baeb16e83f
- add panic context for the trait goal if CHALK_DEBUG is set - print the Chalk program even if we're panicking - log goal/solution while TLS is still set
302 lines
9.7 KiB
Rust
302 lines
9.7 KiB
Rust
//! Trait solving using Chalk.
|
|
use std::sync::Arc;
|
|
|
|
use base_db::CrateId;
|
|
use chalk_ir::cast::Cast;
|
|
use chalk_solve::{logging_db::LoggingRustIrDatabase, Solver};
|
|
use hir_def::{lang_item::LangItemTarget, TraitId};
|
|
use stdx::panic_context;
|
|
|
|
use crate::{db::HirDatabase, DebruijnIndex, Substs};
|
|
|
|
use super::{Canonical, GenericPredicate, HirDisplay, ProjectionTy, TraitRef, Ty, TypeWalk};
|
|
|
|
use self::chalk::{from_chalk, Interner, ToChalk};
|
|
|
|
pub(crate) mod chalk;
|
|
|
|
// This controls the maximum size of types Chalk considers. If we set this too
|
|
// high, we can run into slow edge cases; if we set it too low, Chalk won't
|
|
// find some solutions.
|
|
// FIXME this is currently hardcoded in the recursive solver
|
|
// const CHALK_SOLVER_MAX_SIZE: usize = 10;
|
|
|
|
/// This controls how much 'time' we give the Chalk solver before giving up.
|
|
const CHALK_SOLVER_FUEL: i32 = 100;
|
|
|
|
#[derive(Debug, Copy, Clone)]
|
|
struct ChalkContext<'a> {
|
|
db: &'a dyn HirDatabase,
|
|
krate: CrateId,
|
|
}
|
|
|
|
fn create_chalk_solver() -> chalk_recursive::RecursiveSolver<Interner> {
|
|
let overflow_depth = 100;
|
|
let caching_enabled = true;
|
|
chalk_recursive::RecursiveSolver::new(overflow_depth, caching_enabled)
|
|
}
|
|
|
|
/// A set of clauses that we assume to be true. E.g. if we are inside this function:
|
|
/// ```rust
|
|
/// fn foo<T: Default>(t: T) {}
|
|
/// ```
|
|
/// we assume that `T: Default`.
|
|
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
|
|
pub struct TraitEnvironment {
|
|
pub predicates: Vec<GenericPredicate>,
|
|
}
|
|
|
|
impl TraitEnvironment {
|
|
/// Returns trait refs with the given self type which are supposed to hold
|
|
/// in this trait env. E.g. if we are in `foo<T: SomeTrait>()`, this will
|
|
/// find that `T: SomeTrait` if we call it for `T`.
|
|
pub(crate) fn trait_predicates_for_self_ty<'a>(
|
|
&'a self,
|
|
ty: &'a Ty,
|
|
) -> impl Iterator<Item = &'a TraitRef> + 'a {
|
|
self.predicates.iter().filter_map(move |pred| match pred {
|
|
GenericPredicate::Implemented(tr) if tr.self_ty() == ty => Some(tr),
|
|
_ => None,
|
|
})
|
|
}
|
|
}
|
|
|
|
/// Something (usually a goal), along with an environment.
|
|
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
|
|
pub struct InEnvironment<T> {
|
|
pub environment: Arc<TraitEnvironment>,
|
|
pub value: T,
|
|
}
|
|
|
|
impl<T> InEnvironment<T> {
|
|
pub fn new(environment: Arc<TraitEnvironment>, value: T) -> InEnvironment<T> {
|
|
InEnvironment { environment, value }
|
|
}
|
|
}
|
|
|
|
/// Something that needs to be proven (by Chalk) during type checking, e.g. that
|
|
/// a certain type implements a certain trait. Proving the Obligation might
|
|
/// result in additional information about inference variables.
|
|
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
|
|
pub enum Obligation {
|
|
/// Prove that a certain type implements a trait (the type is the `Self` type
|
|
/// parameter to the `TraitRef`).
|
|
Trait(TraitRef),
|
|
Projection(ProjectionPredicate),
|
|
}
|
|
|
|
impl Obligation {
|
|
pub fn from_predicate(predicate: GenericPredicate) -> Option<Obligation> {
|
|
match predicate {
|
|
GenericPredicate::Implemented(trait_ref) => Some(Obligation::Trait(trait_ref)),
|
|
GenericPredicate::Projection(projection_pred) => {
|
|
Some(Obligation::Projection(projection_pred))
|
|
}
|
|
GenericPredicate::Error => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
|
|
pub struct ProjectionPredicate {
|
|
pub projection_ty: ProjectionTy,
|
|
pub ty: Ty,
|
|
}
|
|
|
|
impl TypeWalk for ProjectionPredicate {
|
|
fn walk(&self, f: &mut impl FnMut(&Ty)) {
|
|
self.projection_ty.walk(f);
|
|
self.ty.walk(f);
|
|
}
|
|
|
|
fn walk_mut_binders(
|
|
&mut self,
|
|
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
|
|
binders: DebruijnIndex,
|
|
) {
|
|
self.projection_ty.walk_mut_binders(f, binders);
|
|
self.ty.walk_mut_binders(f, binders);
|
|
}
|
|
}
|
|
|
|
/// Solve a trait goal using Chalk.
|
|
pub(crate) fn trait_solve_query(
|
|
db: &dyn HirDatabase,
|
|
krate: CrateId,
|
|
goal: Canonical<InEnvironment<Obligation>>,
|
|
) -> Option<Solution> {
|
|
let _p = profile::span("trait_solve_query").detail(|| match &goal.value.value {
|
|
Obligation::Trait(it) => db.trait_data(it.trait_).name.to_string(),
|
|
Obligation::Projection(_) => "projection".to_string(),
|
|
});
|
|
log::info!("trait_solve_query({})", goal.value.value.display(db));
|
|
|
|
if let Obligation::Projection(pred) = &goal.value.value {
|
|
if let Ty::Bound(_) = &pred.projection_ty.parameters[0] {
|
|
// Hack: don't ask Chalk to normalize with an unknown self type, it'll say that's impossible
|
|
return Some(Solution::Ambig(Guidance::Unknown));
|
|
}
|
|
}
|
|
|
|
let canonical = goal.to_chalk(db).cast(&Interner);
|
|
|
|
// We currently don't deal with universes (I think / hope they're not yet
|
|
// relevant for our use cases?)
|
|
let u_canonical = chalk_ir::UCanonical { canonical, universes: 1 };
|
|
let solution = solve(db, krate, &u_canonical);
|
|
solution.map(|solution| solution_from_chalk(db, solution))
|
|
}
|
|
|
|
fn solve(
|
|
db: &dyn HirDatabase,
|
|
krate: CrateId,
|
|
goal: &chalk_ir::UCanonical<chalk_ir::InEnvironment<chalk_ir::Goal<Interner>>>,
|
|
) -> Option<chalk_solve::Solution<Interner>> {
|
|
let context = ChalkContext { db, krate };
|
|
log::debug!("solve goal: {:?}", goal);
|
|
let mut solver = create_chalk_solver();
|
|
|
|
let fuel = std::cell::Cell::new(CHALK_SOLVER_FUEL);
|
|
|
|
let should_continue = || {
|
|
context.db.check_canceled();
|
|
let remaining = fuel.get();
|
|
fuel.set(remaining - 1);
|
|
if remaining == 0 {
|
|
log::debug!("fuel exhausted");
|
|
}
|
|
remaining > 0
|
|
};
|
|
|
|
let mut solve = || {
|
|
let _ctx = if is_chalk_debug() || is_chalk_print() {
|
|
Some(panic_context::enter(format!("solving {:?}", goal)))
|
|
} else {
|
|
None
|
|
};
|
|
let solution = if is_chalk_print() {
|
|
let logging_db =
|
|
LoggingRustIrDatabaseLoggingOnDrop(LoggingRustIrDatabase::new(context));
|
|
let solution = solver.solve_limited(&logging_db.0, goal, &should_continue);
|
|
solution
|
|
} else {
|
|
solver.solve_limited(&context, goal, &should_continue)
|
|
};
|
|
|
|
log::debug!("solve({:?}) => {:?}", goal, solution);
|
|
|
|
solution
|
|
};
|
|
|
|
// don't set the TLS for Chalk unless Chalk debugging is active, to make
|
|
// extra sure we only use it for debugging
|
|
let solution =
|
|
if is_chalk_debug() { chalk::tls::set_current_program(db, solve) } else { solve() };
|
|
|
|
solution
|
|
}
|
|
|
|
struct LoggingRustIrDatabaseLoggingOnDrop<'a>(LoggingRustIrDatabase<Interner, ChalkContext<'a>>);
|
|
|
|
impl<'a> Drop for LoggingRustIrDatabaseLoggingOnDrop<'a> {
|
|
fn drop(&mut self) {
|
|
eprintln!("chalk program:\n{}", self.0);
|
|
}
|
|
}
|
|
|
|
fn is_chalk_debug() -> bool {
|
|
std::env::var("CHALK_DEBUG").is_ok()
|
|
}
|
|
|
|
fn is_chalk_print() -> bool {
|
|
std::env::var("CHALK_PRINT").is_ok()
|
|
}
|
|
|
|
fn solution_from_chalk(
|
|
db: &dyn HirDatabase,
|
|
solution: chalk_solve::Solution<Interner>,
|
|
) -> Solution {
|
|
let convert_subst = |subst: chalk_ir::Canonical<chalk_ir::Substitution<Interner>>| {
|
|
let result = from_chalk(db, subst);
|
|
SolutionVariables(result)
|
|
};
|
|
match solution {
|
|
chalk_solve::Solution::Unique(constr_subst) => {
|
|
let subst = chalk_ir::Canonical {
|
|
value: constr_subst.value.subst,
|
|
binders: constr_subst.binders,
|
|
};
|
|
Solution::Unique(convert_subst(subst))
|
|
}
|
|
chalk_solve::Solution::Ambig(chalk_solve::Guidance::Definite(subst)) => {
|
|
Solution::Ambig(Guidance::Definite(convert_subst(subst)))
|
|
}
|
|
chalk_solve::Solution::Ambig(chalk_solve::Guidance::Suggested(subst)) => {
|
|
Solution::Ambig(Guidance::Suggested(convert_subst(subst)))
|
|
}
|
|
chalk_solve::Solution::Ambig(chalk_solve::Guidance::Unknown) => {
|
|
Solution::Ambig(Guidance::Unknown)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Eq)]
|
|
pub struct SolutionVariables(pub Canonical<Substs>);
|
|
|
|
#[derive(Clone, Debug, PartialEq, Eq)]
|
|
/// A (possible) solution for a proposed goal.
|
|
pub enum Solution {
|
|
/// The goal indeed holds, and there is a unique value for all existential
|
|
/// variables.
|
|
Unique(SolutionVariables),
|
|
|
|
/// The goal may be provable in multiple ways, but regardless we may have some guidance
|
|
/// for type inference. In this case, we don't return any lifetime
|
|
/// constraints, since we have not "committed" to any particular solution
|
|
/// yet.
|
|
Ambig(Guidance),
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Eq)]
|
|
/// When a goal holds ambiguously (e.g., because there are multiple possible
|
|
/// solutions), we issue a set of *guidance* back to type inference.
|
|
pub enum Guidance {
|
|
/// The existential variables *must* have the given values if the goal is
|
|
/// ever to hold, but that alone isn't enough to guarantee the goal will
|
|
/// actually hold.
|
|
Definite(SolutionVariables),
|
|
|
|
/// There are multiple plausible values for the existentials, but the ones
|
|
/// here are suggested as the preferred choice heuristically. These should
|
|
/// be used for inference fallback only.
|
|
Suggested(SolutionVariables),
|
|
|
|
/// There's no useful information to feed back to type inference
|
|
Unknown,
|
|
}
|
|
|
|
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
|
|
pub enum FnTrait {
|
|
FnOnce,
|
|
FnMut,
|
|
Fn,
|
|
}
|
|
|
|
impl FnTrait {
|
|
fn lang_item_name(self) -> &'static str {
|
|
match self {
|
|
FnTrait::FnOnce => "fn_once",
|
|
FnTrait::FnMut => "fn_mut",
|
|
FnTrait::Fn => "fn",
|
|
}
|
|
}
|
|
|
|
pub fn get_id(&self, db: &dyn HirDatabase, krate: CrateId) -> Option<TraitId> {
|
|
let target = db.lang_item(krate, self.lang_item_name().into())?;
|
|
match target {
|
|
LangItemTarget::TraitId(t) => Some(t),
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|