keep this in sync with T_closure_ptr; we're making
// a ty::t structure that has the same "shape" as the LLVM type
// it constructs.
let ty::t tydesc_ty = ty::mk_type(cx.fcx.lcx.ccx.tcx);
let vec[ty::t] captured_tys =
vec::init_elt[ty::t](tydesc_ty, ty_param_count);
let vec[ty::t] closure_tys =
[tydesc_ty,
outgoing_fty,
bindings_ty,
ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx, captured_tys)];
let ty::t closure_ty = ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx,
closure_tys);
auto r = trans_malloc_boxed(bcx, closure_ty);
auto box = r.val;
bcx = r.bcx;
auto rc = bcx.build.GEP(box,
[C_int(0),
C_int(abi::box_rc_field_refcnt)]);
auto closure =
bcx.build.GEP(box,
[C_int(0),
C_int(abi::box_rc_field_body)]);
bcx.build.Store(C_int(1), rc);
// Store bindings tydesc.
auto bound_tydesc =
bcx.build.GEP(closure,
[C_int(0),
C_int(abi::closure_elt_tydesc)]);
auto ti = none[@tydesc_info];
auto bindings_tydesc = get_tydesc(bcx, bindings_ty, true, ti);
lazily_emit_tydesc_glue(bcx, abi::tydesc_field_drop_glue, ti);
lazily_emit_tydesc_glue(bcx, abi::tydesc_field_free_glue, ti);
bcx = bindings_tydesc.bcx;
bcx.build.Store(bindings_tydesc.val, bound_tydesc);
// Determine the LLVM type for the outgoing function type. This
// may be different from the type returned by trans_malloc_boxed()
// since we have more information than that function does;
// specifically, we know how many type descriptors the outgoing
// function has, which type_of() doesn't, as only we know which
// item the function refers to.
auto llfnty = type_of_fn(bcx.fcx.lcx.ccx, cx.sp,
ty::ty_fn_proto(bcx.fcx.lcx.ccx.tcx, outgoing_fty),
ty::ty_fn_args(bcx.fcx.lcx.ccx.tcx, outgoing_fty),
ty::ty_fn_ret(bcx.fcx.lcx.ccx.tcx, outgoing_fty),
ty_param_count);
auto llclosurety = T_ptr(T_fn_pair(bcx.fcx.lcx.ccx.tn, llfnty));
// Store thunk-target.
auto bound_target =
bcx.build.GEP(closure,
[C_int(0),
C_int(abi::closure_elt_target)]);
auto src = bcx.build.Load(f_res.res.val);
bound_target = bcx.build.PointerCast(bound_target, llclosurety);
bcx.build.Store(src, bound_target);
// Copy expr values into boxed bindings.
i = 0u;
auto bindings =
bcx.build.GEP(closure,
[C_int(0),
C_int(abi::closure_elt_bindings)]);
for (ValueRef v in bound_vals) {
auto bound = bcx.build.GEP(bindings,
[C_int(0), C_int(i as int)]);
bcx = copy_ty(bcx, INIT, bound, v, bound_tys.(i)).bcx;
i += 1u;
}
// If necessary, copy tydescs describing type parameters into the
// appropriate slot in the closure.
alt (f_res.generic) {
case (none[generic_info]) { /* nothing to do */ }
case (some[generic_info](?ginfo)) {
lazily_emit_all_generic_info_tydesc_glues(cx, ginfo);
auto ty_params_slot =
bcx.build.GEP(closure,
[C_int(0),
C_int(abi::closure_elt_ty_params)]);
auto i = 0;
for (ValueRef td in ginfo.tydescs) {
auto ty_param_slot = bcx.build.GEP(ty_params_slot,
[C_int(0),
C_int(i)]);
bcx.build.Store(td, ty_param_slot);
i += 1;
}
outgoing_fty = ginfo.item_type;
}
}
// Make thunk and store thunk-ptr in outer pair's code slot.
auto pair_code = bcx.build.GEP(pair_v,
[C_int(0),
C_int(abi::fn_field_code)]);
let ty::t pair_ty = node_ann_type(cx.fcx.lcx.ccx, ann);
let ValueRef llthunk =
trans_bind_thunk(cx.fcx.lcx, cx.sp, pair_ty, outgoing_fty,
args, closure_ty, bound_tys,
ty_param_count);
bcx.build.Store(llthunk, pair_code);
// Store box ptr in outer pair's box slot.
auto pair_box = bcx.build.GEP(pair_v,
[C_int(0),
C_int(abi::fn_field_box)]);
bcx.build.Store
(bcx.build.PointerCast
(box,
T_opaque_closure_ptr(bcx.fcx.lcx.ccx.tn)),
pair_box);
find_scope_cx(cx).cleanups +=
[clean(bind drop_slot(_, pair_v, pair_ty))];
ret res(bcx, pair_v);
}
}
fail; // sadly needed b/c the compiler doesn't know yet that unimpl fails
}
fn trans_arg_expr(&@block_ctxt cx,
&ty::arg arg,
TypeRef lldestty0,
&@ast::expr e) -> result {
auto val;
auto bcx = cx;
auto e_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, e);
if (ty::type_is_structural(cx.fcx.lcx.ccx.tcx, e_ty)) {
auto re = trans_expr(bcx, e);
val = re.val;
bcx = re.bcx;
} else if (arg.mode == ty::mo_alias) {
let lval_result lv;
if (ty::is_lval(e)) {
lv = trans_lval(bcx, e);
} else {
auto r = trans_expr(bcx, e);
if (type_is_immediate(cx.fcx.lcx.ccx, e_ty)) {
lv = lval_val(r.bcx, r.val);
} else {
lv = lval_mem(r.bcx, r.val);
}
}
bcx = lv.res.bcx;
if (lv.is_mem) {
val = lv.res.val;
} else {
// Non-mem but we're trying to alias; synthesize an
// alloca, spill to it and pass its address.
val = do_spill(lv.res.bcx, lv.res.val);
}
} else {
auto re = trans_expr(bcx, e);
val = re.val;
bcx = re.bcx;
}
if (arg.mode != ty::mo_alias) {
bcx = take_ty(bcx, val, e_ty).bcx;
}
if (ty::type_contains_params(cx.fcx.lcx.ccx.tcx, arg.ty)) {
auto lldestty = lldestty0;
if (arg.mode == ty::mo_val) {
// FIXME: we'd prefer to use &&, but rustboot doesn't like it
if (ty::type_is_structural(cx.fcx.lcx.ccx.tcx, e_ty)) {
lldestty = T_ptr(lldestty);
}
}
val = bcx.build.PointerCast(val, lldestty);
}
if (arg.mode == ty::mo_val) {
// FIXME: we'd prefer to use &&, but rustboot doesn't like it
if (ty::type_is_structural(cx.fcx.lcx.ccx.tcx, e_ty)) {
// Until here we've been treating structures by pointer;
// we are now passing it as an arg, so need to load it.
val = bcx.build.Load(val);
}
}
ret res(bcx, val);
}
// NB: must keep 4 fns in sync:
//
// - type_of_fn_full
// - create_llargs_for_fn_args.
// - new_fn_ctxt
// - trans_args
fn trans_args(&@block_ctxt cx,
ValueRef llenv,
&option::t[ValueRef] llobj,
&option::t[generic_info] gen,
&option::t[ValueRef] lliterbody,
&vec[@ast::expr] es,
&ty::t fn_ty)
-> tup(@block_ctxt, vec[ValueRef], ValueRef) {
let vec[ty::arg] args = ty::ty_fn_args(cx.fcx.lcx.ccx.tcx, fn_ty);
let vec[ValueRef] llargs = [];
let vec[ValueRef] lltydescs = [];
let @block_ctxt bcx = cx;
// Arg 0: Output pointer.
auto retty = ty::ty_fn_ret(cx.fcx.lcx.ccx.tcx, fn_ty);
auto llretslot_res = alloc_ty(bcx, retty);
bcx = llretslot_res.bcx;
auto llretslot = llretslot_res.val;
alt (gen) {
case (some[generic_info](?g)) {
lazily_emit_all_generic_info_tydesc_glues(cx, g);
lltydescs = g.tydescs;
args = ty::ty_fn_args(cx.fcx.lcx.ccx.tcx, g.item_type);
retty = ty::ty_fn_ret(cx.fcx.lcx.ccx.tcx, g.item_type);
}
case (_) {
}
}
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, retty)) {
llargs += [bcx.build.PointerCast
(llretslot, T_typaram_ptr(cx.fcx.lcx.ccx.tn))];
} else if (ty::type_contains_params(cx.fcx.lcx.ccx.tcx, retty)) {
// It's possible that the callee has some generic-ness somewhere in
// its return value -- say a method signature within an obj or a fn
// type deep in a structure -- which the caller has a concrete view
// of. If so, cast the caller's view of the restlot to the callee's
// view, for the sake of making a type-compatible call.
llargs +=
[cx.build.PointerCast(llretslot,
T_ptr(type_of(bcx.fcx.lcx.ccx, bcx.sp, retty)))];
} else {
llargs += [llretslot];
}
// Arg 1: task pointer.
llargs += [bcx.fcx.lltaskptr];
// Arg 2: Env (closure-bindings / self-obj)
alt (llobj) {
case (some[ValueRef](?ob)) {
// Every object is always found in memory,
// and not-yet-loaded (as part of an lval x.y
// doted method-call).
llargs += [bcx.build.Load(ob)];
}
case (_) {
llargs += [llenv];
}
}
// Args >3: ty_params ...
llargs += lltydescs;
// ... then possibly an lliterbody argument.
alt (lliterbody) {
case (none[ValueRef]) {}
case (some[ValueRef](?lli)) {
llargs += [lli];
}
}
// ... then explicit args.
// First we figure out the caller's view of the types of the arguments.
// This will be needed if this is a generic call, because the callee has
// to cast her view of the arguments to the caller's view.
auto arg_tys = type_of_explicit_args(cx.fcx.lcx.ccx, cx.sp, args);
auto i = 0u;
for (@ast::expr e in es) {
auto r = trans_arg_expr(bcx, args.(i), arg_tys.(i), e);
bcx = r.bcx;
llargs += [r.val];
i += 1u;
}
ret tup(bcx, llargs, llretslot);
}
fn trans_call(&@block_ctxt cx, &@ast::expr f,
&option::t[ValueRef] lliterbody,
&vec[@ast::expr] args,
&ast::ann ann) -> result {
// NB: 'f' isn't necessarily a function; it might be an entire self-call
// expression because of the hack that allows us to process self-calls
// with trans_call.
auto f_res = trans_lval(cx, f);
auto faddr = f_res.res.val;
auto llenv = C_null(T_opaque_closure_ptr(cx.fcx.lcx.ccx.tn));
alt (f_res.llobj) {
case (some[ValueRef](_)) {
// It's a vtbl entry.
faddr = f_res.res.bcx.build.Load(faddr);
}
case (none[ValueRef]) {
// It's a closure.
auto bcx = f_res.res.bcx;
auto pair = faddr;
faddr = bcx.build.GEP(pair, [C_int(0),
C_int(abi::fn_field_code)]);
faddr = bcx.build.Load(faddr);
auto llclosure = bcx.build.GEP(pair,
[C_int(0),
C_int(abi::fn_field_box)]);
llenv = bcx.build.Load(llclosure);
}
}
let ty::t fn_ty;
alt (f_res.method_ty) {
case (some[ty::t](?meth)) {
// self-call
fn_ty = meth;
}
case (_) {
fn_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, f);
}
}
auto ret_ty = ty::ann_to_type(cx.fcx.lcx.ccx.tcx.node_types, ann);
auto args_res = trans_args(f_res.res.bcx,
llenv, f_res.llobj,
f_res.generic,
lliterbody,
args, fn_ty);
auto bcx = args_res._0;
auto llargs = args_res._1;
auto llretslot = args_res._2;
/*
log "calling: " + val_str(cx.fcx.lcx.ccx.tn, faddr);
for (ValueRef arg in llargs) {
log "arg: " + val_str(cx.fcx.lcx.ccx.tn, arg);
}
*/
bcx.build.FastCall(faddr, llargs);
auto retval = C_nil();
alt (lliterbody) {
case (none[ValueRef]) {
if (!ty::type_is_nil(cx.fcx.lcx.ccx.tcx, ret_ty)) {
retval = load_if_immediate(bcx, llretslot, ret_ty);
// Retval doesn't correspond to anything really tangible in
// the frame, but it's a ref all the same, so we put a note
// here to drop it when we're done in this scope.
find_scope_cx(cx).cleanups +=
[clean(bind drop_ty(_, retval, ret_ty))];
}
}
case (some[ValueRef](_)) {
// If there was an lliterbody, it means we were calling an
// iter, and we are *not* the party using its 'output' value,
// we should ignore llretslot.
}
}
ret res(bcx, retval);
}
fn trans_tup(&@block_ctxt cx, &vec[ast::elt] elts,
&ast::ann ann) -> result {
auto bcx = cx;
auto t = node_ann_type(bcx.fcx.lcx.ccx, ann);
auto tup_res = alloc_ty(bcx, t);
auto tup_val = tup_res.val;
bcx = tup_res.bcx;
find_scope_cx(cx).cleanups +=
[clean(bind drop_ty(_, tup_val, t))];
let int i = 0;
for (ast::elt e in elts) {
auto e_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, e.expr);
auto src_res = trans_expr(bcx, e.expr);
bcx = src_res.bcx;
auto dst_res = GEP_tup_like(bcx, t, tup_val, [0, i]);
bcx = dst_res.bcx;
bcx = copy_ty(src_res.bcx, INIT, dst_res.val, src_res.val, e_ty).bcx;
i += 1;
}
ret res(bcx, tup_val);
}
fn trans_vec(&@block_ctxt cx, &vec[@ast::expr] args,
&ast::ann ann) -> result {
auto t = node_ann_type(cx.fcx.lcx.ccx, ann);
auto unit_ty = t;
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_vec(?mt)) {
unit_ty = mt.ty;
}
case (_) {
cx.fcx.lcx.ccx.sess.bug("non-vec type in trans_vec");
}
}
auto bcx = cx;
auto unit_sz = size_of(bcx, unit_ty);
bcx = unit_sz.bcx;
auto data_sz = bcx.build.Mul(C_int(vec::len[@ast::expr](args) as int),
unit_sz.val);
// FIXME: pass tydesc properly.
auto vec_val = bcx.build.Call(bcx.fcx.lcx.ccx.upcalls.new_vec,
[bcx.fcx.lltaskptr, data_sz,
C_null(T_ptr(T_tydesc(bcx.fcx.lcx.ccx.tn)))]);
auto llty = type_of(bcx.fcx.lcx.ccx, bcx.sp, t);
vec_val = bcx.build.PointerCast(vec_val, llty);
find_scope_cx(bcx).cleanups +=
[clean(bind drop_ty(_, vec_val, t))];
auto body = bcx.build.GEP(vec_val, [C_int(0),
C_int(abi::vec_elt_data)]);
auto pseudo_tup_ty =
ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx,
vec::init_elt[ty::t](unit_ty,
vec::len[@ast::expr](args)));
let int i = 0;
for (@ast::expr e in args) {
auto src_res = trans_expr(bcx, e);
bcx = src_res.bcx;
auto dst_res = GEP_tup_like(bcx, pseudo_tup_ty, body, [0, i]);
bcx = dst_res.bcx;
// Cast the destination type to the source type. This is needed to
// make tags work, for a subtle combination of reasons:
//
// (1) "dst_res" above is derived from "body", which is in turn
// derived from "vec_val".
// (2) "vec_val" has the LLVM type "llty".
// (3) "llty" is the result of calling type_of() on a vector type.
// (4) For tags, type_of() returns a different type depending on
// on whether the tag is behind a box or not. Vector types are
// considered boxes.
// (5) "src_res" is derived from "unit_ty", which is not behind a box.
auto dst_val;
if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, unit_ty)) {
auto llunit_ty = type_of(cx.fcx.lcx.ccx, bcx.sp, unit_ty);
dst_val = bcx.build.PointerCast(dst_res.val, T_ptr(llunit_ty));
} else {
dst_val = dst_res.val;
}
bcx = copy_ty(bcx, INIT, dst_val, src_res.val, unit_ty).bcx;
i += 1;
}
auto fill = bcx.build.GEP(vec_val,
[C_int(0), C_int(abi::vec_elt_fill)]);
bcx.build.Store(data_sz, fill);
ret res(bcx, vec_val);
}
fn trans_rec(&@block_ctxt cx, &vec[ast::field] fields,
&option::t[@ast::expr] base, &ast::ann ann) -> result {
auto bcx = cx;
auto t = node_ann_type(bcx.fcx.lcx.ccx, ann);
auto rec_res = alloc_ty(bcx, t);
auto rec_val = rec_res.val;
bcx = rec_res.bcx;
find_scope_cx(cx).cleanups +=
[clean(bind drop_ty(_, rec_val, t))];
let int i = 0;
auto base_val = C_nil();
alt (base) {
case (none[@ast::expr]) { }
case (some[@ast::expr](?bexp)) {
auto base_res = trans_expr(bcx, bexp);
bcx = base_res.bcx;
base_val = base_res.val;
}
}
let vec[ty::field] ty_fields = [];
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_rec(?flds)) { ty_fields = flds; }
}
for (ty::field tf in ty_fields) {
auto e_ty = tf.mt.ty;
auto dst_res = GEP_tup_like(bcx, t, rec_val, [0, i]);
bcx = dst_res.bcx;
auto expr_provided = false;
auto src_res = res(bcx, C_nil());
for (ast::field f in fields) {
if (str::eq(f.ident, tf.ident)) {
expr_provided = true;
src_res = trans_expr(bcx, f.expr);
}
}
if (!expr_provided) {
src_res = GEP_tup_like(bcx, t, base_val, [0, i]);
src_res = res(src_res.bcx,
load_if_immediate(bcx, src_res.val, e_ty));
}
bcx = src_res.bcx;
bcx = copy_ty(bcx, INIT, dst_res.val, src_res.val, e_ty).bcx;
i += 1;
}
ret res(bcx, rec_val);
}
fn trans_expr(&@block_ctxt cx, &@ast::expr e) -> result {
*cx = rec(sp=e.span with *cx);
alt (e.node) {
case (ast::expr_lit(?lit, ?ann)) {
ret res(cx, trans_lit(cx.fcx.lcx.ccx, *lit, ann));
}
case (ast::expr_unary(?op, ?x, ?ann)) {
if (op != ast::deref) {
ret trans_unary(cx, op, x, ann);
}
}
case (ast::expr_binary(?op, ?x, ?y, _)) {
ret trans_binary(cx, op, x, y);
}
case (ast::expr_if(?cond, ?thn, ?els, ?ann)) {
ret trans_if(cx, cond, thn, els, ann);
}
case (ast::expr_for(?decl, ?seq, ?body, _)) {
ret trans_for(cx, decl, seq, body);
}
case (ast::expr_for_each(?decl, ?seq, ?body, _)) {
ret trans_for_each(cx, decl, seq, body);
}
case (ast::expr_while(?cond, ?body, _)) {
ret trans_while(cx, cond, body);
}
case (ast::expr_do_while(?body, ?cond, _)) {
ret trans_do_while(cx, body, cond);
}
case (ast::expr_alt(?expr, ?arms, ?ann)) {
ret trans_alt(cx, expr, arms, ann);
}
case (ast::expr_block(?blk, _)) {
*cx = rec(sp=blk.span with *cx);
auto sub_cx = new_scope_block_ctxt(cx, "block-expr body");
auto next_cx = new_sub_block_ctxt(cx, "next");
auto sub = trans_block(sub_cx, blk);
cx.build.Br(sub_cx.llbb);
sub.bcx.build.Br(next_cx.llbb);
ret res(next_cx, sub.val);
}
case (ast::expr_assign(?dst, ?src, ?ann)) {
auto lhs_res = trans_lval(cx, dst);
assert (lhs_res.is_mem);
*(lhs_res.res.bcx) = rec(sp=src.span with *(lhs_res.res.bcx));
auto rhs_res = trans_expr(lhs_res.res.bcx, src);
auto t = node_ann_type(cx.fcx.lcx.ccx, ann);
// FIXME: calculate copy init-ness in typestate.
ret copy_ty(rhs_res.bcx, DROP_EXISTING,
lhs_res.res.val, rhs_res.val, t);
}
case (ast::expr_assign_op(?op, ?dst, ?src, ?ann)) {
auto t = node_ann_type(cx.fcx.lcx.ccx, ann);
auto lhs_res = trans_lval(cx, dst);
assert (lhs_res.is_mem);
*(lhs_res.res.bcx) = rec(sp=src.span with *(lhs_res.res.bcx));
auto rhs_res = trans_expr(lhs_res.res.bcx, src);
if (ty::type_is_sequence(cx.fcx.lcx.ccx.tcx, t)) {
alt (op) {
case (ast::add) {
ret trans_vec_append(rhs_res.bcx, t,
lhs_res.res.val,
rhs_res.val);
}
case (_) { }
}
}
auto lhs_val = load_if_immediate(rhs_res.bcx,
lhs_res.res.val, t);
auto v = trans_eager_binop(rhs_res.bcx, op, t,
lhs_val, rhs_res.val);
// FIXME: calculate copy init-ness in typestate.
ret copy_ty(v.bcx, DROP_EXISTING,
lhs_res.res.val, v.val, t);
}
case (ast::expr_bind(?f, ?args, ?ann)) {
ret trans_bind(cx, f, args, ann);
}
case (ast::expr_call(?f, ?args, ?ann)) {
ret trans_call(cx, f, none[ValueRef], args, ann);
}
case (ast::expr_cast(?e, _, ?ann)) {
ret trans_cast(cx, e, ann);
}
case (ast::expr_vec(?args, _, ?ann)) {
ret trans_vec(cx, args, ann);
}
case (ast::expr_tup(?args, ?ann)) {
ret trans_tup(cx, args, ann);
}
case (ast::expr_rec(?args, ?base, ?ann)) {
ret trans_rec(cx, args, base, ann);
}
case (ast::expr_ext(_, _, _, ?expanded, _)) {
ret trans_expr(cx, expanded);
}
case (ast::expr_fail(_)) {
ret trans_fail(cx, some(e.span), "explicit failure");
}
case (ast::expr_log(?lvl, ?a, _)) {
ret trans_log(lvl, cx, a);
}
case (ast::expr_assert(?a, _)) {
ret trans_check_expr(cx, a);
}
case (ast::expr_check(?a, _)) {
ret trans_check_expr(cx, a);
}
case (ast::expr_break(?a)) {
ret trans_break(cx);
}
case (ast::expr_cont(?a)) {
ret trans_cont(cx);
}
case (ast::expr_ret(?e, _)) {
ret trans_ret(cx, e);
}
case (ast::expr_put(?e, _)) {
ret trans_put(cx, e);
}
case (ast::expr_be(?e, _)) {
ret trans_be(cx, e);
}
case (ast::expr_port(?ann)) {
ret trans_port(cx, ann);
}
case (ast::expr_chan(?e, ?ann)) {
ret trans_chan(cx, e, ann);
}
case (ast::expr_send(?lhs, ?rhs, ?ann)) {
ret trans_send(cx, lhs, rhs, ann);
}
case (ast::expr_recv(?lhs, ?rhs, ?ann)) {
ret trans_recv(cx, lhs, rhs, ann);
}
case (ast::expr_spawn(?dom, ?name, ?func, ?args, ?ann)) {
ret trans_spawn(cx, dom, name, func, args, ann);
}
case (ast::expr_anon_obj(?anon_obj, ?tps, ?odid, ?ann)) {
ret trans_anon_obj(cx, e.span, anon_obj, tps, odid, ann);
}
case (_) {
// The expression is an lvalue. Fall through.
}
}
// lval cases fall through to trans_lval and then
// possibly load the result (if it's non-structural).
auto t = ty::expr_ty(cx.fcx.lcx.ccx.tcx, e);
auto sub = trans_lval(cx, e);
ret res(sub.res.bcx, load_if_immediate(sub.res.bcx, sub.res.val, t));
}
// We pass structural values around the compiler "by pointer" and
// non-structural values (scalars, boxes, pointers) "by value". We call the
// latter group "immediates" and, in some circumstances when we know we have a
// pointer (or need one), perform load/store operations based on the
// immediate-ness of the type.
fn type_is_immediate(&@crate_ctxt ccx, &ty::t t) -> bool {
ret ty::type_is_scalar(ccx.tcx, t) ||
ty::type_is_boxed(ccx.tcx, t) ||
ty::type_is_native(ccx.tcx, t);
}
fn do_spill(&@block_ctxt cx, ValueRef v) -> ValueRef {
// We have a value but we have to spill it to pass by alias.
auto llptr = alloca(cx, val_ty(v));
cx.build.Store(v, llptr);
ret llptr;
}
fn spill_if_immediate(&@block_ctxt cx, ValueRef v, &ty::t t) -> ValueRef {
if (type_is_immediate(cx.fcx.lcx.ccx, t)) {
ret do_spill(cx, v);
}
ret v;
}
fn load_if_immediate(&@block_ctxt cx, ValueRef v, &ty::t t) -> ValueRef {
if (type_is_immediate(cx.fcx.lcx.ccx, t)) {
ret cx.build.Load(v);
}
ret v;
}
fn trans_log(int lvl, &@block_ctxt cx, &@ast::expr e) -> result {
auto lcx = cx.fcx.lcx;
auto modname = str::connect(lcx.module_path, "::");
auto global;
if (lcx.ccx.module_data.contains_key(modname)) {
global = lcx.ccx.module_data.get(modname);
} else {
global = llvm::LLVMAddGlobal(lcx.ccx.llmod, T_int(),
str::buf("_rust_mod_log_" + modname));
llvm::LLVMSetGlobalConstant(global, False);
llvm::LLVMSetInitializer(global, C_null(T_int()));
llvm::LLVMSetLinkage(global, lib::llvm::LLVMInternalLinkage
as llvm::Linkage);
lcx.ccx.module_data.insert(modname, global);
}
auto log_cx = new_scope_block_ctxt(cx, "log");
auto after_cx = new_sub_block_ctxt(cx, "after");
auto load = cx.build.Load(global);
auto test = cx.build.ICmp(lib::llvm::LLVMIntSGE, load, C_int(lvl));
cx.build.CondBr(test, log_cx.llbb, after_cx.llbb);
auto sub = trans_expr(log_cx, e);
auto e_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, e);
auto log_bcx = sub.bcx;
if (ty::type_is_fp(cx.fcx.lcx.ccx.tcx, e_ty)) {
let TypeRef tr;
let bool is32bit = false;
alt (ty::struct(cx.fcx.lcx.ccx.tcx, e_ty)) {
case (ty::ty_machine(util::common::ty_f32)) {
tr = T_f32();
is32bit = true;
}
case (ty::ty_machine(util::common::ty_f64)) {
tr = T_f64();
}
case (_) {
tr = T_float();
}
}
if (is32bit) {
log_bcx.build.Call(log_bcx.fcx.lcx.ccx.upcalls.log_float,
[log_bcx.fcx.lltaskptr, C_int(lvl),
sub.val]);
} else {
// FIXME: Eliminate this level of indirection.
auto tmp = alloca(log_bcx, tr);
sub.bcx.build.Store(sub.val, tmp);
log_bcx.build.Call(log_bcx.fcx.lcx.ccx.upcalls.log_double,
[log_bcx.fcx.lltaskptr, C_int(lvl), tmp]);
}
} else if (ty::type_is_integral(cx.fcx.lcx.ccx.tcx, e_ty) ||
ty::type_is_bool(cx.fcx.lcx.ccx.tcx, e_ty)) {
// FIXME: Handle signedness properly.
auto llintval = int_cast(log_bcx, T_int(), val_ty(sub.val),
sub.val, false);
log_bcx.build.Call(log_bcx.fcx.lcx.ccx.upcalls.log_int,
[log_bcx.fcx.lltaskptr, C_int(lvl),
llintval]);
} else {
alt (ty::struct(cx.fcx.lcx.ccx.tcx, e_ty)) {
case (ty::ty_str) {
log_bcx.build.Call(log_bcx.fcx.lcx.ccx.upcalls.log_str,
[log_bcx.fcx.lltaskptr, C_int(lvl),
sub.val]);
}
case (_) {
// FIXME: Support these types.
cx.fcx.lcx.ccx.sess.span_err(e.span,
"log called on unsupported type " +
ty::ty_to_str(cx.fcx.lcx.ccx.tcx, e_ty));
fail;
}
}
}
log_bcx = trans_block_cleanups(log_bcx, log_cx);
log_bcx.build.Br(after_cx.llbb);
ret res(after_cx, C_nil());
}
fn trans_check_expr(&@block_ctxt cx, &@ast::expr e) -> result {
auto cond_res = trans_expr(cx, e);
auto expr_str = util::common::expr_to_str(e);
auto fail_cx = new_sub_block_ctxt(cx, "fail");
auto fail_res = trans_fail(fail_cx, some[common::span](e.span), expr_str);
auto next_cx = new_sub_block_ctxt(cx, "next");
cond_res.bcx.build.CondBr(cond_res.val,
next_cx.llbb,
fail_cx.llbb);
ret res(next_cx, C_nil());
}
fn trans_fail(&@block_ctxt cx, &option::t[common::span] sp_opt, &str fail_str)
-> result {
auto V_fail_str = C_cstr(cx.fcx.lcx.ccx, fail_str);
auto V_filename; auto V_line;
alt (sp_opt) {
case (some[common::span](?sp)) {
auto loc = cx.fcx.lcx.ccx.sess.lookup_pos(sp.lo);
V_filename = C_cstr(cx.fcx.lcx.ccx, loc.filename);
V_line = loc.line as int;
}
case (none[common::span]) {
V_filename = C_cstr(cx.fcx.lcx.ccx, "<runtime>");
V_line = 0;
}
}
V_fail_str = cx.build.PointerCast(V_fail_str, T_ptr(T_i8()));
V_filename = cx.build.PointerCast(V_filename, T_ptr(T_i8()));
auto args = [cx.fcx.lltaskptr, V_fail_str, V_filename, C_int(V_line)];
cx.build.Call(cx.fcx.lcx.ccx.upcalls._fail, args);
cx.build.Unreachable();
ret res(cx, C_nil());
}
fn trans_put(&@block_ctxt cx, &option::t[@ast::expr] e) -> result {
auto llcallee = C_nil();
auto llenv = C_nil();
alt (cx.fcx.lliterbody) {
case (some[ValueRef](?lli)) {
auto slot = alloca(cx, val_ty(lli));
cx.build.Store(lli, slot);
llcallee = cx.build.GEP(slot, [C_int(0),
C_int(abi::fn_field_code)]);
llcallee = cx.build.Load(llcallee);
llenv = cx.build.GEP(slot, [C_int(0),
C_int(abi::fn_field_box)]);
llenv = cx.build.Load(llenv);
}
}
auto bcx = cx;
auto dummy_retslot = alloca(bcx, T_nil());
let vec[ValueRef] llargs = [dummy_retslot, cx.fcx.lltaskptr, llenv];
alt (e) {
case (none[@ast::expr]) { }
case (some[@ast::expr](?x)) {
auto e_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, x);
auto arg = rec(mode=ty::mo_alias, ty=e_ty);
auto arg_tys = type_of_explicit_args(cx.fcx.lcx.ccx,
x.span, [arg]);
auto r = trans_arg_expr(bcx, arg, arg_tys.(0), x);
bcx = r.bcx;
llargs += [r.val];
}
}
ret res(bcx, bcx.build.FastCall(llcallee, llargs));
}
fn trans_break_cont(&@block_ctxt cx, bool to_end) -> result {
auto bcx = cx;
// Locate closest loop block, outputting cleanup as we go.
auto cleanup_cx = cx;
while (true) {
bcx = trans_block_cleanups(bcx, cleanup_cx);
alt (cleanup_cx.kind) {
case (LOOP_SCOPE_BLOCK(?_cont, ?_break)) {
if (to_end) {
bcx.build.Br(_break.llbb);
} else {
alt (_cont) {
case (option::some[@block_ctxt](?_cont)) {
bcx.build.Br(_cont.llbb);
}
case (_) {
bcx.build.Br(cleanup_cx.llbb);
}
}
}
ret res(new_sub_block_ctxt(bcx, "break_cont.unreachable"),
C_nil());
}
case (_) {
alt (cleanup_cx.parent) {
case (parent_some(?cx)) { cleanup_cx = cx; }
}
}
}
}
fail;
}
fn trans_break(&@block_ctxt cx) -> result {
ret trans_break_cont(cx, true);
}
fn trans_cont(&@block_ctxt cx) -> result {
ret trans_break_cont(cx, false);
}
fn trans_ret(&@block_ctxt cx, &option::t[@ast::expr] e) -> result {
auto bcx = cx;
auto val = C_nil();
alt (e) {
case (some[@ast::expr](?x)) {
auto t = ty::expr_ty(cx.fcx.lcx.ccx.tcx, x);
auto r = trans_expr(cx, x);
bcx = r.bcx;
val = r.val;
bcx = copy_ty(bcx, INIT, cx.fcx.llretptr, val, t).bcx;
}
case (_) {
auto t = llvm::LLVMGetElementType(val_ty(cx.fcx.llretptr));
auto null = lib::llvm::llvm::LLVMConstNull(t);
bcx.build.Store(null, cx.fcx.llretptr);
}
}
// run all cleanups and back out.
let bool more_cleanups = true;
auto cleanup_cx = cx;
while (more_cleanups) {
bcx = trans_block_cleanups(bcx, cleanup_cx);
alt (cleanup_cx.parent) {
case (parent_some(?b)) {
cleanup_cx = b;
}
case (parent_none) {
more_cleanups = false;
}
}
}
bcx.build.RetVoid();
ret res(new_sub_block_ctxt(bcx, "ret.unreachable"), C_nil());
}
fn trans_be(&@block_ctxt cx, &@ast::expr e) -> result {
// FIXME: This should be a typestate precondition
assert (ast::is_call_expr(e));
// FIXME: Turn this into a real tail call once
// calling convention issues are settled
ret trans_ret(cx, some(e));
}
fn trans_port(&@block_ctxt cx, &ast::ann ann) -> result {
auto t = node_ann_type(cx.fcx.lcx.ccx, ann);
auto unit_ty;
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_port(?t)) {
unit_ty = t;
}
case (_) {
cx.fcx.lcx.ccx.sess.bug("non-port type in trans_port");
fail;
}
}
auto llunit_ty = type_of(cx.fcx.lcx.ccx, cx.sp, unit_ty);
auto bcx = cx;
auto unit_sz = size_of(bcx, unit_ty);
bcx = unit_sz.bcx;
auto port_raw_val = bcx.build.Call(bcx.fcx.lcx.ccx.upcalls.new_port,
[bcx.fcx.lltaskptr, unit_sz.val]);
auto llty = type_of(cx.fcx.lcx.ccx, cx.sp, t);
auto port_val = bcx.build.PointerCast(port_raw_val, llty);
auto dropref = clean(bind drop_ty(_, port_val, t));
find_scope_cx(bcx).cleanups += [dropref];
ret res(bcx, port_val);
}
fn trans_chan(&@block_ctxt cx, &@ast::expr e, &ast::ann ann) -> result {
auto bcx = cx;
auto prt = trans_expr(bcx, e);
bcx = prt.bcx;
auto prt_val = bcx.build.PointerCast(prt.val, T_opaque_port_ptr());
auto chan_raw_val = bcx.build.Call(bcx.fcx.lcx.ccx.upcalls.new_chan,
[bcx.fcx.lltaskptr, prt_val]);
auto chan_ty = node_ann_type(bcx.fcx.lcx.ccx, ann);
auto chan_llty = type_of(bcx.fcx.lcx.ccx, e.span, chan_ty);
auto chan_val = bcx.build.PointerCast(chan_raw_val, chan_llty);
auto dropref = clean(bind drop_ty(_, chan_val, chan_ty));
find_scope_cx(bcx).cleanups += [dropref];
ret res(bcx, chan_val);
}
fn trans_spawn(&@block_ctxt cx,
&ast::spawn_dom dom, &option::t[str] name,
&@ast::expr func, &vec[@ast::expr] args,
&ast::ann ann) -> result {
auto bcx = cx;
// Make the task name
auto tname = alt(name) {
case(none) {
auto argss = vec::map(common::expr_to_str, args);
#fmt("%s(%s)",
common::expr_to_str(func),
str::connect(argss, ", "))
}
case(some[str](?n)) {
n
}
};
// dump a bunch of information
log_err "Translating Spawn " +
"(The compiled program is not actually running yet, don't worry!";
log_err #fmt("task name: %s", tname);
// Generate code
//
// This is a several step process. The following things need to happen
// (not necessarily in order):
//
// 1. Evaluate all the arguments to the spawnee.
//
// 2. Alloca a tuple that holds these arguments (they must be in reverse
// order, so that they match the expected stack layout for the spawnee)
//
// 3. Fill the tuple with the arguments we evaluated.
//
// 4. Pass a pointer to the spawnee function and the argument tuple to
// upcall_start_task.
//
// 5. Oh yeah, we have to create the task before we start it...
// Translate the arguments, remembering their types and where the values
// ended up.
// There are 3 integers, for magic.
let vec[ty::t] arg_tys = [ty::idx_int, ty::idx_int, ty::idx_int];
let vec[ValueRef] arg_vals = [];
for(@ast::expr e in args) {
auto arg = trans_expr(bcx, e);
bcx = arg.bcx;
vec::push[ValueRef](arg_vals, arg.val);
vec::push[ty::t](arg_tys,
ty::expr_ty(cx.fcx.lcx.ccx.tcx,
e));
}
// Make the tuple. We have to reverse the types first though.
//vec::reverse[ty::t](arg_tys);
//vec::reverse[ValueRef](arg_vals);
auto args_ty = ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx, arg_tys);
// Allocate and fill the tuple.
auto llargs = alloc_ty(bcx, args_ty);
// 3 to skip all the magic
auto i = 3u;
for(ValueRef v in arg_vals) {
// log_err #fmt("ty(llargs) = %s",
// val_str(bcx.fcx.lcx.ccx.tn, llargs.val));
auto target = bcx.build.GEP(llargs.val, [C_int(0), C_int(i as int)]);
// log_err #fmt("ty(v) = %s", val_str(bcx.fcx.lcx.ccx.tn, v));
// log_err #fmt("ty(target) = %s",
// val_str(bcx.fcx.lcx.ccx.tn, target));
bcx.build.Store(v, target);
i += 1u;
}
// Now we're ready to do the upcall.
// But first, we'll create a task.
let ValueRef lltname = C_str(bcx.fcx.lcx.ccx, tname);
log_err #fmt("ty(new_task) = %s",
val_str(bcx.fcx.lcx.ccx.tn,
bcx.fcx.lcx.ccx.upcalls.new_task));
log_err #fmt("ty(lltaskptr) = %s",
val_str(bcx.fcx.lcx.ccx.tn,
bcx.fcx.lltaskptr));
log_err #fmt("ty(lltname) = %s",
val_str(bcx.fcx.lcx.ccx.tn,
lltname));
log_err "Building upcall_new_task";
auto new_task = bcx.build.Call(bcx.fcx.lcx.ccx.upcalls.new_task,
[bcx.fcx.lltaskptr, lltname]);
log_err "Done";
// Okay, start the task.
// First we find the function
auto fnptr = trans_lval(bcx, func).res;
bcx = fnptr.bcx;
auto llfnptr = bcx.build.GEP(fnptr.val,
[C_int(0), C_int(0)]);
log_err "Casting llfnptr";
auto llfnptrptr_i = bcx.build.PointerCast(llfnptr,
T_ptr(T_int()));
// We'd better dereference this one more time, since that one points into
// the symbol table or something.
auto llfnptr_i = bcx.build.Load(llfnptrptr_i);
log_err "Cassting llargs";
auto llargs_i = bcx.build.PointerCast(llargs.val,
T_int());
auto args_size = size_of(bcx, args_ty).val;
log_err "Building call to start_task";
log_err #fmt("ty(start_task) = %s",
val_str(bcx.fcx.lcx.ccx.tn,
bcx.fcx.lcx.ccx.upcalls.start_task));
log_err #fmt("ty(lltaskptr) = %s",
val_str(bcx.fcx.lcx.ccx.tn,
bcx.fcx.lltaskptr));
log_err #fmt("ty(new_task) = %s",
val_str(bcx.fcx.lcx.ccx.tn,
new_task));
log_err #fmt("ty(llfnptr) = %s",
val_str(bcx.fcx.lcx.ccx.tn,
llfnptr_i));
log_err #fmt("ty(llargs) = %s",
val_str(bcx.fcx.lcx.ccx.tn,
llargs_i));
log_err #fmt("ty(args_size) = %s",
val_str(bcx.fcx.lcx.ccx.tn,
args_size));
bcx.build.Call(bcx.fcx.lcx.ccx.upcalls.start_task,
[bcx.fcx.lltaskptr, new_task,
llfnptr_i, llargs_i, args_size]);
log_err "Done";
/*
alt(dom) {
case(ast::dom_implicit) {
// TODO
log_err "Spawning implicit domain tasks is not implemented.";
//fail;
}
case(ast::dom_thread) {
// TODO
log_err "Spawining new thread tasks is not implemented.";
// TODO: for now use the normal unimpl thing.
fail;
}
}
*/
ret res(bcx, new_task);
}
fn trans_send(&@block_ctxt cx, &@ast::expr lhs, &@ast::expr rhs,
&ast::ann ann) -> result {
auto bcx = cx;
auto chn = trans_expr(bcx, lhs);
bcx = chn.bcx;
auto data = trans_expr(bcx, rhs);
bcx = data.bcx;
auto chan_ty = node_ann_type(cx.fcx.lcx.ccx, ann);
auto unit_ty;
alt (ty::struct(cx.fcx.lcx.ccx.tcx, chan_ty)) {
case (ty::ty_chan(?t)) {
unit_ty = t;
}
case (_) {
bcx.fcx.lcx.ccx.sess.bug("non-chan type in trans_send");
fail;
}
}
auto data_alloc = alloc_ty(bcx, unit_ty);
bcx = data_alloc.bcx;
auto data_tmp = copy_ty(bcx, INIT, data_alloc.val, data.val, unit_ty);
bcx = data_tmp.bcx;
find_scope_cx(bcx).cleanups +=
[clean(bind drop_ty(_, data_alloc.val, unit_ty))];
auto llchanval = bcx.build.PointerCast(chn.val, T_opaque_chan_ptr());
auto lldataptr = bcx.build.PointerCast(data_alloc.val, T_ptr(T_i8()));
bcx.build.Call(bcx.fcx.lcx.ccx.upcalls.send,
[bcx.fcx.lltaskptr, llchanval, lldataptr]);
ret res(bcx, chn.val);
}
fn trans_recv(&@block_ctxt cx, &@ast::expr lhs, &@ast::expr rhs,
&ast::ann ann) -> result {
auto bcx = cx;
auto data = trans_lval(bcx, lhs);
assert (data.is_mem);
bcx = data.res.bcx;
auto unit_ty = node_ann_type(bcx.fcx.lcx.ccx, ann);
// FIXME: calculate copy init-ness in typestate.
ret recv_val(bcx, data.res.val, rhs, unit_ty, DROP_EXISTING);
}
fn recv_val(&@block_ctxt cx, ValueRef lhs, &@ast::expr rhs,
&ty::t unit_ty, copy_action action) -> result {
auto bcx = cx;
auto prt = trans_expr(bcx, rhs);
bcx = prt.bcx;
auto lldataptr = bcx.build.PointerCast(lhs, T_ptr(T_ptr(T_i8())));
auto llportptr = bcx.build.PointerCast(prt.val, T_opaque_port_ptr());
bcx.build.Call(bcx.fcx.lcx.ccx.upcalls.recv,
[bcx.fcx.lltaskptr, lldataptr, llportptr]);
auto data_load = load_if_immediate(bcx, lhs, unit_ty);
auto cp = copy_ty(bcx, action, lhs, data_load, unit_ty);
bcx = cp.bcx;
// TODO: Any cleanup need to be done here?
ret res(bcx, lhs);
}
/*
Suppose we create an anonymous object my_b from a regular object a:
obj a() {
fn foo() -> int {
ret 2;
}
fn bar() -> int {
ret self.foo();
}
}
auto my_a = a();
auto my_b = obj { fn baz() -> int { ret self.foo() } with my_a };
Here we're extending the my_a object with an additional method baz, creating
an object my_b. Since it's an object, my_b is a pair of a vtable pointer and
a body pointer:
my_b: [vtbl* | body*]
my_b's vtable has entries for foo, bar, and baz, whereas my_a's vtable has
only foo and bar. my_b's 3-entry vtable consists of two forwarding functions
and one real method.
my_b's body just contains the pair a: [ a_vtable | a_body ], wrapped up with
any additional fields that my_b added. None were added, so my_b is just the
wrapped inner object.
*/
fn trans_anon_obj(&@block_ctxt cx, &ast::span sp,
&ast::anon_obj anon_obj,
&vec[ast::ty_param] ty_params,
&ast::obj_def_ids oid,
&ast::ann ann) -> result {
let option::t[result] with_obj_val = none[result];
alt (anon_obj.with_obj) {
case (none[@ast::expr]) { }
case (some[@ast::expr](?e)) {
// Translating with_obj returns a pointer to a 2-word value. We
// want to allocate space for this value in our outer object, then
// copy it into the outer object.
with_obj_val = some[result](trans_expr(cx, e));
}
}
// For the anon obj's additional fields, if any exist, translate object
// constructor arguments to function arguments.
let option::t[vec[ast::obj_field]] addtl_fields
= none[vec[ast::obj_field]];
let vec[ast::arg] addtl_fn_args = [];
alt (anon_obj.fields) {
case (none[vec[ast::obj_field]]) { }
case (some[vec[ast::obj_field]](?fields)) {
for (ast::obj_field f in fields) {
addtl_fn_args += [rec(mode=ast::alias, ty=f.ty,
ident=f.ident, id=f.id)];
}
}
}
// TODO: everything else.
cx.fcx.lcx.ccx.sess.unimpl("support for anonymous objects");
fail;
}
fn init_local(&@block_ctxt cx, &@ast::local local) -> result {
// Make a note to drop this slot on the way out.
assert (cx.fcx.lllocals.contains_key(local.id));
auto llptr = cx.fcx.lllocals.get(local.id);
auto ty = node_ann_type(cx.fcx.lcx.ccx, local.ann);
auto bcx = cx;
find_scope_cx(cx).cleanups +=
[clean(bind drop_slot(_, llptr, ty))];
alt (local.init) {
case (some[ast::initializer](?init)) {
alt (init.op) {
case (ast::init_assign) {
auto sub = trans_expr(bcx, init.expr);
bcx = copy_ty(sub.bcx, INIT, llptr, sub.val, ty).bcx;
}
case (ast::init_recv) {
bcx = recv_val(bcx, llptr, init.expr, ty, INIT).bcx;
}
}
}
case (_) {
bcx = zero_alloca(bcx, llptr, ty).bcx;
}
}
ret res(bcx, llptr);
}
fn zero_alloca(&@block_ctxt cx, ValueRef llptr, ty::t t) -> result {
auto bcx = cx;
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) {
auto llsz = size_of(bcx, t);
auto llalign = align_of(llsz.bcx, t);
bcx = call_bzero(llalign.bcx, llptr,
llsz.val, llalign.val).bcx;
} else {
auto llty = type_of(bcx.fcx.lcx.ccx, cx.sp, t);
auto null = lib::llvm::llvm::LLVMConstNull(llty);
bcx.build.Store(null, llptr);
}
ret res(bcx, llptr);
}
fn trans_stmt(&@block_ctxt cx, &ast::stmt s) -> result {
*cx = rec(sp=s.span with *cx);
auto bcx = cx;
alt (s.node) {
case (ast::stmt_expr(?e,_)) {
bcx = trans_expr(cx, e).bcx;
}
case (ast::stmt_decl(?d,_)) {
alt (d.node) {
case (ast::decl_local(?local)) {
bcx = init_local(bcx, local).bcx;
}
case (ast::decl_item(?i)) {
trans_item(cx.fcx.lcx, *i);
}
}
}
case (_) {
cx.fcx.lcx.ccx.sess.unimpl("stmt variant");
}
}
ret res(bcx, C_nil());
}
fn new_builder(BasicBlockRef llbb) -> builder {
let BuilderRef llbuild = llvm::LLVMCreateBuilder();
llvm::LLVMPositionBuilderAtEnd(llbuild, llbb);
ret builder(llbuild, @mutable false);
}
// You probably don't want to use this one. See the
// next three functions instead.
fn new_block_ctxt(&@fn_ctxt cx, &block_parent parent,
block_kind kind,
&str name) -> @block_ctxt {
let vec[cleanup] cleanups = [];
auto s = str::buf("");
if (cx.lcx.ccx.sess.get_opts().save_temps) {
s = str::buf(cx.lcx.ccx.names.next(name));
}
let BasicBlockRef llbb = llvm::LLVMAppendBasicBlock(cx.llfn, s);
ret @rec(llbb=llbb,
build=new_builder(llbb),
parent=parent,
kind=kind,
mutable cleanups=cleanups,
sp=cx.sp,
fcx=cx);
}
// Use this when you're at the top block of a function or the like.
fn new_top_block_ctxt(&@fn_ctxt fcx) -> @block_ctxt {
ret new_block_ctxt(fcx, parent_none, SCOPE_BLOCK,
"function top level");
}
// Use this when you're at a curly-brace or similar lexical scope.
fn new_scope_block_ctxt(&@block_ctxt bcx, &str n) -> @block_ctxt {
ret new_block_ctxt(bcx.fcx, parent_some(bcx), SCOPE_BLOCK, n);
}
fn new_loop_scope_block_ctxt(&@block_ctxt bcx, &option::t[@block_ctxt] _cont,
&@block_ctxt _break, &str n) -> @block_ctxt {
ret new_block_ctxt(bcx.fcx, parent_some(bcx),
LOOP_SCOPE_BLOCK(_cont, _break), n);
}
// Use this when you're making a general CFG BB within a scope.
fn new_sub_block_ctxt(&@block_ctxt bcx, &str n) -> @block_ctxt {
ret new_block_ctxt(bcx.fcx, parent_some(bcx), NON_SCOPE_BLOCK, n);
}
fn new_raw_block_ctxt(&@fn_ctxt fcx, BasicBlockRef llbb) -> @block_ctxt {
let vec[cleanup] cleanups = [];
ret @rec(llbb=llbb, build=new_builder(llbb), parent=parent_none,
kind=NON_SCOPE_BLOCK, mutable cleanups=cleanups, sp=fcx.sp,
fcx=fcx);
}
fn trans_block_cleanups(&@block_ctxt cx,
&@block_ctxt cleanup_cx) -> @block_ctxt {
auto bcx = cx;
if (cleanup_cx.kind == NON_SCOPE_BLOCK) {
assert (vec::len[cleanup](cleanup_cx.cleanups) == 0u);
}
auto i = vec::len[cleanup](cleanup_cx.cleanups);
while (i > 0u) {
i -= 1u;
auto c = cleanup_cx.cleanups.(i);
alt (c) {
case (clean(?cfn)) {
bcx = cfn(bcx).bcx;
}
}
}
ret bcx;
}
iter block_locals(&ast::block b) -> @ast::local {
// FIXME: putting from inside an iter block doesn't work, so we can't
// use the index here.
for (@ast::stmt s in b.node.stmts) {
alt (s.node) {
case (ast::stmt_decl(?d,_)) {
alt (d.node) {
case (ast::decl_local(?local)) {
put local;
}
case (_) { /* fall through */ }
}
}
case (_) { /* fall through */ }
}
}
}
fn llallocas_block_ctxt(&@fn_ctxt fcx) -> @block_ctxt {
let vec[cleanup] cleanups = [];
ret @rec(llbb=fcx.llallocas,
build=new_builder(fcx.llallocas),
parent=parent_none,
kind=SCOPE_BLOCK,
mutable cleanups=cleanups,
sp=fcx.sp,
fcx=fcx);
}
fn alloc_ty(&@block_ctxt cx, &ty::t t) -> result {
auto val = C_int(0);
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) {
// NB: we have to run this particular 'size_of' in a
// block_ctxt built on the llallocas block for the fn,
// so that the size dominates the array_alloca that
// comes next.
auto n = size_of(llallocas_block_ctxt(cx.fcx), t);
cx.fcx.llallocas = n.bcx.llbb;
val = array_alloca(cx, T_i8(), n.val);
} else {
val = alloca(cx, type_of(cx.fcx.lcx.ccx, cx.sp, t));
}
// NB: since we've pushed all size calculations in this
// function up to the alloca block, we actually return the
// block passed into us unmodified; it doesn't really
// have to be passed-and-returned here, but it fits
// past caller conventions and may well make sense again,
// so we leave it as-is.
ret res(cx, val);
}
fn alloc_local(&@block_ctxt cx, &@ast::local local) -> result {
auto t = node_ann_type(cx.fcx.lcx.ccx, local.ann);
auto r = alloc_ty(cx, t);
r.bcx.fcx.lllocals.insert(local.id, r.val);
ret r;
}
fn trans_block(&@block_ctxt cx, &ast::block b) -> result {
auto bcx = cx;
for each (@ast::local local in block_locals(b)) {
*bcx = rec(sp=local_rhs_span(local, cx.sp) with *bcx);
bcx = alloc_local(bcx, local).bcx;
}
auto r = res(bcx, C_nil());
for (@ast::stmt s in b.node.stmts) {
r = trans_stmt(bcx, *s);
bcx = r.bcx;
// If we hit a terminator, control won't go any further so
// we're in dead-code land. Stop here.
if (is_terminated(bcx)) {
ret r;
}
}
alt (b.node.expr) {
case (some[@ast::expr](?e)) {
// Hold onto the context for this scope since we'll need it to
// find the outer scope
auto scope_bcx = bcx;
r = trans_expr(bcx, e);
bcx = r.bcx;
if (is_terminated(bcx)) {
ret r;
} else {
auto r_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, e);
if (!ty::type_is_nil(cx.fcx.lcx.ccx.tcx, r_ty)
&& !ty::type_is_bot(cx.fcx.lcx.ccx.tcx, r_ty)) {
// The value resulting from the block gets copied into an
// alloca created in an outer scope and its refcount
// bumped so that it can escape this block. This means
// that it will definitely live until the end of the
// enclosing scope, even if nobody uses it, which may be
// something of a surprise.
// It's possible we never hit this block, so the alloca
// must be initialized to null, then when the potential
// value finally goes out of scope the drop glue will see
// that it was never used and ignore it.
// NB: Here we're building and initalizing the alloca in
// the alloca context, not this block's context.
auto res_alloca = alloc_ty(bcx, r_ty);
auto llbcx = llallocas_block_ctxt(bcx.fcx);
zero_alloca(llbcx, res_alloca.val, r_ty);
// Now we're working in our own block context again
auto res_copy = copy_ty(bcx, INIT,
res_alloca.val, r.val, r_ty);
bcx = res_copy.bcx;
fn drop_hoisted_ty(&@block_ctxt cx,
ValueRef alloca_val,
ty::t t) -> result {
auto reg_val = load_if_immediate(cx,
alloca_val, t);
ret drop_ty(cx, reg_val, t);
}
auto cleanup = bind drop_hoisted_ty(_, res_alloca.val,
r_ty);
auto outer_scope_cx = find_outer_scope_cx(scope_bcx);
outer_scope_cx.cleanups += [clean(cleanup)];
r = res(bcx, load_if_immediate(bcx,
res_alloca.val, r_ty));
}
}
}
case (none[@ast::expr]) {
r = res(bcx, C_nil());
}
}
bcx = trans_block_cleanups(bcx, find_scope_cx(bcx));
ret res(bcx, r.val);
}
fn new_local_ctxt(&@crate_ctxt ccx) -> @local_ctxt {
let vec[str] pth = [];
let vec[ast::ty_param] obj_typarams = [];
let vec[ast::obj_field] obj_fields = [];
ret @rec(path=pth,
module_path=[crate_name(ccx, "main")],
obj_typarams = obj_typarams,
obj_fields = obj_fields,
ccx = ccx);
}
// Creates the standard trio of basic blocks: allocas, copy-args, and derived
// tydescs.
fn mk_standard_basic_blocks(ValueRef llfn) ->
tup(BasicBlockRef, BasicBlockRef, BasicBlockRef) {
ret tup(llvm::LLVMAppendBasicBlock(llfn, str::buf("allocas")),
llvm::LLVMAppendBasicBlock(llfn, str::buf("copy_args")),
llvm::LLVMAppendBasicBlock(llfn, str::buf("derived_tydescs")));
}
// NB: must keep 4 fns in sync:
//
// - type_of_fn_full
// - create_llargs_for_fn_args.
// - new_fn_ctxt
// - trans_args
fn new_fn_ctxt(@local_ctxt cx, &ast::span sp,
ValueRef llfndecl) -> @fn_ctxt {
let ValueRef llretptr = llvm::LLVMGetParam(llfndecl, 0u);
let ValueRef lltaskptr = llvm::LLVMGetParam(llfndecl, 1u);
let ValueRef llenv = llvm::LLVMGetParam(llfndecl, 2u);
let hashmap[ast::def_id, ValueRef] llargs = new_def_hash[ValueRef]();
let hashmap[ast::def_id, ValueRef] llobjfields = new_def_hash[ValueRef]();
let hashmap[ast::def_id, ValueRef] lllocals = new_def_hash[ValueRef]();
let hashmap[ast::def_id, ValueRef] llupvars = new_def_hash[ValueRef]();
auto derived_tydescs =
map::mk_hashmap[ty::t, derived_tydesc_info](ty::hash_ty, ty::eq_ty);
auto llbbs = mk_standard_basic_blocks(llfndecl);
ret @rec(llfn=llfndecl,
lltaskptr=lltaskptr,
llenv=llenv,
llretptr=llretptr,
mutable llallocas=llbbs._0,
mutable llcopyargs=llbbs._1,
mutable llderivedtydescs=llbbs._2,
mutable llself=none[self_vt],
mutable lliterbody=none[ValueRef],
llargs=llargs,
llobjfields=llobjfields,
lllocals=lllocals,
llupvars=llupvars,
mutable lltydescs=vec::empty[ValueRef](),
derived_tydescs=derived_tydescs,
sp=sp,
lcx=cx);
}
// NB: must keep 4 fns in sync:
//
// - type_of_fn_full
// - create_llargs_for_fn_args.
// - new_fn_ctxt
// - trans_args
fn create_llargs_for_fn_args(&@fn_ctxt cx,
ast::proto proto,
option::t[tup(TypeRef, ty::t)] ty_self,
ty::t ret_ty,
&vec[ast::arg] args,
&vec[ast::ty_param] ty_params) {
auto arg_n = 3u;
alt (ty_self) {
case (some[tup(TypeRef, ty::t)](?tt)) {
cx.llself = some[self_vt](rec(v = cx.llenv, t = tt._1));
}
case (none[tup(TypeRef, ty::t)]) {
auto i = 0u;
for (ast::ty_param tp in ty_params) {
auto llarg = llvm::LLVMGetParam(cx.llfn, arg_n);
assert (llarg as int != 0);
cx.lltydescs += [llarg];
arg_n += 1u;
i += 1u;
}
}
}
if (proto == ast::proto_iter) {
auto llarg = llvm::LLVMGetParam(cx.llfn, arg_n);
assert (llarg as int != 0);
cx.lliterbody = some[ValueRef](llarg);
arg_n += 1u;
}
for (ast::arg arg in args) {
auto llarg = llvm::LLVMGetParam(cx.llfn, arg_n);
assert (llarg as int != 0);
cx.llargs.insert(arg.id, llarg);
arg_n += 1u;
}
}
// Recommended LLVM style, strange though this is, is to copy from args to
// allocas immediately upon entry; this permits us to GEP into structures we
// were passed and whatnot. Apparently mem2reg will mop up.
fn copy_any_self_to_alloca(@fn_ctxt fcx,
option::t[tup(TypeRef, ty::t)] ty_self) {
auto bcx = llallocas_block_ctxt(fcx);
alt (fcx.llself) {
case (some[self_vt](?s_vt)) {
alt (ty_self) {
case (some[tup(TypeRef, ty::t)](?tt)) {
auto a = alloca(bcx, tt._0);
bcx.build.Store(s_vt.v, a);
fcx.llself = some[self_vt](rec(v = a, t = s_vt.t));
}
}
}
case (_) {
}
}
}
fn copy_args_to_allocas(@fn_ctxt fcx,
vec[ast::arg] args,
vec[ty::arg] arg_tys) {
auto bcx = new_raw_block_ctxt(fcx, fcx.llcopyargs);
let uint arg_n = 0u;
for (ast::arg aarg in args) {
if (aarg.mode != ast::alias) {
auto arg_t = type_of_arg(bcx.fcx.lcx, fcx.sp, arg_tys.(arg_n));
auto a = alloca(bcx, arg_t);
auto argval = bcx.fcx.llargs.get(aarg.id);
bcx.build.Store(argval, a);
// Overwrite the llargs entry for this arg with its alloca.
bcx.fcx.llargs.insert(aarg.id, a);
}
arg_n += 1u;
}
}
fn add_cleanups_for_args(&@block_ctxt bcx,
vec[ast::arg] args,
vec[ty::arg] arg_tys) {
let uint arg_n = 0u;
for (ast::arg aarg in args) {
if (aarg.mode != ast::alias) {
auto argval = bcx.fcx.llargs.get(aarg.id);
find_scope_cx(bcx).cleanups +=
[clean(bind drop_slot(_, argval, arg_tys.(arg_n).ty))];
}
arg_n += 1u;
}
}
fn is_terminated(&@block_ctxt cx) -> bool {
auto inst = llvm::LLVMGetLastInstruction(cx.llbb);
ret llvm::LLVMIsATerminatorInst(inst) as int != 0;
}
fn arg_tys_of_fn(&@crate_ctxt ccx, ast::ann ann) -> vec[ty::arg] {
alt (ty::struct(ccx.tcx, ty::ann_to_type(ccx.tcx.node_types, ann))) {
case (ty::ty_fn(_, ?arg_tys, _, _)) {
ret arg_tys;
}
}
fail;
}
fn ret_ty_of_fn_ty(&@crate_ctxt ccx, ty::t t) -> ty::t {
alt (ty::struct(ccx.tcx, t)) {
case (ty::ty_fn(_, _, ?ret_ty, _)) {
ret ret_ty;
}
}
fail;
}
fn ret_ty_of_fn(&@crate_ctxt ccx, ast::ann ann) -> ty::t {
ret ret_ty_of_fn_ty(ccx, ty::ann_to_type(ccx.tcx.node_types, ann));
}
fn populate_fn_ctxt_from_llself(@fn_ctxt fcx, self_vt llself) {
auto bcx = llallocas_block_ctxt(fcx);
let vec[ty::t] field_tys = [];
for (ast::obj_field f in bcx.fcx.lcx.obj_fields) {
field_tys += [node_ann_type(bcx.fcx.lcx.ccx, f.ann)];
}
// Synthesize a tuple type for the fields so that GEP_tup_like() can work
// its magic.
auto fields_tup_ty = ty::mk_imm_tup(fcx.lcx.ccx.tcx, field_tys);
auto n_typarams = vec::len[ast::ty_param](bcx.fcx.lcx.obj_typarams);
let TypeRef llobj_box_ty = T_obj_ptr(bcx.fcx.lcx.ccx.tn, n_typarams);
auto box_cell =
bcx.build.GEP(llself.v,
[C_int(0),
C_int(abi::obj_field_box)]);
auto box_ptr = bcx.build.Load(box_cell);
box_ptr = bcx.build.PointerCast(box_ptr, llobj_box_ty);
auto obj_typarams = bcx.build.GEP(box_ptr,
[C_int(0),
C_int(abi::box_rc_field_body),
C_int(abi::obj_body_elt_typarams)]);
// The object fields immediately follow the type parameters, so we skip
// over them to get the pointer.
auto obj_fields = bcx.build.Add(vp2i(bcx, obj_typarams),
llsize_of(llvm::LLVMGetElementType(val_ty(obj_typarams))));
// If we can (i.e. the type is statically sized), then cast the resulting
// fields pointer to the appropriate LLVM type. If not, just leave it as
// i8 *.
if (!ty::type_has_dynamic_size(fcx.lcx.ccx.tcx, fields_tup_ty)) {
auto llfields_ty = type_of(fcx.lcx.ccx, fcx.sp, fields_tup_ty);
obj_fields = vi2p(bcx, obj_fields, T_ptr(llfields_ty));
} else {
obj_fields = vi2p(bcx, obj_fields, T_ptr(T_i8()));
}
let int i = 0;
for (ast::ty_param p in fcx.lcx.obj_typarams) {
let ValueRef lltyparam = bcx.build.GEP(obj_typarams,
[C_int(0),
C_int(i)]);
lltyparam = bcx.build.Load(lltyparam);
fcx.lltydescs += [lltyparam];
i += 1;
}
i = 0;
for (ast::obj_field f in fcx.lcx.obj_fields) {
auto rslt = GEP_tup_like(bcx, fields_tup_ty, obj_fields, [0, i]);
bcx = llallocas_block_ctxt(fcx);
auto llfield = rslt.val;
fcx.llobjfields.insert(f.id, llfield);
i += 1;
}
fcx.llallocas = bcx.llbb;
}
// Ties up the llallocas -> llcopyargs -> llderivedtydescs -> lltop edges.
fn finish_fn(&@fn_ctxt fcx, BasicBlockRef lltop) {
new_builder(fcx.llallocas).Br(fcx.llcopyargs);
new_builder(fcx.llcopyargs).Br(fcx.llderivedtydescs);
new_builder(fcx.llderivedtydescs).Br(lltop);
}
fn trans_fn(@local_ctxt cx, &ast::span sp, &ast::_fn f, ast::def_id fid,
option::t[tup(TypeRef, ty::t)] ty_self,
&vec[ast::ty_param] ty_params, &ast::ann ann) {
auto llfndecl = cx.ccx.item_ids.get(fid);
auto fcx = new_fn_ctxt(cx, sp, llfndecl);
create_llargs_for_fn_args(fcx, f.proto,
ty_self, ret_ty_of_fn(cx.ccx, ann),
f.decl.inputs, ty_params);
copy_any_self_to_alloca(fcx, ty_self);
alt (fcx.llself) {
case (some[self_vt](?llself)) {
populate_fn_ctxt_from_llself(fcx, llself);
}
case (_) {
}
}
auto arg_tys = arg_tys_of_fn(fcx.lcx.ccx, ann);
copy_args_to_allocas(fcx, f.decl.inputs, arg_tys);
auto bcx = new_top_block_ctxt(fcx);
add_cleanups_for_args(bcx, f.decl.inputs, arg_tys);
auto lltop = bcx.llbb;
auto res = trans_block(bcx, f.body);
if (!is_terminated(res.bcx)) {
// FIXME: until LLVM has a unit type, we are moving around
// C_nil values rather than their void type.
res.bcx.build.RetVoid();
}
finish_fn(fcx, lltop);
}
fn trans_vtbl(@local_ctxt cx,
TypeRef llself_ty,
ty::t self_ty,
&ast::_obj ob,
&vec[ast::ty_param] ty_params) -> ValueRef {
auto dtor = C_null(T_ptr(T_i8()));
alt (ob.dtor) {
case (some[@ast::method](?d)) {
auto dtor_1 = trans_dtor(cx, llself_ty, self_ty, ty_params, d);
dtor = llvm::LLVMConstBitCast(dtor_1, val_ty(dtor));
}
case (none[@ast::method]) {}
}
let vec[ValueRef] methods = [dtor];
fn meth_lteq(&@ast::method a, &@ast::method b) -> bool {
ret str::lteq(a.node.ident, b.node.ident);
}
auto meths = std::sort::merge_sort[@ast::method](bind meth_lteq(_,_),
ob.methods);
for (@ast::method m in meths) {
auto llfnty = T_nil();
alt (ty::struct(cx.ccx.tcx, node_ann_type(cx.ccx, m.node.ann))) {
case (ty::ty_fn(?proto, ?inputs, ?output, _)) {
llfnty = type_of_fn_full(cx.ccx, m.span, proto,
some[TypeRef](llself_ty),
inputs, output,
vec::len[ast::ty_param](ty_params));
}
}
let @local_ctxt mcx = extend_path(cx, m.node.ident);
let str s = mangle_name_by_seq(mcx.ccx, mcx.path, "method");
let ValueRef llfn = decl_internal_fastcall_fn(cx.ccx.llmod, s,
llfnty);
cx.ccx.item_ids.insert(m.node.id, llfn);
cx.ccx.item_symbols.insert(m.node.id, s);
trans_fn(mcx, m.span, m.node.meth, m.node.id,
some[tup(TypeRef, ty::t)](tup(llself_ty, self_ty)),
ty_params, m.node.ann);
methods += [llfn];
}
auto vtbl = C_struct(methods);
auto vtbl_name = mangle_name_by_seq(cx.ccx, cx.path, "vtbl");
auto gvar = llvm::LLVMAddGlobal(cx.ccx.llmod, val_ty(vtbl),
str::buf(vtbl_name));
llvm::LLVMSetInitializer(gvar, vtbl);
llvm::LLVMSetGlobalConstant(gvar, True);
llvm::LLVMSetLinkage(gvar, lib::llvm::LLVMInternalLinkage
as llvm::Linkage);
ret gvar;
}
fn trans_dtor(@local_ctxt cx,
TypeRef llself_ty,
ty::t self_ty,
&vec[ast::ty_param] ty_params,
&@ast::method dtor) -> ValueRef {
auto llfnty = T_dtor(cx.ccx, dtor.span, llself_ty);
let @local_ctxt dcx = extend_path(cx, "drop");
let str s = mangle_name_by_seq(dcx.ccx, dcx.path, "drop");
let ValueRef llfn = decl_internal_fastcall_fn(cx.ccx.llmod, s, llfnty);
cx.ccx.item_ids.insert(dtor.node.id, llfn);
cx.ccx.item_symbols.insert(dtor.node.id, s);
trans_fn(dcx, dtor.span, dtor.node.meth, dtor.node.id,
some[tup(TypeRef, ty::t)](tup(llself_ty, self_ty)),
ty_params, dtor.node.ann);
ret llfn;
}
fn trans_obj(@local_ctxt cx, &ast::span sp, &ast::_obj ob, ast::def_id oid,
&vec[ast::ty_param] ty_params, &ast::ann ann) {
auto ccx = cx.ccx;
auto llctor_decl = ccx.item_ids.get(oid);
// Translate obj ctor args to function arguments.
let vec[ast::arg] fn_args = [];
for (ast::obj_field f in ob.fields) {
fn_args += [rec(mode=ast::alias, ty=f.ty, ident=f.ident, id=f.id)];
}
auto fcx = new_fn_ctxt(cx, sp, llctor_decl);
create_llargs_for_fn_args(fcx, ast::proto_fn,
none[tup(TypeRef, ty::t)],
ret_ty_of_fn(ccx, ann),
fn_args, ty_params);
let vec[ty::arg] arg_tys = arg_tys_of_fn(ccx, ann);
copy_args_to_allocas(fcx, fn_args, arg_tys);
auto bcx = new_top_block_ctxt(fcx);
auto lltop = bcx.llbb;
auto self_ty = ret_ty_of_fn(ccx, ann);
auto llself_ty = type_of(ccx, sp, self_ty);
auto pair = bcx.fcx.llretptr;
auto vtbl = trans_vtbl(cx, llself_ty, self_ty, ob, ty_params);
auto pair_vtbl = bcx.build.GEP(pair,
[C_int(0),
C_int(abi::obj_field_vtbl)]);
auto pair_box = bcx.build.GEP(pair,
[C_int(0),
C_int(abi::obj_field_box)]);
bcx.build.Store(vtbl, pair_vtbl);
let TypeRef llbox_ty = T_opaque_obj_ptr(ccx.tn);
// FIXME we should probably also allocate a box for empty objs that have a
// dtor, since otherwise they are never dropped, and the dtor never runs
if (vec::len[ast::ty_param](ty_params) == 0u &&
vec::len[ty::arg](arg_tys) == 0u) {
// Store null into pair, if no args or typarams.
bcx.build.Store(C_null(llbox_ty), pair_box);
} else {
// Malloc a box for the body and copy args in.
let vec[ty::t] obj_fields = [];
for (ty::arg a in arg_tys) {
vec::push[ty::t](obj_fields, a.ty);
}
// Synthesize an obj body type.
auto tydesc_ty = ty::mk_type(ccx.tcx);
let vec[ty::t] tps = [];
for (ast::ty_param tp in ty_params) {
vec::push[ty::t](tps, tydesc_ty);
}
let ty::t typarams_ty = ty::mk_imm_tup(ccx.tcx, tps);
let ty::t fields_ty = ty::mk_imm_tup(ccx.tcx, obj_fields);
let ty::t body_ty = ty::mk_imm_tup(ccx.tcx,
[tydesc_ty,
typarams_ty,
fields_ty]);
let ty::t boxed_body_ty = ty::mk_imm_box(ccx.tcx, body_ty);
// Malloc a box for the body.
auto box = trans_malloc_boxed(bcx, body_ty);
bcx = box.bcx;
auto rc = GEP_tup_like(bcx, boxed_body_ty, box.val,
[0, abi::box_rc_field_refcnt]);
bcx = rc.bcx;
auto body = GEP_tup_like(bcx, boxed_body_ty, box.val,
[0, abi::box_rc_field_body]);
bcx = body.bcx;
bcx.build.Store(C_int(1), rc.val);
// Store body tydesc.
auto body_tydesc =
GEP_tup_like(bcx, body_ty, body.val,
[0, abi::obj_body_elt_tydesc]);
bcx = body_tydesc.bcx;
auto ti = none[@tydesc_info];
auto body_td = get_tydesc(bcx, body_ty, true, ti);
lazily_emit_tydesc_glue(bcx, abi::tydesc_field_drop_glue, ti);
lazily_emit_tydesc_glue(bcx, abi::tydesc_field_free_glue, ti);
auto dtor = C_null(T_ptr(T_glue_fn(ccx.tn)));
alt (ob.dtor) {
case (some[@ast::method](?d)) {
dtor = trans_dtor(cx, llself_ty, self_ty, ty_params, d);
}
case (none[@ast::method]) {}
}
bcx = body_td.bcx;
bcx.build.Store(body_td.val, body_tydesc.val);
// Copy typarams into captured typarams.
auto body_typarams =
GEP_tup_like(bcx, body_ty, body.val,
[0, abi::obj_body_elt_typarams]);
bcx = body_typarams.bcx;
let int i = 0;
for (ast::ty_param tp in ty_params) {
auto typaram = bcx.fcx.lltydescs.(i);
auto capture = GEP_tup_like(bcx, typarams_ty, body_typarams.val,
[0, i]);
bcx = capture.bcx;
bcx = copy_ty(bcx, INIT, capture.val, typaram, tydesc_ty).bcx;
i += 1;
}
// Copy args into body fields.
auto body_fields =
GEP_tup_like(bcx, body_ty, body.val,
[0, abi::obj_body_elt_fields]);
bcx = body_fields.bcx;
i = 0;
for (ast::obj_field f in ob.fields) {
auto arg = bcx.fcx.llargs.get(f.id);
arg = load_if_immediate(bcx, arg, arg_tys.(i).ty);
auto field = GEP_tup_like(bcx, fields_ty, body_fields.val,
[0, i]);
bcx = field.bcx;
bcx = copy_ty(bcx, INIT, field.val, arg, arg_tys.(i).ty).bcx;
i += 1;
}
// Store box ptr in outer pair.
auto p = bcx.build.PointerCast(box.val, llbox_ty);
bcx.build.Store(p, pair_box);
}
bcx.build.RetVoid();
finish_fn(fcx, lltop);
}
fn trans_tag_variant(@local_ctxt cx, ast::def_id tag_id,
&ast::variant variant, int index,
&vec[ast::ty_param] ty_params) {
if (vec::len[ast::variant_arg](variant.node.args) == 0u) {
ret; // nullary constructors are just constants
}
// Translate variant arguments to function arguments.
let vec[ast::arg] fn_args = [];
auto i = 0u;
for (ast::variant_arg varg in variant.node.args) {
fn_args += [rec(mode=ast::alias,
ty=varg.ty,
ident="arg" + uint::to_str(i, 10u),
id=varg.id)];
}
assert (cx.ccx.item_ids.contains_key(variant.node.id));
let ValueRef llfndecl = cx.ccx.item_ids.get(variant.node.id);
auto fcx = new_fn_ctxt(cx, variant.span, llfndecl);
create_llargs_for_fn_args(fcx, ast::proto_fn,
none[tup(TypeRef, ty::t)],
ret_ty_of_fn(cx.ccx, variant.node.ann),
fn_args, ty_params);
let vec[ty::t] ty_param_substs = [];
i = 0u;
for (ast::ty_param tp in ty_params) {
ty_param_substs += [ty::mk_param(cx.ccx.tcx, i)];
i += 1u;
}
auto arg_tys = arg_tys_of_fn(cx.ccx, variant.node.ann);
copy_args_to_allocas(fcx, fn_args, arg_tys);
auto bcx = new_top_block_ctxt(fcx);
auto lltop = bcx.llbb;
// Cast the tag to a type we can GEP into.
auto lltagptr = bcx.build.PointerCast(fcx.llretptr,
T_opaque_tag_ptr(fcx.lcx.ccx.tn));
auto lldiscrimptr = bcx.build.GEP(lltagptr,
[C_int(0), C_int(0)]);
bcx.build.Store(C_int(index), lldiscrimptr);
auto llblobptr = bcx.build.GEP(lltagptr,
[C_int(0), C_int(1)]);
i = 0u;
for (ast::variant_arg va in variant.node.args) {
auto rslt = GEP_tag(bcx, llblobptr, tag_id, variant.node.id,
ty_param_substs, i as int);
bcx = rslt.bcx;
auto lldestptr = rslt.val;
// If this argument to this function is a tag, it'll have come in to
// this function as an opaque blob due to the way that type_of()
// works. So we have to cast to the destination's view of the type.
auto llargptr = bcx.build.PointerCast(fcx.llargs.get(va.id),
val_ty(lldestptr));
auto arg_ty = arg_tys.(i).ty;
auto llargval;
if (ty::type_is_structural(cx.ccx.tcx, arg_ty) ||
ty::type_has_dynamic_size(cx.ccx.tcx, arg_ty)) {
llargval = llargptr;
} else {
llargval = bcx.build.Load(llargptr);
}
rslt = copy_ty(bcx, INIT, lldestptr, llargval, arg_ty);
bcx = rslt.bcx;
i += 1u;
}
bcx = trans_block_cleanups(bcx, find_scope_cx(bcx));
bcx.build.RetVoid();
finish_fn(fcx, lltop);
}
// FIXME: this should do some structural hash-consing to avoid
// duplicate constants. I think. Maybe LLVM has a magical mode
// that does so later on?
fn trans_const_expr(&@crate_ctxt cx, @ast::expr e) -> ValueRef {
alt (e.node) {
case (ast::expr_lit(?lit, ?ann)) {
ret trans_lit(cx, *lit, ann);
}
case (_) {
cx.sess.span_unimpl(e.span, "consts that's not a plain literal");
}
}
}
fn trans_const(&@crate_ctxt cx, @ast::expr e,
&ast::def_id cid, &ast::ann ann) {
auto t = node_ann_type(cx, ann);
auto v = trans_const_expr(cx, e);
// The scalars come back as 1st class LLVM vals
// which we have to stick into global constants.
auto g = cx.consts.get(cid);
llvm::LLVMSetInitializer(g, v);
llvm::LLVMSetGlobalConstant(g, True);
}
fn trans_item(@local_ctxt cx, &ast::item item) {
alt (item.node) {
case (ast::item_fn(?name, ?f, ?tps, ?fid, ?ann)) {
auto sub_cx = extend_path(cx, name);
trans_fn(sub_cx, item.span, f, fid, none[tup(TypeRef, ty::t)],
tps, ann);
}
case (ast::item_obj(?name, ?ob, ?tps, ?oid, ?ann)) {
auto sub_cx = @rec(obj_typarams=tps,
obj_fields=ob.fields with
*extend_path(cx, name));
trans_obj(sub_cx, item.span, ob, oid.ctor, tps, ann);
}
case (ast::item_mod(?name, ?m, _)) {
auto sub_cx = @rec(path = cx.path + [name],
module_path = cx.module_path + [name]
with *cx);
trans_mod(sub_cx, m);
}
case (ast::item_tag(?name, ?variants, ?tps, ?tag_id, _)) {
auto sub_cx = extend_path(cx, name);
auto i = 0;
for (ast::variant variant in variants) {
trans_tag_variant(sub_cx, tag_id, variant, i, tps);
i += 1;
}
}
case (ast::item_const(?name, _, ?expr, ?cid, ?ann)) {
trans_const(cx.ccx, expr, cid, ann);
}
case (_) { /* fall through */ }
}
}
fn trans_mod(@local_ctxt cx, &ast::_mod m) {
for (@ast::item item in m.items) {
trans_item(cx, *item);
}
}
fn get_pair_fn_ty(TypeRef llpairty) -> TypeRef {
// Bit of a kludge: pick the fn typeref out of the pair.
let vec[TypeRef] pair_tys = [T_nil(), T_nil()];
llvm::LLVMGetStructElementTypes(llpairty,
vec::buf[TypeRef](pair_tys));
ret llvm::LLVMGetElementType(pair_tys.(0));
}
fn decl_fn_and_pair(&@crate_ctxt ccx, &ast::span sp,
vec[str] path,
str flav,
vec[ast::ty_param] ty_params,
&ast::ann ann,
ast::def_id id) {
auto llfty;
auto llpairty;
alt (ty::struct(ccx.tcx, node_ann_type(ccx, ann))) {
case (ty::ty_fn(?proto, ?inputs, ?output, _)) {
llfty = type_of_fn(ccx, sp, proto, inputs, output,
vec::len[ast::ty_param](ty_params));
llpairty = T_fn_pair(ccx.tn, llfty);
}
case (_) {
ccx.sess.bug("decl_fn_and_pair(): fn item doesn't have fn type!");
fail;
}
}
// Declare the function itself.
let str s = mangle_name_by_seq(ccx, path, flav);
let ValueRef llfn = decl_internal_fastcall_fn(ccx.llmod, s, llfty);
// Declare the global constant pair that points to it.
let str ps = mangle_name_by_type(ccx, path, node_ann_type(ccx, ann));
register_fn_pair(ccx, ps, llpairty, llfn, id);
}
fn register_fn_pair(&@crate_ctxt cx, str ps, TypeRef llpairty, ValueRef llfn,
ast::def_id id) {
let ValueRef gvar = llvm::LLVMAddGlobal(cx.llmod, llpairty,
str::buf(ps));
auto pair = C_struct([llfn,
C_null(T_opaque_closure_ptr(cx.tn))]);
llvm::LLVMSetInitializer(gvar, pair);
llvm::LLVMSetGlobalConstant(gvar, True);
llvm::LLVMSetVisibility(gvar,
lib::llvm::LLVMProtectedVisibility
as llvm::Visibility);
cx.item_ids.insert(id, llfn);
cx.item_symbols.insert(id, ps);
cx.fn_pairs.insert(id, gvar);
}
// Returns the number of type parameters that the given native function has.
fn native_fn_ty_param_count(&@crate_ctxt cx, &ast::def_id id) -> uint {
auto count;
auto native_item = cx.native_items.get(id);
alt (native_item.node) {
case (ast::native_item_ty(_,_)) {
cx.sess.bug("decl_native_fn_and_pair(): native fn isn't " +
"actually a fn?!");
fail;
}
case (ast::native_item_fn(_, _, _, ?tps, _, _)) {
count = vec::len[ast::ty_param](tps);
}
}
ret count;
}
fn native_fn_wrapper_type(&@crate_ctxt cx, &ast::span sp, uint ty_param_count,
ty::t x) -> TypeRef {
alt (ty::struct(cx.tcx, x)) {
case (ty::ty_native_fn(?abi, ?args, ?out)) {
ret type_of_fn(cx, sp, ast::proto_fn, args, out, ty_param_count);
}
}
fail;
}
fn decl_native_fn_and_pair(&@crate_ctxt ccx,
&ast::span sp,
vec[str] path,
str name,
&ast::ann ann,
ast::def_id id) {
auto num_ty_param = native_fn_ty_param_count(ccx, id);
// Declare the wrapper.
auto t = node_ann_type(ccx, ann);
auto wrapper_type = native_fn_wrapper_type(ccx, sp, num_ty_param, t);
let str s = mangle_name_by_seq(ccx, path, "wrapper");
let ValueRef wrapper_fn = decl_internal_fastcall_fn(ccx.llmod, s,
wrapper_type);
// Declare the global constant pair that points to it.
auto wrapper_pair_type = T_fn_pair(ccx.tn, wrapper_type);
let str ps = mangle_name_by_type(ccx, path, node_ann_type(ccx, ann));
register_fn_pair(ccx, ps, wrapper_pair_type, wrapper_fn, id);
// Build the wrapper.
auto fcx = new_fn_ctxt(new_local_ctxt(ccx), sp, wrapper_fn);
auto bcx = new_top_block_ctxt(fcx);
auto lltop = bcx.llbb;
// Declare the function itself.
auto item = ccx.native_items.get(id);
auto fn_type = node_ann_type(ccx, ann); // NB: has no type params
auto abi = ty::ty_fn_abi(ccx.tcx, fn_type);
auto llfnty = type_of_native_fn(ccx, sp, abi,
ty::ty_fn_args(ccx.tcx, fn_type),
ty::ty_fn_ret(ccx.tcx, fn_type), num_ty_param);
// FIXME: If the returned type is not nil, then we assume it's 32 bits
// wide. This is obviously wildly unsafe. We should have a better FFI
// that allows types of different sizes to be returned.
auto rty_is_nil = ty::type_is_nil(ccx.tcx, ty::ty_fn_ret(ccx.tcx,
fn_type));
auto pass_task;
auto cast_to_i32;
alt (abi) {
case (ast::native_abi_rust) {
pass_task = true;
cast_to_i32 = true;
}
case (ast::native_abi_rust_intrinsic) {
pass_task = true;
cast_to_i32 = false;
}
case (ast::native_abi_cdecl) {
pass_task = false;
cast_to_i32 = true;
}
case (ast::native_abi_llvm) {
pass_task = false;
cast_to_i32 = false;
}
}
auto lltaskptr;
if (cast_to_i32) {
lltaskptr = vp2i(bcx, fcx.lltaskptr);
} else {
lltaskptr = fcx.lltaskptr;
}
let vec[ValueRef] call_args = [];
if (pass_task) { call_args += [lltaskptr]; }
auto arg_n = 3u;
for each (uint i in uint::range(0u, num_ty_param)) {
auto llarg = llvm::LLVMGetParam(fcx.llfn, arg_n);
fcx.lltydescs += [llarg];
assert (llarg as int != 0);
if (cast_to_i32) {
call_args += [vp2i(bcx, llarg)];
} else {
call_args += [llarg];
}
arg_n += 1u;
}
fn convert_arg_to_i32(&@block_ctxt cx,
ValueRef v,
ty::t t,
ty::mode mode) -> ValueRef {
if (mode == ty::mo_val) {
if (ty::type_is_integral(cx.fcx.lcx.ccx.tcx, t)) {
auto lldsttype = T_int();
auto llsrctype = type_of(cx.fcx.lcx.ccx, cx.sp, t);
if (llvm::LLVMGetIntTypeWidth(lldsttype) >
llvm::LLVMGetIntTypeWidth(llsrctype)) {
ret cx.build.ZExtOrBitCast(v, T_int());
}
ret cx.build.TruncOrBitCast(v, T_int());
}
if (ty::type_is_fp(cx.fcx.lcx.ccx.tcx, t)) {
ret cx.build.FPToSI(v, T_int());
}
}
ret vp2i(cx, v);
}
fn trans_simple_native_abi(&@block_ctxt bcx,
str name,
&mutable vec[ValueRef] call_args,
ty::t fn_type,
uint first_arg_n) -> tup(ValueRef, ValueRef) {
let vec[TypeRef] call_arg_tys = [];
for (ValueRef arg in call_args) {
call_arg_tys += [val_ty(arg)];
}
auto llnativefnty =
T_fn(call_arg_tys,
type_of(bcx.fcx.lcx.ccx, bcx.sp,
ty::ty_fn_ret(bcx.fcx.lcx.ccx.tcx, fn_type)));
auto llnativefn = get_extern_fn(bcx.fcx.lcx.ccx.externs,
bcx.fcx.lcx.ccx.llmod,
name,
lib::llvm::LLVMCCallConv,
llnativefnty);
auto r = bcx.build.Call(llnativefn, call_args);
auto rptr = bcx.fcx.llretptr;
ret tup(r, rptr);
}
auto args = ty::ty_fn_args(ccx.tcx, fn_type);
// Build up the list of arguments.
let vec[tup(ValueRef, ty::t)] drop_args = [];
auto i = arg_n;
for (ty::arg arg in args) {
auto llarg = llvm::LLVMGetParam(fcx.llfn, i);
assert (llarg as int != 0);
if (cast_to_i32) {
auto llarg_i32 = convert_arg_to_i32(bcx, llarg, arg.ty, arg.mode);
call_args += [llarg_i32];
} else {
call_args += [llarg];
}
if (arg.mode == ty::mo_val) {
drop_args += [tup(llarg, arg.ty)];
}
i += 1u;
}
auto r;
auto rptr;
alt (abi) {
case (ast::native_abi_llvm) {
auto result = trans_simple_native_abi(bcx, name, call_args,
fn_type, arg_n);
r = result._0; rptr = result._1;
}
case (ast::native_abi_rust_intrinsic) {
auto external_name = "rust_intrinsic_" + name;
auto result = trans_simple_native_abi(bcx, external_name,
call_args, fn_type, arg_n);
r = result._0; rptr = result._1;
}
case (_) {
r = trans_native_call(bcx.build, ccx.glues, lltaskptr,
ccx.externs, ccx.tn, ccx.llmod, name,
pass_task, call_args);
rptr = bcx.build.BitCast(fcx.llretptr, T_ptr(T_i32()));
}
}
// We don't store the return value if it's nil, to avoid stomping on a nil
// pointer. This is the only concession made to non-i32 return values. See
// the FIXME above.
if (!rty_is_nil) { bcx.build.Store(r, rptr); }
for (tup(ValueRef, ty::t) d in drop_args) {
bcx = drop_ty(bcx, d._0, d._1).bcx;
}
bcx.build.RetVoid();
finish_fn(fcx, lltop);
}
type walk_ctxt = rec(mutable vec[str] path);
fn new_walk_ctxt() -> @walk_ctxt {
let vec[str] path = [];
ret @rec(mutable path=path);
}
fn enter_item(@walk_ctxt cx, &@ast::item item) {
alt (item.node) {
case (ast::item_fn(?name, _, _, _, _)) {
vec::push[str](cx.path, name);
}
case (ast::item_obj(?name, _, _, _, _)) {
vec::push[str](cx.path, name);
}
case (ast::item_mod(?name, _, _)) {
vec::push[str](cx.path, name);
}
case (_) { }
}
}
fn leave_item(@walk_ctxt cx, &@ast::item item) {
alt (item.node) {
case (ast::item_fn(_, _, _, _, _)) {
vec::pop[str](cx.path);
}
case (ast::item_obj(_, _, _, _, _)) {
vec::pop[str](cx.path);
}
case (ast::item_mod(_, _, _)) {
vec::pop[str](cx.path);
}
case (_) { }
}
}
fn collect_native_item(&@crate_ctxt ccx, @walk_ctxt wcx,
&@ast::native_item i) {
alt (i.node) {
case (ast::native_item_fn(?name, _, _, _, ?fid, ?ann)) {
ccx.native_items.insert(fid, i);
if (!ccx.obj_methods.contains_key(fid)) {
decl_native_fn_and_pair(ccx, i.span, wcx.path,
name, ann, fid);
}
}
case (ast::native_item_ty(_, ?tid)) {
ccx.native_items.insert(tid, i);
}
}
}
fn collect_item_1(&@crate_ctxt ccx, @walk_ctxt wcx, &@ast::item i) {
enter_item(wcx, i);
alt (i.node) {
case (ast::item_const(?name, _, _, ?cid, ?ann)) {
auto typ = node_ann_type(ccx, ann);
auto g = llvm::LLVMAddGlobal(ccx.llmod, type_of(ccx, i.span, typ),
str::buf(ccx.names.next(name)));
llvm::LLVMSetLinkage(g, lib::llvm::LLVMInternalLinkage
as llvm::Linkage);
ccx.items.insert(cid, i);
ccx.consts.insert(cid, g);
}
case (ast::item_mod(?name, ?m, ?mid)) {
ccx.items.insert(mid, i);
}
case (ast::item_native_mod(_, _, ?mid)) {
ccx.items.insert(mid, i);
}
case (ast::item_ty(_, _, _, ?did, _)) {
ccx.items.insert(did, i);
}
case (ast::item_tag(?name, ?variants, ?tps, ?tag_id, _)) {
ccx.items.insert(tag_id, i);
}
case (_) {}
}
}
fn collect_item_2(&@crate_ctxt ccx, @walk_ctxt wcx, &@ast::item i) {
enter_item(wcx, i);
alt (i.node) {
case (ast::item_fn(?name, ?f, ?tps, ?fid, ?ann)) {
ccx.items.insert(fid, i);
if (!ccx.obj_methods.contains_key(fid)) {
decl_fn_and_pair(ccx, i.span, wcx.path, "fn", tps, ann, fid);
}
}
case (ast::item_obj(?name, ?ob, ?tps, ?oid, ?ann)) {
ccx.items.insert(oid.ctor, i);
decl_fn_and_pair(ccx, i.span, wcx.path,
"obj_ctor", tps, ann, oid.ctor);
for (@ast::method m in ob.methods) {
ccx.obj_methods.insert(m.node.id, ());
}
}
case (_) {}
}
}
fn collect_items(&@crate_ctxt ccx, @ast::crate crate) {
auto wcx = new_walk_ctxt();
auto visitor0 = walk::default_visitor();
auto visitor1 = rec(visit_native_item_pre =
bind collect_native_item(ccx, wcx, _),
visit_item_pre = bind collect_item_1(ccx, wcx, _),
visit_item_post = bind leave_item(wcx, _)
with visitor0);
auto visitor2 = rec(visit_item_pre = bind collect_item_2(ccx, wcx, _),
visit_item_post = bind leave_item(wcx, _)
with visitor0);
walk::walk_crate(visitor1, *crate);
walk::walk_crate(visitor2, *crate);
}
fn collect_tag_ctor(&@crate_ctxt ccx, @walk_ctxt wcx, &@ast::item i) {
enter_item(wcx, i);
alt (i.node) {
case (ast::item_tag(_, ?variants, ?tps, _, _)) {
for (ast::variant variant in variants) {
if (vec::len[ast::variant_arg](variant.node.args) != 0u) {
decl_fn_and_pair(ccx, i.span,
wcx.path + [variant.node.name],
"tag", tps, variant.node.ann,
variant.node.id);
}
}
}
case (_) { /* fall through */ }
}
}
fn collect_tag_ctors(&@crate_ctxt ccx, @ast::crate crate) {
auto wcx = new_walk_ctxt();
auto visitor = rec(visit_item_pre = bind collect_tag_ctor(ccx, wcx, _),
visit_item_post = bind leave_item(wcx, _)
with walk::default_visitor());
walk::walk_crate(visitor, *crate);
}
// The constant translation pass.
fn trans_constant(&@crate_ctxt ccx, @walk_ctxt wcx, &@ast::item it) {
enter_item(wcx, it);
alt (it.node) {
case (ast::item_tag(?ident, ?variants, _, ?tag_id, _)) {
auto i = 0u;
auto n_variants = vec::len[ast::variant](variants);
while (i < n_variants) {
auto variant = variants.(i);
auto discrim_val = C_int(i as int);
auto s = mangle_name_by_seq(ccx, wcx.path,
#fmt("_rust_tag_discrim_%s_%u",
ident, i));
auto discrim_gvar = llvm::LLVMAddGlobal(ccx.llmod, T_int(),
str::buf(s));
llvm::LLVMSetInitializer(discrim_gvar, discrim_val);
llvm::LLVMSetGlobalConstant(discrim_gvar, True);
ccx.discrims.insert(variant.node.id, discrim_gvar);
ccx.discrim_symbols.insert(variant.node.id, s);
i += 1u;
}
}
case (ast::item_const(?name, _, ?expr, ?cid, ?ann)) {
// FIXME: The whole expr-translation system needs cloning to deal
// with consts.
auto v = C_int(1);
ccx.item_ids.insert(cid, v);
auto s = mangle_name_by_type(ccx, wcx.path + [name],
node_ann_type(ccx, ann));
ccx.item_symbols.insert(cid, s);
}
case (_) {}
}
}
fn trans_constants(&@crate_ctxt ccx, @ast::crate crate) {
auto wcx = new_walk_ctxt();
auto visitor = rec(visit_item_pre = bind trans_constant(ccx, wcx, _),
visit_item_post = bind leave_item(wcx, _)
with walk::default_visitor());
walk::walk_crate(visitor, *crate);
}
fn vp2i(&@block_ctxt cx, ValueRef v) -> ValueRef {
ret cx.build.PtrToInt(v, T_int());
}
fn vi2p(&@block_ctxt cx, ValueRef v, TypeRef t) -> ValueRef {
ret cx.build.IntToPtr(v, t);
}
fn p2i(ValueRef v) -> ValueRef {
ret llvm::LLVMConstPtrToInt(v, T_int());
}
fn i2p(ValueRef v, TypeRef t) -> ValueRef {
ret llvm::LLVMConstIntToPtr(v, t);
}
fn create_typedefs(&@crate_ctxt cx) {
llvm::LLVMAddTypeName(cx.llmod, str::buf("task"), T_task(cx.tn));
llvm::LLVMAddTypeName(cx.llmod, str::buf("tydesc"), T_tydesc(cx.tn));
}
fn find_main_fn(&@crate_ctxt cx) -> ValueRef {
auto e = sep() + "main";
let ValueRef v = C_nil();
let uint n = 0u;
for each (@tup(ast::def_id, str) i in cx.item_symbols.items()) {
if (str::ends_with(i._1, e)) {
n += 1u;
v = cx.item_ids.get(i._0);
}
}
alt (n) {
case (0u) {
cx.sess.err("main fn not found");
}
case (1u) {
ret v;
}
case (_) {
cx.sess.err("multiple main fns found");
}
}
fail;
}
fn trans_main_fn(@local_ctxt cx, ValueRef crate_map) {
auto T_main_args = [T_int(), T_int()];
auto T_rust_start_args = [T_int(), T_int(), T_int(), T_int()];
auto main_name;
if (str::eq(std::os::target_os(), "win32")) {
main_name = "WinMain@16";
} else {
main_name = "main";
}
auto llmain =
decl_cdecl_fn(cx.ccx.llmod, main_name, T_fn(T_main_args, T_int()));
auto llrust_start = decl_cdecl_fn(cx.ccx.llmod, "new_rust_start",
T_fn(T_rust_start_args, T_int()));
auto llargc = llvm::LLVMGetParam(llmain, 0u);
auto llargv = llvm::LLVMGetParam(llmain, 1u);
auto llrust_main = find_main_fn(cx.ccx);
//
// Emit the moral equivalent of:
//
// main(int argc, char **argv) {
// rust_start(&_rust.main, argc, argv);
// }
//
let BasicBlockRef llbb =
llvm::LLVMAppendBasicBlock(llmain, str::buf(""));
auto b = new_builder(llbb);
auto start_args = [p2i(llrust_main), llargc, llargv, p2i(crate_map)];
b.Ret(b.Call(llrust_start, start_args));
}
fn declare_intrinsics(ModuleRef llmod) -> hashmap[str,ValueRef] {
let vec[TypeRef] T_memmove32_args = [T_ptr(T_i8()), T_ptr(T_i8()),
T_i32(), T_i32(), T_i1()];
let vec[TypeRef] T_memmove64_args = [T_ptr(T_i8()), T_ptr(T_i8()),
T_i64(), T_i32(), T_i1()];
let vec[TypeRef] T_memset32_args = [T_ptr(T_i8()), T_i8(),
T_i32(), T_i32(), T_i1()];
let vec[TypeRef] T_memset64_args = [T_ptr(T_i8()), T_i8(),
T_i64(), T_i32(), T_i1()];
let vec[TypeRef] T_trap_args = [];
auto memmove32 = decl_cdecl_fn(llmod, "llvm.memmove.p0i8.p0i8.i32",
T_fn(T_memmove32_args, T_void()));
auto memmove64 = decl_cdecl_fn(llmod, "llvm.memmove.p0i8.p0i8.i64",
T_fn(T_memmove64_args, T_void()));
auto memset32 = decl_cdecl_fn(llmod, "llvm.memset.p0i8.i32",
T_fn(T_memset32_args, T_void()));
auto memset64 = decl_cdecl_fn(llmod, "llvm.memset.p0i8.i64",
T_fn(T_memset64_args, T_void()));
auto trap = decl_cdecl_fn(llmod, "llvm.trap",
T_fn(T_trap_args, T_void()));
auto intrinsics = new_str_hash[ValueRef]();
intrinsics.insert("llvm.memmove.p0i8.p0i8.i32", memmove32);
intrinsics.insert("llvm.memmove.p0i8.p0i8.i64", memmove64);
intrinsics.insert("llvm.memset.p0i8.i32", memset32);
intrinsics.insert("llvm.memset.p0i8.i64", memset64);
intrinsics.insert("llvm.trap", trap);
ret intrinsics;
}
fn trace_str(&@block_ctxt cx, str s) {
cx.build.Call(cx.fcx.lcx.ccx.upcalls.trace_str,
[cx.fcx.lltaskptr, C_cstr(cx.fcx.lcx.ccx, s)]);
}
fn trace_word(&@block_ctxt cx, ValueRef v) {
cx.build.Call(cx.fcx.lcx.ccx.upcalls.trace_word,
[cx.fcx.lltaskptr, v]);
}
fn trace_ptr(&@block_ctxt cx, ValueRef v) {
trace_word(cx, cx.build.PtrToInt(v, T_int()));
}
fn trap(&@block_ctxt bcx) {
let vec[ValueRef] v = [];
bcx.build.Call(bcx.fcx.lcx.ccx.intrinsics.get("llvm.trap"), v);
}
fn decl_no_op_type_glue(ModuleRef llmod, type_names tn) -> ValueRef {
auto ty = T_fn([T_taskptr(tn), T_ptr(T_i8())], T_void());
ret decl_fastcall_fn(llmod, abi::no_op_type_glue_name(), ty);
}
fn make_no_op_type_glue(ValueRef fun) {
auto bb_name = str::buf("_rust_no_op_type_glue_bb");
auto llbb = llvm::LLVMAppendBasicBlock(fun, bb_name);
new_builder(llbb).RetVoid();
}
fn make_vec_append_glue(ModuleRef llmod, type_names tn) -> ValueRef {
/*
* Args to vec_append_glue:
*
* 0. (Implicit) task ptr
*
* 1. Pointer to the tydesc of the vec, so that we can tell if it's gc
* mem, and have a tydesc to pass to malloc if we're allocating anew.
*
* 2. Pointer to the tydesc of the vec's stored element type, so that
* elements can be copied to a newly alloc'ed vec if one must be
* created.
*
* 3. Dst vec ptr (i.e. ptr to ptr to rust_vec).
*
* 4. Src vec (i.e. ptr to rust_vec).
*
* 5. Flag indicating whether to skip trailing null on dst.
*
*/
auto ty = T_fn([T_taskptr(tn),
T_ptr(T_tydesc(tn)),
T_ptr(T_tydesc(tn)),
T_ptr(T_opaque_vec_ptr()),
T_opaque_vec_ptr(), T_bool()],
T_void());
auto llfn = decl_fastcall_fn(llmod, abi::vec_append_glue_name(), ty);
ret llfn;
}
fn vec_fill(&@block_ctxt bcx, ValueRef v) -> ValueRef {
ret bcx.build.Load(bcx.build.GEP(v, [C_int(0),
C_int(abi::vec_elt_fill)]));
}
fn put_vec_fill(&@block_ctxt bcx, ValueRef v, ValueRef fill) -> ValueRef {
ret bcx.build.Store(fill,
bcx.build.GEP(v,
[C_int(0),
C_int(abi::vec_elt_fill)]));
}
fn vec_fill_adjusted(&@block_ctxt bcx, ValueRef v,
ValueRef skipnull) -> ValueRef {
auto f = bcx.build.Load(bcx.build.GEP(v,
[C_int(0),
C_int(abi::vec_elt_fill)]));
ret bcx.build.Select(skipnull, bcx.build.Sub(f, C_int(1)), f);
}
fn vec_p0(&@block_ctxt bcx, ValueRef v) -> ValueRef {
auto p = bcx.build.GEP(v, [C_int(0),
C_int(abi::vec_elt_data)]);
ret bcx.build.PointerCast(p, T_ptr(T_i8()));
}
fn vec_p1(&@block_ctxt bcx, ValueRef v) -> ValueRef {
auto len = vec_fill(bcx, v);
ret bcx.build.GEP(vec_p0(bcx, v), [len]);
}
fn vec_p1_adjusted(&@block_ctxt bcx, ValueRef v,
ValueRef skipnull) -> ValueRef {
auto len = vec_fill_adjusted(bcx, v, skipnull);
ret bcx.build.GEP(vec_p0(bcx, v), [len]);
}
fn trans_vec_append_glue(@local_ctxt cx, &ast::span sp) {
auto llfn = cx.ccx.glues.vec_append_glue;
let ValueRef lltaskptr = llvm::LLVMGetParam(llfn, 0u);
let ValueRef llvec_tydesc = llvm::LLVMGetParam(llfn, 1u);
let ValueRef llelt_tydesc = llvm::LLVMGetParam(llfn, 2u);
let ValueRef lldst_vec_ptr = llvm::LLVMGetParam(llfn, 3u);
let ValueRef llsrc_vec = llvm::LLVMGetParam(llfn, 4u);
let ValueRef llskipnull = llvm::LLVMGetParam(llfn, 5u);
auto derived_tydescs =
map::mk_hashmap[ty::t, derived_tydesc_info](ty::hash_ty, ty::eq_ty);
auto llbbs = mk_standard_basic_blocks(llfn);
auto fcx = @rec(llfn=llfn,
lltaskptr=lltaskptr,
llenv=C_null(T_ptr(T_nil())),
llretptr=C_null(T_ptr(T_nil())),
mutable llallocas = llbbs._0,
mutable llcopyargs = llbbs._1,
mutable llderivedtydescs = llbbs._2,
mutable llself=none[self_vt],
mutable lliterbody=none[ValueRef],
llargs=new_def_hash[ValueRef](),
llobjfields=new_def_hash[ValueRef](),
lllocals=new_def_hash[ValueRef](),
llupvars=new_def_hash[ValueRef](),
mutable lltydescs=vec::empty[ValueRef](),
derived_tydescs=derived_tydescs,
sp=sp,
lcx=cx);
auto bcx = new_top_block_ctxt(fcx);
auto lltop = bcx.llbb;
auto lldst_vec = bcx.build.Load(lldst_vec_ptr);
// First the dst vec needs to grow to accommodate the src vec.
// To do this we have to figure out how many bytes to add.
auto llcopy_dst_ptr = alloca(bcx, T_int());
auto llnew_vec = bcx.build.Call(bcx.fcx.lcx.ccx.upcalls.vec_grow,
[bcx.fcx.lltaskptr, lldst_vec,
vec_fill_adjusted(bcx, llsrc_vec, llskipnull),
llcopy_dst_ptr, llvec_tydesc]);
maybe_name_value(bcx.fcx.lcx.ccx, llnew_vec, "llnew_vec");
auto copy_dst_cx = new_sub_block_ctxt(bcx, "copy new <- dst");
auto copy_src_cx = new_sub_block_ctxt(bcx, "copy new <- src");
auto pp0 = alloca(bcx, T_ptr(T_i8()));
bcx.build.Store(vec_p1_adjusted(bcx, llnew_vec, llskipnull), pp0);
maybe_name_value(bcx.fcx.lcx.ccx, pp0, "pp0");
bcx.build.CondBr(bcx.build.TruncOrBitCast
(bcx.build.Load(llcopy_dst_ptr),
T_i1()),
copy_dst_cx.llbb,
copy_src_cx.llbb);
fn copy_elts(&@block_ctxt cx,
ValueRef elt_tydesc,
ValueRef dst,
ValueRef src,
ValueRef n_bytes) -> result {
auto src_lim = cx.build.GEP(src, [n_bytes]);
maybe_name_value(cx.fcx.lcx.ccx, src_lim, "src_lim");
auto elt_llsz =
cx.build.Load(cx.build.GEP(elt_tydesc,
[C_int(0),
C_int(abi::tydesc_field_size)]));
maybe_name_value(cx.fcx.lcx.ccx, elt_llsz, "elt_llsz");
auto elt_llalign =
cx.build.Load(cx.build.GEP(elt_tydesc,
[C_int(0),
C_int(abi::tydesc_field_align)]));
maybe_name_value(cx.fcx.lcx.ccx, elt_llsz, "elt_llalign");
fn take_one(ValueRef elt_tydesc,
&@block_ctxt cx,
ValueRef dst, ValueRef src) -> result {
auto ti = none[@tydesc_info];
call_tydesc_glue_full(cx, src,
elt_tydesc,
abi::tydesc_field_take_glue, ti);
ret res(cx, src);
}
auto bcx = iter_sequence_raw(cx, dst, src, src_lim,
elt_llsz, bind take_one(elt_tydesc,
_, _, _)).bcx;
ret call_memmove(bcx, dst, src, n_bytes, elt_llalign);
}
// Copy any dst elements in, omitting null if doing str.
auto n_bytes = vec_fill_adjusted(copy_dst_cx, lldst_vec, llskipnull);
maybe_name_value(copy_dst_cx.fcx.lcx.ccx, n_bytes, "n_bytes");
copy_dst_cx = copy_elts(copy_dst_cx,
llelt_tydesc,
vec_p0(copy_dst_cx, llnew_vec),
vec_p0(copy_dst_cx, lldst_vec),
n_bytes).bcx;
put_vec_fill(copy_dst_cx, llnew_vec, vec_fill(copy_dst_cx, lldst_vec));
copy_dst_cx.build.Store(vec_p1_adjusted(copy_dst_cx, llnew_vec,
llskipnull), pp0);
copy_dst_cx.build.Br(copy_src_cx.llbb);
// Copy any src elements in, carrying along null if doing str.
n_bytes = vec_fill(copy_src_cx, llsrc_vec);
copy_src_cx = copy_elts(copy_src_cx,
llelt_tydesc,
copy_src_cx.build.Load(pp0),
vec_p0(copy_src_cx, llsrc_vec),
n_bytes).bcx;
put_vec_fill(copy_src_cx, llnew_vec,
copy_src_cx.build.Add(vec_fill_adjusted(copy_src_cx,
llnew_vec,
llskipnull),
n_bytes));
// Write new_vec back through the alias we were given.
copy_src_cx.build.Store(llnew_vec, lldst_vec_ptr);
copy_src_cx.build.RetVoid();
finish_fn(fcx, lltop);
}
fn make_glues(ModuleRef llmod, &type_names tn) -> @glue_fns {
ret @rec(yield_glue = decl_glue(llmod, tn, abi::yield_glue_name()),
no_op_type_glue = decl_no_op_type_glue(llmod, tn),
vec_append_glue = make_vec_append_glue(llmod, tn));
}
fn make_common_glue(&session::session sess, &str output) {
// FIXME: part of this is repetitive and is probably a good idea
// to autogen it.
auto llmod =
llvm::LLVMModuleCreateWithNameInContext(str::buf("rust_out"),
llvm::LLVMGetGlobalContext());
llvm::LLVMSetDataLayout(llmod, str::buf(x86::get_data_layout()));
llvm::LLVMSetTarget(llmod, str::buf(x86::get_target_triple()));
auto td = mk_target_data(x86::get_data_layout());
auto tn = mk_type_names();
auto intrinsics = declare_intrinsics(llmod);
llvm::LLVMSetModuleInlineAsm(llmod, str::buf(x86::get_module_asm()));
auto glues = make_glues(llmod, tn);
link::write::run_passes(sess, llmod, output);
}
fn create_module_map(&@crate_ctxt ccx) -> ValueRef {
auto elttype = T_struct([T_int(), T_int()]);
auto maptype = T_array(elttype, ccx.module_data.size() + 1u);
auto map = llvm::LLVMAddGlobal(ccx.llmod, maptype,
str::buf("_rust_mod_map"));
llvm::LLVMSetLinkage(map, lib::llvm::LLVMInternalLinkage
as llvm::Linkage);
let vec[ValueRef] elts = [];
for each (@tup(str, ValueRef) item in ccx.module_data.items()) {
auto elt = C_struct([p2i(C_cstr(ccx, item._0)), p2i(item._1)]);
vec::push[ValueRef](elts, elt);
}
auto term = C_struct([C_int(0), C_int(0)]);
vec::push[ValueRef](elts, term);
llvm::LLVMSetInitializer(map, C_array(elttype, elts));
ret map;
}
fn crate_name(&@crate_ctxt ccx, &str deflt) -> str {
for (@ast::meta_item item in ccx.sess.get_metadata()) {
if (str::eq(item.node.name, "name")) {
ret item.node.value;
}
}
ret deflt;
}
// FIXME use hashed metadata instead of crate names once we have that
fn create_crate_map(&@crate_ctxt ccx) -> ValueRef {
let vec[ValueRef] subcrates = [];
auto i = 1;
while (ccx.sess.has_external_crate(i)) {
auto name = ccx.sess.get_external_crate(i).name;
auto cr = llvm::LLVMAddGlobal(ccx.llmod, T_int(),
str::buf("_rust_crate_map_" + name));
vec::push[ValueRef](subcrates, p2i(cr));
i += 1;
}
vec::push[ValueRef](subcrates, C_int(0));
auto sym_name = "_rust_crate_map_" + crate_name(ccx, "__none__");
auto arrtype = T_array(T_int(), vec::len[ValueRef](subcrates));
auto maptype = T_struct([T_int(), arrtype]);
auto map = llvm::LLVMAddGlobal(ccx.llmod, maptype, str::buf(sym_name));
llvm::LLVMSetLinkage(map, lib::llvm::LLVMExternalLinkage
as llvm::Linkage);
llvm::LLVMSetInitializer(map, C_struct([p2i(create_module_map(ccx)),
C_array(T_int(), subcrates)]));
ret map;
}
fn trans_crate(&session::session sess, &@ast::crate crate,
&ty::ctxt tcx, &str output)
-> ModuleRef {
auto llmod =
llvm::LLVMModuleCreateWithNameInContext(str::buf("rust_out"),
llvm::LLVMGetGlobalContext());
llvm::LLVMSetDataLayout(llmod, str::buf(x86::get_data_layout()));
llvm::LLVMSetTarget(llmod, str::buf(x86::get_target_triple()));
auto td = mk_target_data(x86::get_data_layout());
auto tn = mk_type_names();
auto intrinsics = declare_intrinsics(llmod);
auto glues = make_glues(llmod, tn);
auto hasher = ty::hash_ty;
auto eqer = ty::eq_ty;
auto tag_sizes = map::mk_hashmap[ty::t,uint](hasher, eqer);
auto tydescs = map::mk_hashmap[ty::t,@tydesc_info](hasher, eqer);
auto lltypes = map::mk_hashmap[ty::t,TypeRef](hasher, eqer);
auto sha1s = map::mk_hashmap[ty::t,str](hasher, eqer);
auto abbrevs = map::mk_hashmap[ty::t,metadata::ty_abbrev](hasher, eqer);
auto short_names = map::mk_hashmap[ty::t,str](hasher, eqer);
auto ccx = @rec(sess = sess,
llmod = llmod,
td = td,
tn = tn,
externs = new_str_hash[ValueRef](),
intrinsics = intrinsics,
item_ids = new_def_hash[ValueRef](),
items = new_def_hash[@ast::item](),
native_items = new_def_hash[@ast::native_item](),
item_symbols = new_def_hash[str](),
tag_sizes = tag_sizes,
discrims = new_def_hash[ValueRef](),
discrim_symbols = new_def_hash[str](),
fn_pairs = new_def_hash[ValueRef](),
consts = new_def_hash[ValueRef](),
obj_methods = new_def_hash[()](),
tydescs = tydescs,
module_data = new_str_hash[ValueRef](),
lltypes = lltypes,
glues = glues,
names = namegen(0),
sha = std::sha1::mk_sha1(),
type_sha1s = sha1s,
type_abbrevs = abbrevs,
type_short_names = short_names,
tcx = tcx,
stats = rec(mutable n_static_tydescs = 0u,
mutable n_derived_tydescs = 0u,
mutable n_glues_created = 0u,
mutable n_null_glues = 0u,
mutable n_real_glues = 0u),
upcalls = upcall::declare_upcalls(tn, llmod));
auto cx = new_local_ctxt(ccx);
create_typedefs(ccx);
collect_items(ccx, crate);
collect_tag_ctors(ccx, crate);
trans_constants(ccx, crate);
trans_mod(cx, crate.node.module);
trans_vec_append_glue(cx, crate.span);
auto crate_map = create_crate_map(ccx);
if (!sess.get_opts().shared) {
trans_main_fn(cx, crate_map);
}
emit_tydescs(ccx);
// Translate the metadata:
middle::metadata::write_metadata(cx.ccx, crate);
if (ccx.sess.get_opts().stats) {
log_err "--- trans stats ---";
log_err #fmt("n_static_tydescs: %u", ccx.stats.n_static_tydescs);
log_err #fmt("n_derived_tydescs: %u", ccx.stats.n_derived_tydescs);
log_err #fmt("n_glues_created: %u", ccx.stats.n_glues_created);
log_err #fmt("n_null_glues: %u", ccx.stats.n_null_glues);
log_err #fmt("n_real_glues: %u", ccx.stats.n_real_glues);
}
ret llmod;
}
//
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'";
// End:
//