rust/src/librustc_mir/transform/const_prop.rs
2018-11-19 22:42:46 +01:00

669 lines
27 KiB
Rust

// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Propagates constants for early reporting of statically known
//! assertion failures
use rustc::hir::def::Def;
use rustc::mir::{Constant, Location, Place, Mir, Operand, Rvalue, Local};
use rustc::mir::{NullOp, UnOp, StatementKind, Statement, BasicBlock, LocalKind};
use rustc::mir::{TerminatorKind, ClearCrossCrate, SourceInfo, BinOp, ProjectionElem};
use rustc::mir::visit::{Visitor, PlaceContext, MutatingUseContext, NonMutatingUseContext};
use rustc::mir::interpret::{EvalErrorKind, Scalar, GlobalId, EvalResult};
use rustc::ty::{TyCtxt, self, Instance};
use syntax::source_map::{Span, DUMMY_SP};
use rustc::ty::subst::Substs;
use rustc_data_structures::indexed_vec::IndexVec;
use rustc::ty::ParamEnv;
use rustc::ty::layout::{
LayoutOf, TyLayout, LayoutError,
HasTyCtxt, TargetDataLayout, HasDataLayout,
};
use interpret::{self, EvalContext, ScalarMaybeUndef, Immediate, OpTy, MemoryKind};
use const_eval::{
CompileTimeInterpreter, const_to_op, error_to_const_error, eval_promoted, mk_borrowck_eval_cx
};
use transform::{MirPass, MirSource};
pub struct ConstProp;
impl MirPass for ConstProp {
fn run_pass<'a, 'tcx>(&self,
tcx: TyCtxt<'a, 'tcx, 'tcx>,
source: MirSource,
mir: &mut Mir<'tcx>) {
// will be evaluated by miri and produce its errors there
if source.promoted.is_some() {
return;
}
use rustc::hir::map::blocks::FnLikeNode;
let node_id = tcx.hir.as_local_node_id(source.def_id)
.expect("Non-local call to local provider is_const_fn");
let is_fn_like = FnLikeNode::from_node(tcx.hir.get(node_id)).is_some();
let is_assoc_const = match tcx.describe_def(source.def_id) {
Some(Def::AssociatedConst(_)) => true,
_ => false,
};
// Only run const prop on functions, methods, closures and associated constants
if !is_fn_like && !is_assoc_const {
// skip anon_const/statics/consts because they'll be evaluated by miri anyway
trace!("ConstProp skipped for {:?}", source.def_id);
return
}
trace!("ConstProp starting for {:?}", source.def_id);
// FIXME(oli-obk, eddyb) Optimize locals (or even local paths) to hold
// constants, instead of just checking for const-folding succeeding.
// That would require an uniform one-def no-mutation analysis
// and RPO (or recursing when needing the value of a local).
let mut optimization_finder = ConstPropagator::new(mir, tcx, source);
optimization_finder.visit_mir(mir);
trace!("ConstProp done for {:?}", source.def_id);
}
}
type Const<'tcx> = (OpTy<'tcx>, Span);
/// Finds optimization opportunities on the MIR.
struct ConstPropagator<'a, 'mir, 'tcx:'a+'mir> {
ecx: EvalContext<'a, 'mir, 'tcx, CompileTimeInterpreter<'a, 'mir, 'tcx>>,
mir: &'mir Mir<'tcx>,
tcx: TyCtxt<'a, 'tcx, 'tcx>,
source: MirSource,
places: IndexVec<Local, Option<Const<'tcx>>>,
can_const_prop: IndexVec<Local, bool>,
param_env: ParamEnv<'tcx>,
}
impl<'a, 'b, 'tcx> LayoutOf for ConstPropagator<'a, 'b, 'tcx> {
type Ty = ty::Ty<'tcx>;
type TyLayout = Result<TyLayout<'tcx>, LayoutError<'tcx>>;
fn layout_of(&self, ty: ty::Ty<'tcx>) -> Self::TyLayout {
self.tcx.layout_of(self.param_env.and(ty))
}
}
impl<'a, 'b, 'tcx> HasDataLayout for ConstPropagator<'a, 'b, 'tcx> {
#[inline]
fn data_layout(&self) -> &TargetDataLayout {
&self.tcx.data_layout
}
}
impl<'a, 'b, 'tcx> HasTyCtxt<'tcx> for ConstPropagator<'a, 'b, 'tcx> {
#[inline]
fn tcx<'c>(&'c self) -> TyCtxt<'c, 'tcx, 'tcx> {
self.tcx
}
}
impl<'a, 'mir, 'tcx> ConstPropagator<'a, 'mir, 'tcx> {
fn new(
mir: &'mir Mir<'tcx>,
tcx: TyCtxt<'a, 'tcx, 'tcx>,
source: MirSource,
) -> ConstPropagator<'a, 'mir, 'tcx> {
let param_env = tcx.param_env(source.def_id);
let substs = Substs::identity_for_item(tcx, source.def_id);
let instance = Instance::new(source.def_id, substs);
let ecx = mk_borrowck_eval_cx(tcx, instance, mir, DUMMY_SP).unwrap();
ConstPropagator {
ecx,
mir,
tcx,
source,
param_env,
can_const_prop: CanConstProp::check(mir),
places: IndexVec::from_elem(None, &mir.local_decls),
}
}
fn use_ecx<F, T>(
&mut self,
source_info: SourceInfo,
f: F
) -> Option<T>
where
F: FnOnce(&mut Self) -> EvalResult<'tcx, T>,
{
self.ecx.tcx.span = source_info.span;
let lint_root = match self.mir.source_scope_local_data {
ClearCrossCrate::Set(ref ivs) => {
//FIXME(#51314): remove this check
if source_info.scope.index() >= ivs.len() {
return None;
}
ivs[source_info.scope].lint_root
},
ClearCrossCrate::Clear => return None,
};
let r = match f(self) {
Ok(val) => Some(val),
Err(error) => {
let diagnostic = error_to_const_error(&self.ecx, error);
use rustc::mir::interpret::EvalErrorKind::*;
match diagnostic.error {
// don't report these, they make no sense in a const prop context
| MachineError(_)
// at runtime these transformations might make sense
// FIXME: figure out the rules and start linting
| FunctionAbiMismatch(..)
| FunctionArgMismatch(..)
| FunctionRetMismatch(..)
| FunctionArgCountMismatch
// fine at runtime, might be a register address or sth
| ReadBytesAsPointer
// fine at runtime
| ReadForeignStatic
| Unimplemented(_)
// don't report const evaluator limits
| StackFrameLimitReached
| NoMirFor(..)
| InlineAsm
=> {},
| InvalidMemoryAccess
| DanglingPointerDeref
| DoubleFree
| InvalidFunctionPointer
| InvalidBool
| InvalidDiscriminant(..)
| PointerOutOfBounds { .. }
| InvalidNullPointerUsage
| ValidationFailure(..)
| InvalidPointerMath
| ReadUndefBytes(_)
| DeadLocal
| InvalidBoolOp(_)
| DerefFunctionPointer
| ExecuteMemory
| Intrinsic(..)
| InvalidChar(..)
| AbiViolation(_)
| AlignmentCheckFailed{..}
| CalledClosureAsFunction
| VtableForArgumentlessMethod
| ModifiedConstantMemory
| AssumptionNotHeld
// FIXME: should probably be removed and turned into a bug! call
| TypeNotPrimitive(_)
| ReallocatedWrongMemoryKind(_, _)
| DeallocatedWrongMemoryKind(_, _)
| ReallocateNonBasePtr
| DeallocateNonBasePtr
| IncorrectAllocationInformation(..)
| UnterminatedCString(_)
| HeapAllocZeroBytes
| HeapAllocNonPowerOfTwoAlignment(_)
| Unreachable
| ReadFromReturnPointer
| GeneratorResumedAfterReturn
| GeneratorResumedAfterPanic
| ReferencedConstant
| InfiniteLoop
=> {
// FIXME: report UB here
},
| OutOfTls
| TlsOutOfBounds
| PathNotFound(_)
=> bug!("these should not be in rustc, but in miri's machine errors"),
| Layout(_)
| UnimplementedTraitSelection
| TypeckError
| TooGeneric
// these are just noise
=> {},
// non deterministic
| ReadPointerAsBytes
// FIXME: implement
=> {},
| Panic { .. }
| BoundsCheck{..}
| Overflow(_)
| OverflowNeg
| DivisionByZero
| RemainderByZero
=> {
diagnostic.report_as_lint(
self.ecx.tcx,
"this expression will panic at runtime",
lint_root,
);
}
}
None
},
};
self.ecx.tcx.span = DUMMY_SP;
r
}
fn eval_constant(
&mut self,
c: &Constant<'tcx>,
source_info: SourceInfo,
) -> Option<Const<'tcx>> {
self.ecx.tcx.span = source_info.span;
match const_to_op(&self.ecx, c.literal) {
Ok(op) => {
Some((op, c.span))
},
Err(error) => {
let err = error_to_const_error(&self.ecx, error);
err.report_as_error(self.ecx.tcx, "erroneous constant used");
None
},
}
}
fn eval_place(&mut self, place: &Place<'tcx>, source_info: SourceInfo) -> Option<Const<'tcx>> {
match *place {
Place::Local(loc) => self.places[loc].clone(),
Place::Projection(ref proj) => match proj.elem {
ProjectionElem::Field(field, _) => {
trace!("field proj on {:?}", proj.base);
let (base, span) = self.eval_place(&proj.base, source_info)?;
let res = self.use_ecx(source_info, |this| {
this.ecx.operand_field(base, field.index() as u64)
})?;
Some((res, span))
},
// We could get more projections by using e.g. `operand_projection`,
// but we do not even have the stack frame set up properly so
// an `Index` projection would throw us off-track.
_ => None,
},
Place::Promoted(ref promoted) => {
let generics = self.tcx.generics_of(self.source.def_id);
if generics.requires_monomorphization(self.tcx) {
// FIXME: can't handle code with generics
return None;
}
let substs = Substs::identity_for_item(self.tcx, self.source.def_id);
let instance = Instance::new(self.source.def_id, substs);
let cid = GlobalId {
instance,
promoted: Some(promoted.0),
};
// cannot use `const_eval` here, because that would require having the MIR
// for the current function available, but we're producing said MIR right now
let res = self.use_ecx(source_info, |this| {
eval_promoted(this.tcx, cid, this.mir, this.param_env)
})?;
trace!("evaluated promoted {:?} to {:?}", promoted, res);
Some((res.into(), source_info.span))
},
_ => None,
}
}
fn eval_operand(&mut self, op: &Operand<'tcx>, source_info: SourceInfo) -> Option<Const<'tcx>> {
match *op {
Operand::Constant(ref c) => self.eval_constant(c, source_info),
| Operand::Move(ref place)
| Operand::Copy(ref place) => self.eval_place(place, source_info),
}
}
fn const_prop(
&mut self,
rvalue: &Rvalue<'tcx>,
place_layout: TyLayout<'tcx>,
source_info: SourceInfo,
) -> Option<Const<'tcx>> {
let span = source_info.span;
match *rvalue {
Rvalue::Use(ref op) => {
self.eval_operand(op, source_info)
},
Rvalue::Repeat(..) |
Rvalue::Ref(..) |
Rvalue::Aggregate(..) |
Rvalue::NullaryOp(NullOp::Box, _) |
Rvalue::Discriminant(..) => None,
Rvalue::Cast(kind, ref operand, _) => {
let (op, span) = self.eval_operand(operand, source_info)?;
self.use_ecx(source_info, |this| {
let dest = this.ecx.allocate(place_layout, MemoryKind::Stack)?;
this.ecx.cast(op, kind, dest.into())?;
Ok((dest.into(), span))
})
}
// FIXME(oli-obk): evaluate static/constant slice lengths
Rvalue::Len(_) => None,
Rvalue::NullaryOp(NullOp::SizeOf, ty) => {
type_size_of(self.tcx, self.param_env, ty).and_then(|n| Some((
OpTy {
op: interpret::Operand::Immediate(Immediate::Scalar(
Scalar::Bits {
bits: n as u128,
size: self.tcx.data_layout.pointer_size.bytes() as u8,
}.into()
)),
layout: self.tcx.layout_of(self.param_env.and(self.tcx.types.usize)).ok()?,
},
span,
)))
}
Rvalue::UnaryOp(op, ref arg) => {
let def_id = if self.tcx.is_closure(self.source.def_id) {
self.tcx.closure_base_def_id(self.source.def_id)
} else {
self.source.def_id
};
let generics = self.tcx.generics_of(def_id);
if generics.requires_monomorphization(self.tcx) {
// FIXME: can't handle code with generics
return None;
}
let (arg, _) = self.eval_operand(arg, source_info)?;
let val = self.use_ecx(source_info, |this| {
let prim = this.ecx.read_scalar(arg)?.not_undef()?;
match op {
UnOp::Neg => {
// Need to do overflow check here: For actual CTFE, MIR
// generation emits code that does this before calling the op.
let size = arg.layout.size;
if prim.to_bits(size)? == (1 << (size.bits() - 1)) {
return err!(OverflowNeg);
}
}
UnOp::Not => {
// Cannot overflow
}
}
// Now run the actual operation.
this.ecx.unary_op(op, prim, arg.layout)
})?;
let res = OpTy {
op: interpret::Operand::Immediate(Immediate::Scalar(val.into())),
layout: place_layout,
};
Some((res, span))
}
Rvalue::CheckedBinaryOp(op, ref left, ref right) |
Rvalue::BinaryOp(op, ref left, ref right) => {
trace!("rvalue binop {:?} for {:?} and {:?}", op, left, right);
let right = self.eval_operand(right, source_info)?;
let def_id = if self.tcx.is_closure(self.source.def_id) {
self.tcx.closure_base_def_id(self.source.def_id)
} else {
self.source.def_id
};
let generics = self.tcx.generics_of(def_id);
if generics.requires_monomorphization(self.tcx) {
// FIXME: can't handle code with generics
return None;
}
let r = self.use_ecx(source_info, |this| {
this.ecx.read_immediate(right.0)
})?;
if op == BinOp::Shr || op == BinOp::Shl {
let left_ty = left.ty(self.mir, self.tcx);
let left_bits = self
.tcx
.layout_of(self.param_env.and(left_ty))
.unwrap()
.size
.bits();
let right_size = right.0.layout.size;
let r_bits = r.to_scalar().and_then(|r| r.to_bits(right_size));
if r_bits.ok().map_or(false, |b| b >= left_bits as u128) {
let source_scope_local_data = match self.mir.source_scope_local_data {
ClearCrossCrate::Set(ref data) => data,
ClearCrossCrate::Clear => return None,
};
let dir = if op == BinOp::Shr {
"right"
} else {
"left"
};
let node_id = source_scope_local_data[source_info.scope].lint_root;
self.tcx.lint_node(
::rustc::lint::builtin::EXCEEDING_BITSHIFTS,
node_id,
span,
&format!("attempt to shift {} with overflow", dir));
return None;
}
}
let left = self.eval_operand(left, source_info)?;
let l = self.use_ecx(source_info, |this| {
this.ecx.read_immediate(left.0)
})?;
trace!("const evaluating {:?} for {:?} and {:?}", op, left, right);
let (val, overflow) = self.use_ecx(source_info, |this| {
this.ecx.binary_op_imm(op, l, r)
})?;
let val = if let Rvalue::CheckedBinaryOp(..) = *rvalue {
Immediate::ScalarPair(
val.into(),
Scalar::from_bool(overflow).into(),
)
} else {
if overflow {
let err = EvalErrorKind::Overflow(op).into();
let _: Option<()> = self.use_ecx(source_info, |_| Err(err));
return None;
}
Immediate::Scalar(val.into())
};
let res = OpTy {
op: interpret::Operand::Immediate(val),
layout: place_layout,
};
Some((res, span))
},
}
}
}
fn type_size_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
ty: ty::Ty<'tcx>) -> Option<u64> {
tcx.layout_of(param_env.and(ty)).ok().map(|layout| layout.size.bytes())
}
struct CanConstProp {
can_const_prop: IndexVec<Local, bool>,
// false at the beginning, once set, there are not allowed to be any more assignments
found_assignment: IndexVec<Local, bool>,
}
impl CanConstProp {
/// returns true if `local` can be propagated
fn check(mir: &Mir) -> IndexVec<Local, bool> {
let mut cpv = CanConstProp {
can_const_prop: IndexVec::from_elem(true, &mir.local_decls),
found_assignment: IndexVec::from_elem(false, &mir.local_decls),
};
for (local, val) in cpv.can_const_prop.iter_enumerated_mut() {
// cannot use args at all
// cannot use locals because if x < y { y - x } else { x - y } would
// lint for x != y
// FIXME(oli-obk): lint variables until they are used in a condition
// FIXME(oli-obk): lint if return value is constant
*val = mir.local_kind(local) == LocalKind::Temp;
}
cpv.visit_mir(mir);
cpv.can_const_prop
}
}
impl<'tcx> Visitor<'tcx> for CanConstProp {
fn visit_local(
&mut self,
&local: &Local,
context: PlaceContext<'tcx>,
_: Location,
) {
use rustc::mir::visit::PlaceContext::*;
match context {
// Constants must have at most one write
// FIXME(oli-obk): we could be more powerful here, if the multiple writes
// only occur in independent execution paths
MutatingUse(MutatingUseContext::Store) => if self.found_assignment[local] {
self.can_const_prop[local] = false;
} else {
self.found_assignment[local] = true
},
// Reading constants is allowed an arbitrary number of times
NonMutatingUse(NonMutatingUseContext::Copy) |
NonMutatingUse(NonMutatingUseContext::Move) |
NonMutatingUse(NonMutatingUseContext::Inspect) |
NonMutatingUse(NonMutatingUseContext::Projection) |
MutatingUse(MutatingUseContext::Projection) |
NonUse(_) => {},
_ => self.can_const_prop[local] = false,
}
}
}
impl<'b, 'a, 'tcx> Visitor<'tcx> for ConstPropagator<'b, 'a, 'tcx> {
fn visit_constant(
&mut self,
constant: &Constant<'tcx>,
location: Location,
) {
trace!("visit_constant: {:?}", constant);
self.super_constant(constant, location);
let source_info = *self.mir.source_info(location);
self.eval_constant(constant, source_info);
}
fn visit_statement(
&mut self,
block: BasicBlock,
statement: &Statement<'tcx>,
location: Location,
) {
trace!("visit_statement: {:?}", statement);
if let StatementKind::Assign(ref place, ref rval) = statement.kind {
let place_ty: ty::Ty<'tcx> = place
.ty(&self.mir.local_decls, self.tcx)
.to_ty(self.tcx);
if let Ok(place_layout) = self.tcx.layout_of(self.param_env.and(place_ty)) {
if let Some(value) = self.const_prop(rval, place_layout, statement.source_info) {
if let Place::Local(local) = *place {
trace!("checking whether {:?} can be stored to {:?}", value, local);
if self.can_const_prop[local] {
trace!("storing {:?} to {:?}", value, local);
assert!(self.places[local].is_none());
self.places[local] = Some(value);
}
}
}
}
}
self.super_statement(block, statement, location);
}
fn visit_terminator_kind(
&mut self,
block: BasicBlock,
kind: &TerminatorKind<'tcx>,
location: Location,
) {
self.super_terminator_kind(block, kind, location);
let source_info = *self.mir.source_info(location);
if let TerminatorKind::Assert { expected, msg, cond, .. } = kind {
if let Some(value) = self.eval_operand(cond, source_info) {
trace!("assertion on {:?} should be {:?}", value, expected);
let expected = ScalarMaybeUndef::from(Scalar::from_bool(*expected));
if expected != self.ecx.read_scalar(value.0).unwrap() {
// poison all places this operand references so that further code
// doesn't use the invalid value
match cond {
Operand::Move(ref place) | Operand::Copy(ref place) => {
let mut place = place;
while let Place::Projection(ref proj) = *place {
place = &proj.base;
}
if let Place::Local(local) = *place {
self.places[local] = None;
}
},
Operand::Constant(_) => {}
}
let span = self.mir[block]
.terminator
.as_ref()
.unwrap()
.source_info
.span;
let node_id = self
.tcx
.hir
.as_local_node_id(self.source.def_id)
.expect("some part of a failing const eval must be local");
use rustc::mir::interpret::EvalErrorKind::*;
let msg = match msg {
Overflow(_) |
OverflowNeg |
DivisionByZero |
RemainderByZero => msg.description().to_owned(),
BoundsCheck { ref len, ref index } => {
let len = self
.eval_operand(len, source_info)
.expect("len must be const");
let len = match self.ecx.read_scalar(len.0) {
Ok(ScalarMaybeUndef::Scalar(Scalar::Bits {
bits, ..
})) => bits,
other => bug!("const len not primitive: {:?}", other),
};
let index = self
.eval_operand(index, source_info)
.expect("index must be const");
let index = match self.ecx.read_scalar(index.0) {
Ok(ScalarMaybeUndef::Scalar(Scalar::Bits {
bits, ..
})) => bits,
other => bug!("const index not primitive: {:?}", other),
};
format!(
"index out of bounds: \
the len is {} but the index is {}",
len,
index,
)
},
// Need proper const propagator for these
_ => return,
};
self.tcx.lint_node(
::rustc::lint::builtin::CONST_ERR,
node_id,
span,
&msg,
);
}
}
}
}
}