rust/src/libstd/os.rs
2014-05-14 18:29:13 -07:00

1749 lines
54 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* Higher-level interfaces to libc::* functions and operating system services.
*
* In general these take and return rust types, use rust idioms (enums,
* closures, vectors) rather than C idioms, and do more extensive safety
* checks.
*
* This module is not meant to only contain 1:1 mappings to libc entries; any
* os-interface code that is reasonably useful and broadly applicable can go
* here. Including utility routines that merely build on other os code.
*
* We assume the general case is that users do not care, and do not want to
* be made to care, which operating system they are on. While they may want
* to special case various special cases -- and so we will not _hide_ the
* facts of which OS the user is on -- they should be given the opportunity
* to write OS-ignorant code by default.
*/
#![allow(missing_doc)]
use clone::Clone;
use container::Container;
use libc;
use libc::{c_void, c_int};
use option::{Some, None, Option};
use os;
use ops::Drop;
use result::{Err, Ok, Result};
use ptr;
use str;
use str::{Str, StrSlice, StrAllocating};
use fmt;
use sync::atomics::{AtomicInt, INIT_ATOMIC_INT, SeqCst};
use path::{Path, GenericPath};
use iter::Iterator;
use slice::{Vector, CloneableVector, ImmutableVector, MutableVector, OwnedVector};
use ptr::RawPtr;
use vec::Vec;
#[cfg(unix)]
use c_str::ToCStr;
#[cfg(unix)]
use libc::c_char;
#[cfg(windows)]
use str::OwnedStr;
/// Delegates to the libc close() function, returning the same return value.
pub fn close(fd: int) -> int {
unsafe {
libc::close(fd as c_int) as int
}
}
pub static TMPBUF_SZ : uint = 1000u;
static BUF_BYTES : uint = 2048u;
/// Returns the current working directory.
#[cfg(unix)]
pub fn getcwd() -> Path {
use c_str::CString;
let mut buf = [0 as c_char, ..BUF_BYTES];
unsafe {
if libc::getcwd(buf.as_mut_ptr(), buf.len() as libc::size_t).is_null() {
fail!()
}
Path::new(CString::new(buf.as_ptr(), false))
}
}
/// Returns the current working directory.
#[cfg(windows)]
pub fn getcwd() -> Path {
use libc::DWORD;
use libc::GetCurrentDirectoryW;
use option::Expect;
let mut buf = [0 as u16, ..BUF_BYTES];
unsafe {
if libc::GetCurrentDirectoryW(buf.len() as DWORD, buf.as_mut_ptr()) == 0 as DWORD {
fail!();
}
}
Path::new(str::from_utf16(str::truncate_utf16_at_nul(buf))
.expect("GetCurrentDirectoryW returned invalid UTF-16"))
}
#[cfg(windows)]
pub mod win32 {
use libc::types::os::arch::extra::DWORD;
use libc;
use option::{None, Option, Expect};
use option;
use os::TMPBUF_SZ;
use slice::{MutableVector, ImmutableVector};
use str::{StrSlice, StrAllocating};
use str;
use vec::Vec;
pub fn fill_utf16_buf_and_decode(f: |*mut u16, DWORD| -> DWORD)
-> Option<~str> {
unsafe {
let mut n = TMPBUF_SZ as DWORD;
let mut res = None;
let mut done = false;
while !done {
let mut buf = Vec::from_elem(n as uint, 0u16);
let k = f(buf.as_mut_ptr(), n);
if k == (0 as DWORD) {
done = true;
} else if k == n &&
libc::GetLastError() ==
libc::ERROR_INSUFFICIENT_BUFFER as DWORD {
n *= 2 as DWORD;
} else if k >= n {
n = k;
} else {
done = true;
}
if k != 0 && done {
let sub = buf.slice(0, k as uint);
// We want to explicitly catch the case when the
// closure returned invalid UTF-16, rather than
// set `res` to None and continue.
let s = str::from_utf16(sub)
.expect("fill_utf16_buf_and_decode: closure created invalid UTF-16");
res = option::Some(s)
}
}
return res;
}
}
pub fn as_utf16_p<T>(s: &str, f: |*u16| -> T) -> T {
as_mut_utf16_p(s, |t| { f(t as *u16) })
}
pub fn as_mut_utf16_p<T>(s: &str, f: |*mut u16| -> T) -> T {
let mut t = s.to_utf16();
// Null terminate before passing on.
t.push(0u16);
f(t.as_mut_ptr())
}
}
/*
Accessing environment variables is not generally threadsafe.
Serialize access through a global lock.
*/
fn with_env_lock<T>(f: || -> T) -> T {
use unstable::mutex::{StaticNativeMutex, NATIVE_MUTEX_INIT};
static mut lock: StaticNativeMutex = NATIVE_MUTEX_INIT;
unsafe {
let _guard = lock.lock();
f()
}
}
/// Returns a vector of (variable, value) pairs for all the environment
/// variables of the current process.
///
/// Invalid UTF-8 bytes are replaced with \uFFFD. See `str::from_utf8_lossy()`
/// for details.
pub fn env() -> Vec<(~str,~str)> {
env_as_bytes().move_iter().map(|(k,v)| {
let k = str::from_utf8_lossy(k).into_owned();
let v = str::from_utf8_lossy(v).into_owned();
(k,v)
}).collect()
}
/// Returns a vector of (variable, value) byte-vector pairs for all the
/// environment variables of the current process.
pub fn env_as_bytes() -> Vec<(~[u8],~[u8])> {
unsafe {
#[cfg(windows)]
unsafe fn get_env_pairs() -> Vec<~[u8]> {
use slice::raw;
use libc::funcs::extra::kernel32::{
GetEnvironmentStringsW,
FreeEnvironmentStringsW
};
let ch = GetEnvironmentStringsW();
if ch as uint == 0 {
fail!("os::env() failure getting env string from OS: {}",
os::last_os_error());
}
// Here, we lossily decode the string as UTF16.
//
// The docs suggest that the result should be in Unicode, but
// Windows doesn't guarantee it's actually UTF16 -- it doesn't
// validate the environment string passed to CreateProcess nor
// SetEnvironmentVariable. Yet, it's unlikely that returning a
// raw u16 buffer would be of practical use since the result would
// be inherently platform-dependent and introduce additional
// complexity to this code.
//
// Using the non-Unicode version of GetEnvironmentStrings is even
// worse since the result is in an OEM code page. Characters that
// can't be encoded in the code page would be turned into question
// marks.
let mut result = Vec::new();
let mut i = 0;
while *ch.offset(i) != 0 {
let p = &*ch.offset(i);
let len = ptr::position(p, |c| *c == 0);
raw::buf_as_slice(p, len, |s| {
result.push(str::from_utf16_lossy(s).into_bytes());
});
i += len as int + 1;
}
FreeEnvironmentStringsW(ch);
result
}
#[cfg(unix)]
unsafe fn get_env_pairs() -> Vec<~[u8]> {
use c_str::CString;
extern {
fn rust_env_pairs() -> **c_char;
}
let environ = rust_env_pairs();
if environ as uint == 0 {
fail!("os::env() failure getting env string from OS: {}",
os::last_os_error());
}
let mut result = Vec::new();
ptr::array_each(environ, |e| {
let env_pair = CString::new(e, false).as_bytes_no_nul().to_owned();
result.push(env_pair);
});
result
}
fn env_convert(input: Vec<~[u8]>) -> Vec<(~[u8], ~[u8])> {
let mut pairs = Vec::new();
for p in input.iter() {
let mut it = p.splitn(1, |b| *b == '=' as u8);
let key = it.next().unwrap().to_owned();
let val = it.next().unwrap_or(&[]).to_owned();
pairs.push((key, val));
}
pairs
}
with_env_lock(|| {
let unparsed_environ = get_env_pairs();
env_convert(unparsed_environ)
})
}
}
#[cfg(unix)]
/// Fetches the environment variable `n` from the current process, returning
/// None if the variable isn't set.
///
/// Any invalid UTF-8 bytes in the value are replaced by \uFFFD. See
/// `str::from_utf8_lossy()` for details.
///
/// # Failure
///
/// Fails if `n` has any interior NULs.
pub fn getenv(n: &str) -> Option<~str> {
getenv_as_bytes(n).map(|v| str::from_utf8_lossy(v).into_owned())
}
#[cfg(unix)]
/// Fetches the environment variable `n` byte vector from the current process,
/// returning None if the variable isn't set.
///
/// # Failure
///
/// Fails if `n` has any interior NULs.
pub fn getenv_as_bytes(n: &str) -> Option<~[u8]> {
use c_str::CString;
unsafe {
with_env_lock(|| {
let s = n.with_c_str(|buf| libc::getenv(buf));
if s.is_null() {
None
} else {
Some(CString::new(s, false).as_bytes_no_nul().to_owned())
}
})
}
}
#[cfg(windows)]
/// Fetches the environment variable `n` from the current process, returning
/// None if the variable isn't set.
pub fn getenv(n: &str) -> Option<~str> {
unsafe {
with_env_lock(|| {
use os::win32::{as_utf16_p, fill_utf16_buf_and_decode};
as_utf16_p(n, |u| {
fill_utf16_buf_and_decode(|buf, sz| {
libc::GetEnvironmentVariableW(u, buf, sz)
})
})
})
}
}
#[cfg(windows)]
/// Fetches the environment variable `n` byte vector from the current process,
/// returning None if the variable isn't set.
pub fn getenv_as_bytes(n: &str) -> Option<~[u8]> {
getenv(n).map(|s| s.into_bytes())
}
#[cfg(unix)]
/// Sets the environment variable `n` to the value `v` for the currently running
/// process
///
/// # Failure
///
/// Fails if `n` or `v` have any interior NULs.
pub fn setenv(n: &str, v: &str) {
unsafe {
with_env_lock(|| {
n.with_c_str(|nbuf| {
v.with_c_str(|vbuf| {
libc::funcs::posix01::unistd::setenv(nbuf, vbuf, 1);
})
})
})
}
}
#[cfg(windows)]
/// Sets the environment variable `n` to the value `v` for the currently running
/// process
pub fn setenv(n: &str, v: &str) {
unsafe {
with_env_lock(|| {
use os::win32::as_utf16_p;
as_utf16_p(n, |nbuf| {
as_utf16_p(v, |vbuf| {
libc::SetEnvironmentVariableW(nbuf, vbuf);
})
})
})
}
}
/// Remove a variable from the environment entirely
///
/// # Failure
///
/// Fails (on unix) if `n` has any interior NULs.
pub fn unsetenv(n: &str) {
#[cfg(unix)]
fn _unsetenv(n: &str) {
unsafe {
with_env_lock(|| {
n.with_c_str(|nbuf| {
libc::funcs::posix01::unistd::unsetenv(nbuf);
})
})
}
}
#[cfg(windows)]
fn _unsetenv(n: &str) {
unsafe {
with_env_lock(|| {
use os::win32::as_utf16_p;
as_utf16_p(n, |nbuf| {
libc::SetEnvironmentVariableW(nbuf, ptr::null());
})
})
}
}
_unsetenv(n);
}
/// A low-level OS in-memory pipe.
pub struct Pipe {
/// A file descriptor representing the reading end of the pipe. Data written
/// on the `out` file descriptor can be read from this file descriptor.
pub input: c_int,
/// A file descriptor representing the write end of the pipe. Data written
/// to this file descriptor can be read from the `input` file descriptor.
pub out: c_int,
}
/// Creates a new low-level OS in-memory pipe.
#[cfg(unix)]
pub fn pipe() -> Pipe {
unsafe {
let mut fds = Pipe {input: 0,
out: 0};
assert_eq!(libc::pipe(&mut fds.input), 0);
return Pipe {input: fds.input, out: fds.out};
}
}
/// Creates a new low-level OS in-memory pipe.
#[cfg(windows)]
pub fn pipe() -> Pipe {
unsafe {
// Windows pipes work subtly differently than unix pipes, and their
// inheritance has to be handled in a different way that I do not
// fully understand. Here we explicitly make the pipe non-inheritable,
// which means to pass it to a subprocess they need to be duplicated
// first, as in std::run.
let mut fds = Pipe {input: 0,
out: 0};
let res = libc::pipe(&mut fds.input, 1024 as ::libc::c_uint,
(libc::O_BINARY | libc::O_NOINHERIT) as c_int);
assert_eq!(res, 0);
assert!((fds.input != -1 && fds.input != 0 ));
assert!((fds.out != -1 && fds.input != 0));
return Pipe {input: fds.input, out: fds.out};
}
}
/// Returns the proper dll filename for the given basename of a file.
pub fn dll_filename(base: &str) -> ~str {
format!("{}{}{}", consts::DLL_PREFIX, base, consts::DLL_SUFFIX)
}
/// Optionally returns the filesystem path of the current executable which is
/// running. If any failure occurs, None is returned.
pub fn self_exe_name() -> Option<Path> {
#[cfg(target_os = "freebsd")]
fn load_self() -> Option<Vec<u8>> {
unsafe {
use libc::funcs::bsd44::*;
use libc::consts::os::extra::*;
let mib = box [CTL_KERN as c_int,
KERN_PROC as c_int,
KERN_PROC_PATHNAME as c_int, -1 as c_int];
let mut sz: libc::size_t = 0;
let err = sysctl(mib.as_ptr(), mib.len() as ::libc::c_uint,
ptr::mut_null(), &mut sz, ptr::null(),
0u as libc::size_t);
if err != 0 { return None; }
if sz == 0 { return None; }
let mut v: Vec<u8> = Vec::with_capacity(sz as uint);
let err = sysctl(mib.as_ptr(), mib.len() as ::libc::c_uint,
v.as_mut_ptr() as *mut c_void, &mut sz, ptr::null(),
0u as libc::size_t);
if err != 0 { return None; }
if sz == 0 { return None; }
v.set_len(sz as uint - 1); // chop off trailing NUL
Some(v)
}
}
#[cfg(target_os = "linux")]
#[cfg(target_os = "android")]
fn load_self() -> Option<Vec<u8>> {
use std::io;
match io::fs::readlink(&Path::new("/proc/self/exe")) {
Ok(path) => Some(path.into_vec()),
Err(..) => None
}
}
#[cfg(target_os = "macos")]
fn load_self() -> Option<Vec<u8>> {
unsafe {
use libc::funcs::extra::_NSGetExecutablePath;
let mut sz: u32 = 0;
_NSGetExecutablePath(ptr::mut_null(), &mut sz);
if sz == 0 { return None; }
let mut v: Vec<u8> = Vec::with_capacity(sz as uint);
let err = _NSGetExecutablePath(v.as_mut_ptr() as *mut i8, &mut sz);
if err != 0 { return None; }
v.set_len(sz as uint - 1); // chop off trailing NUL
Some(v)
}
}
#[cfg(windows)]
fn load_self() -> Option<Vec<u8>> {
use str::OwnedStr;
unsafe {
use os::win32::fill_utf16_buf_and_decode;
fill_utf16_buf_and_decode(|buf, sz| {
libc::GetModuleFileNameW(0u as libc::DWORD, buf, sz)
}).map(|s| s.into_strbuf().into_bytes())
}
}
load_self().and_then(Path::new_opt)
}
/// Optionally returns the filesystem path to the current executable which is
/// running. Like self_exe_name() but without the binary's name.
/// If any failure occurs, None is returned.
pub fn self_exe_path() -> Option<Path> {
self_exe_name().map(|mut p| { p.pop(); p })
}
/**
* Returns the path to the user's home directory, if known.
*
* On Unix, returns the value of the 'HOME' environment variable if it is set
* and not equal to the empty string.
*
* On Windows, returns the value of the 'HOME' environment variable if it is
* set and not equal to the empty string. Otherwise, returns the value of the
* 'USERPROFILE' environment variable if it is set and not equal to the empty
* string.
*
* Otherwise, homedir returns option::none.
*/
pub fn homedir() -> Option<Path> {
// FIXME (#7188): getenv needs a ~[u8] variant
return match getenv("HOME") {
Some(ref p) if !p.is_empty() => Path::new_opt(p.as_slice()),
_ => secondary()
};
#[cfg(unix)]
fn secondary() -> Option<Path> {
None
}
#[cfg(windows)]
fn secondary() -> Option<Path> {
getenv("USERPROFILE").and_then(|p| {
if !p.is_empty() {
Path::new_opt(p)
} else {
None
}
})
}
}
/**
* Returns the path to a temporary directory.
*
* On Unix, returns the value of the 'TMPDIR' environment variable if it is
* set, otherwise for non-Android it returns '/tmp'. If Android, since there
* is no global temporary folder (it is usually allocated per-app), we return
* '/data/local/tmp'.
*
* On Windows, returns the value of, in order, the 'TMP', 'TEMP',
* 'USERPROFILE' environment variable if any are set and not the empty
* string. Otherwise, tmpdir returns the path to the Windows directory.
*/
pub fn tmpdir() -> Path {
return lookup();
fn getenv_nonempty(v: &str) -> Option<Path> {
match getenv(v) {
Some(x) =>
if x.is_empty() {
None
} else {
Path::new_opt(x)
},
_ => None
}
}
#[cfg(unix)]
fn lookup() -> Path {
let default = if cfg!(target_os = "android") {
Path::new("/data/local/tmp")
} else {
Path::new("/tmp")
};
getenv_nonempty("TMPDIR").unwrap_or(default)
}
#[cfg(windows)]
fn lookup() -> Path {
getenv_nonempty("TMP").or(
getenv_nonempty("TEMP").or(
getenv_nonempty("USERPROFILE").or(
getenv_nonempty("WINDIR")))).unwrap_or(Path::new("C:\\Windows"))
}
}
/**
* Convert a relative path to an absolute path
*
* If the given path is relative, return it prepended with the current working
* directory. If the given path is already an absolute path, return it
* as is.
*/
// NB: this is here rather than in path because it is a form of environment
// querying; what it does depends on the process working directory, not just
// the input paths.
pub fn make_absolute(p: &Path) -> Path {
if p.is_absolute() {
p.clone()
} else {
let mut ret = getcwd();
ret.push(p);
ret
}
}
/// Changes the current working directory to the specified path, returning
/// whether the change was completed successfully or not.
pub fn change_dir(p: &Path) -> bool {
return chdir(p);
#[cfg(windows)]
fn chdir(p: &Path) -> bool {
unsafe {
use os::win32::as_utf16_p;
return as_utf16_p(p.as_str().unwrap(), |buf| {
libc::SetCurrentDirectoryW(buf) != (0 as libc::BOOL)
});
}
}
#[cfg(unix)]
fn chdir(p: &Path) -> bool {
p.with_c_str(|buf| {
unsafe {
libc::chdir(buf) == (0 as c_int)
}
})
}
}
#[cfg(unix)]
/// Returns the platform-specific value of errno
pub fn errno() -> int {
#[cfg(target_os = "macos")]
#[cfg(target_os = "freebsd")]
fn errno_location() -> *c_int {
extern {
fn __error() -> *c_int;
}
unsafe {
__error()
}
}
#[cfg(target_os = "linux")]
#[cfg(target_os = "android")]
fn errno_location() -> *c_int {
extern {
fn __errno_location() -> *c_int;
}
unsafe {
__errno_location()
}
}
unsafe {
(*errno_location()) as int
}
}
#[cfg(windows)]
/// Returns the platform-specific value of errno
pub fn errno() -> uint {
use libc::types::os::arch::extra::DWORD;
#[link_name = "kernel32"]
extern "system" {
fn GetLastError() -> DWORD;
}
unsafe {
GetLastError() as uint
}
}
/// Return the string corresponding to an `errno()` value of `errnum`.
pub fn error_string(errnum: uint) -> ~str {
return strerror(errnum);
#[cfg(unix)]
fn strerror(errnum: uint) -> ~str {
#[cfg(target_os = "macos")]
#[cfg(target_os = "android")]
#[cfg(target_os = "freebsd")]
fn strerror_r(errnum: c_int, buf: *mut c_char, buflen: libc::size_t)
-> c_int {
extern {
fn strerror_r(errnum: c_int, buf: *mut c_char,
buflen: libc::size_t) -> c_int;
}
unsafe {
strerror_r(errnum, buf, buflen)
}
}
// GNU libc provides a non-compliant version of strerror_r by default
// and requires macros to instead use the POSIX compliant variant.
// So we just use __xpg_strerror_r which is always POSIX compliant
#[cfg(target_os = "linux")]
fn strerror_r(errnum: c_int, buf: *mut c_char,
buflen: libc::size_t) -> c_int {
extern {
fn __xpg_strerror_r(errnum: c_int,
buf: *mut c_char,
buflen: libc::size_t)
-> c_int;
}
unsafe {
__xpg_strerror_r(errnum, buf, buflen)
}
}
let mut buf = [0 as c_char, ..TMPBUF_SZ];
let p = buf.as_mut_ptr();
unsafe {
if strerror_r(errnum as c_int, p, buf.len() as libc::size_t) < 0 {
fail!("strerror_r failure");
}
str::raw::from_c_str(p as *c_char)
}
}
#[cfg(windows)]
fn strerror(errnum: uint) -> ~str {
use libc::types::os::arch::extra::DWORD;
use libc::types::os::arch::extra::LPWSTR;
use libc::types::os::arch::extra::LPVOID;
use libc::types::os::arch::extra::WCHAR;
#[link_name = "kernel32"]
extern "system" {
fn FormatMessageW(flags: DWORD,
lpSrc: LPVOID,
msgId: DWORD,
langId: DWORD,
buf: LPWSTR,
nsize: DWORD,
args: *c_void)
-> DWORD;
}
static FORMAT_MESSAGE_FROM_SYSTEM: DWORD = 0x00001000;
static FORMAT_MESSAGE_IGNORE_INSERTS: DWORD = 0x00000200;
// This value is calculated from the macro
// MAKELANGID(LANG_SYSTEM_DEFAULT, SUBLANG_SYS_DEFAULT)
let langId = 0x0800 as DWORD;
let mut buf = [0 as WCHAR, ..TMPBUF_SZ];
unsafe {
let res = FormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,
ptr::mut_null(),
errnum as DWORD,
langId,
buf.as_mut_ptr(),
buf.len() as DWORD,
ptr::null());
if res == 0 {
// Sometimes FormatMessageW can fail e.g. system doesn't like langId,
let fm_err = errno();
return format!("OS Error {} (FormatMessageW() returned error {})", errnum, fm_err);
}
let msg = str::from_utf16(str::truncate_utf16_at_nul(buf));
match msg {
Some(msg) => format!("OS Error {}: {}", errnum, msg),
None => format!("OS Error {} (FormatMessageW() returned invalid UTF-16)", errnum),
}
}
}
}
/// Get a string representing the platform-dependent last error
pub fn last_os_error() -> ~str {
error_string(errno() as uint)
}
static mut EXIT_STATUS: AtomicInt = INIT_ATOMIC_INT;
/**
* Sets the process exit code
*
* Sets the exit code returned by the process if all supervised tasks
* terminate successfully (without failing). If the current root task fails
* and is supervised by the scheduler then any user-specified exit status is
* ignored and the process exits with the default failure status.
*
* Note that this is not synchronized against modifications of other threads.
*/
pub fn set_exit_status(code: int) {
unsafe { EXIT_STATUS.store(code, SeqCst) }
}
/// Fetches the process's current exit code. This defaults to 0 and can change
/// by calling `set_exit_status`.
pub fn get_exit_status() -> int {
unsafe { EXIT_STATUS.load(SeqCst) }
}
#[cfg(target_os = "macos")]
unsafe fn load_argc_and_argv(argc: int, argv: **c_char) -> Vec<~[u8]> {
use c_str::CString;
Vec::from_fn(argc as uint, |i| {
CString::new(*argv.offset(i as int), false).as_bytes_no_nul().to_owned()
})
}
/**
* Returns the command line arguments
*
* Returns a list of the command line arguments.
*/
#[cfg(target_os = "macos")]
fn real_args_as_bytes() -> Vec<~[u8]> {
unsafe {
let (argc, argv) = (*_NSGetArgc() as int,
*_NSGetArgv() as **c_char);
load_argc_and_argv(argc, argv)
}
}
#[cfg(target_os = "linux")]
#[cfg(target_os = "android")]
#[cfg(target_os = "freebsd")]
fn real_args_as_bytes() -> Vec<~[u8]> {
use rt;
match rt::args::clone() {
Some(args) => args,
None => fail!("process arguments not initialized")
}
}
#[cfg(not(windows))]
fn real_args() -> Vec<~str> {
real_args_as_bytes().move_iter().map(|v| str::from_utf8_lossy(v).into_owned()).collect()
}
#[cfg(windows)]
fn real_args() -> Vec<~str> {
use slice;
use option::Expect;
let mut nArgs: c_int = 0;
let lpArgCount: *mut c_int = &mut nArgs;
let lpCmdLine = unsafe { GetCommandLineW() };
let szArgList = unsafe { CommandLineToArgvW(lpCmdLine, lpArgCount) };
let args = Vec::from_fn(nArgs as uint, |i| unsafe {
// Determine the length of this argument.
let ptr = *szArgList.offset(i as int);
let mut len = 0;
while *ptr.offset(len as int) != 0 { len += 1; }
// Push it onto the list.
let opt_s = slice::raw::buf_as_slice(ptr, len, |buf| {
str::from_utf16(str::truncate_utf16_at_nul(buf))
});
opt_s.expect("CommandLineToArgvW returned invalid UTF-16")
});
unsafe {
LocalFree(szArgList as *c_void);
}
return args
}
#[cfg(windows)]
fn real_args_as_bytes() -> Vec<~[u8]> {
real_args().move_iter().map(|s| s.into_bytes()).collect()
}
type LPCWSTR = *u16;
#[cfg(windows)]
#[link_name="kernel32"]
extern "system" {
fn GetCommandLineW() -> LPCWSTR;
fn LocalFree(ptr: *c_void);
}
#[cfg(windows)]
#[link_name="shell32"]
extern "system" {
fn CommandLineToArgvW(lpCmdLine: LPCWSTR, pNumArgs: *mut c_int) -> **u16;
}
/// Returns the arguments which this program was started with (normally passed
/// via the command line).
///
/// The arguments are interpreted as utf-8, with invalid bytes replaced with \uFFFD.
/// See `str::from_utf8_lossy` for details.
pub fn args() -> Vec<~str> {
real_args()
}
/// Returns the arguments which this program was started with (normally passed
/// via the command line) as byte vectors.
pub fn args_as_bytes() -> Vec<~[u8]> {
real_args_as_bytes()
}
#[cfg(target_os = "macos")]
extern {
// These functions are in crt_externs.h.
pub fn _NSGetArgc() -> *c_int;
pub fn _NSGetArgv() -> ***c_char;
}
// Round up `from` to be divisible by `to`
fn round_up(from: uint, to: uint) -> uint {
let r = if from % to == 0 {
from
} else {
from + to - (from % to)
};
if r == 0 {
to
} else {
r
}
}
/// Returns the page size of the current architecture in bytes.
#[cfg(unix)]
pub fn page_size() -> uint {
unsafe {
libc::sysconf(libc::_SC_PAGESIZE) as uint
}
}
/// Returns the page size of the current architecture in bytes.
#[cfg(windows)]
pub fn page_size() -> uint {
use mem;
unsafe {
let mut info = mem::uninit();
libc::GetSystemInfo(&mut info);
return info.dwPageSize as uint;
}
}
/// A memory mapped file or chunk of memory. This is a very system-specific
/// interface to the OS's memory mapping facilities (`mmap` on POSIX,
/// `VirtualAlloc`/`CreateFileMapping` on win32). It makes no attempt at
/// abstracting platform differences, besides in error values returned. Consider
/// yourself warned.
///
/// The memory map is released (unmapped) when the destructor is run, so don't
/// let it leave scope by accident if you want it to stick around.
pub struct MemoryMap {
/// Pointer to the memory created or modified by this map.
pub data: *mut u8,
/// Number of bytes this map applies to
pub len: uint,
/// Type of mapping
pub kind: MemoryMapKind,
}
/// Type of memory map
pub enum MemoryMapKind {
/// Virtual memory map. Usually used to change the permissions of a given
/// chunk of memory. Corresponds to `VirtualAlloc` on Windows.
MapFile(*u8),
/// Virtual memory map. Usually used to change the permissions of a given
/// chunk of memory, or for allocation. Corresponds to `VirtualAlloc` on
/// Windows.
MapVirtual
}
/// Options the memory map is created with
pub enum MapOption {
/// The memory should be readable
MapReadable,
/// The memory should be writable
MapWritable,
/// The memory should be executable
MapExecutable,
/// Create a map for a specific address range. Corresponds to `MAP_FIXED` on
/// POSIX.
MapAddr(*u8),
/// Create a memory mapping for a file with a given fd.
MapFd(c_int),
/// When using `MapFd`, the start of the map is `uint` bytes from the start
/// of the file.
MapOffset(uint),
/// On POSIX, this can be used to specify the default flags passed to
/// `mmap`. By default it uses `MAP_PRIVATE` and, if not using `MapFd`,
/// `MAP_ANON`. This will override both of those. This is platform-specific
/// (the exact values used) and ignored on Windows.
MapNonStandardFlags(c_int),
}
/// Possible errors when creating a map.
pub enum MapError {
/// ## The following are POSIX-specific
///
/// fd was not open for reading or, if using `MapWritable`, was not open for
/// writing.
ErrFdNotAvail,
/// fd was not valid
ErrInvalidFd,
/// Either the address given by `MapAddr` or offset given by `MapOffset` was
/// not a multiple of `MemoryMap::granularity` (unaligned to page size).
ErrUnaligned,
/// With `MapFd`, the fd does not support mapping.
ErrNoMapSupport,
/// If using `MapAddr`, the address + `min_len` was outside of the process's
/// address space. If using `MapFd`, the target of the fd didn't have enough
/// resources to fulfill the request.
ErrNoMem,
/// A zero-length map was requested. This is invalid according to
/// [POSIX](http://pubs.opengroup.org/onlinepubs/9699919799/functions/mmap.html).
/// Not all platforms obey this, but this wrapper does.
ErrZeroLength,
/// Unrecognized error. The inner value is the unrecognized errno.
ErrUnknown(int),
/// ## The following are win32-specific
///
/// Unsupported combination of protection flags
/// (`MapReadable`/`MapWritable`/`MapExecutable`).
ErrUnsupProt,
/// When using `MapFd`, `MapOffset` was given (Windows does not support this
/// at all)
ErrUnsupOffset,
/// When using `MapFd`, there was already a mapping to the file.
ErrAlreadyExists,
/// Unrecognized error from `VirtualAlloc`. The inner value is the return
/// value of GetLastError.
ErrVirtualAlloc(uint),
/// Unrecognized error from `CreateFileMapping`. The inner value is the
/// return value of `GetLastError`.
ErrCreateFileMappingW(uint),
/// Unrecognized error from `MapViewOfFile`. The inner value is the return
/// value of `GetLastError`.
ErrMapViewOfFile(uint)
}
impl fmt::Show for MapError {
fn fmt(&self, out: &mut fmt::Formatter) -> fmt::Result {
let str = match *self {
ErrFdNotAvail => "fd not available for reading or writing",
ErrInvalidFd => "Invalid fd",
ErrUnaligned => {
"Unaligned address, invalid flags, negative length or \
unaligned offset"
}
ErrNoMapSupport=> "File doesn't support mapping",
ErrNoMem => "Invalid address, or not enough available memory",
ErrUnsupProt => "Protection mode unsupported",
ErrUnsupOffset => "Offset in virtual memory mode is unsupported",
ErrAlreadyExists => "File mapping for specified file already exists",
ErrZeroLength => "Zero-length mapping not allowed",
ErrUnknown(code) => {
return write!(out.buf, "Unknown error = {}", code)
},
ErrVirtualAlloc(code) => {
return write!(out.buf, "VirtualAlloc failure = {}", code)
},
ErrCreateFileMappingW(code) => {
return write!(out.buf, "CreateFileMappingW failure = {}", code)
},
ErrMapViewOfFile(code) => {
return write!(out.buf, "MapViewOfFile failure = {}", code)
}
};
write!(out.buf, "{}", str)
}
}
#[cfg(unix)]
impl MemoryMap {
/// Create a new mapping with the given `options`, at least `min_len` bytes
/// long. `min_len` must be greater than zero; see the note on
/// `ErrZeroLength`.
pub fn new(min_len: uint, options: &[MapOption]) -> Result<MemoryMap, MapError> {
use libc::off_t;
use cmp::Equiv;
if min_len == 0 {
return Err(ErrZeroLength)
}
let mut addr: *u8 = ptr::null();
let mut prot = 0;
let mut flags = libc::MAP_PRIVATE;
let mut fd = -1;
let mut offset = 0;
let mut custom_flags = false;
let len = round_up(min_len, page_size());
for &o in options.iter() {
match o {
MapReadable => { prot |= libc::PROT_READ; },
MapWritable => { prot |= libc::PROT_WRITE; },
MapExecutable => { prot |= libc::PROT_EXEC; },
MapAddr(addr_) => {
flags |= libc::MAP_FIXED;
addr = addr_;
},
MapFd(fd_) => {
flags |= libc::MAP_FILE;
fd = fd_;
},
MapOffset(offset_) => { offset = offset_ as off_t; },
MapNonStandardFlags(f) => { custom_flags = true; flags = f },
}
}
if fd == -1 && !custom_flags { flags |= libc::MAP_ANON; }
let r = unsafe {
libc::mmap(addr as *c_void, len as libc::size_t, prot, flags, fd,
offset)
};
if r.equiv(&libc::MAP_FAILED) {
Err(match errno() as c_int {
libc::EACCES => ErrFdNotAvail,
libc::EBADF => ErrInvalidFd,
libc::EINVAL => ErrUnaligned,
libc::ENODEV => ErrNoMapSupport,
libc::ENOMEM => ErrNoMem,
code => ErrUnknown(code as int)
})
} else {
Ok(MemoryMap {
data: r as *mut u8,
len: len,
kind: if fd == -1 {
MapVirtual
} else {
MapFile(ptr::null())
}
})
}
}
/// Granularity that the offset or address must be for `MapOffset` and
/// `MapAddr` respectively.
pub fn granularity() -> uint {
page_size()
}
}
#[cfg(unix)]
impl Drop for MemoryMap {
/// Unmap the mapping. Fails the task if `munmap` fails.
fn drop(&mut self) {
if self.len == 0 { /* workaround for dummy_stack */ return; }
unsafe {
// FIXME: what to do if this fails?
let _ = libc::munmap(self.data as *c_void, self.len as libc::size_t);
}
}
}
#[cfg(windows)]
impl MemoryMap {
/// Create a new mapping with the given `options`, at least `min_len` bytes long.
pub fn new(min_len: uint, options: &[MapOption]) -> Result<MemoryMap, MapError> {
use libc::types::os::arch::extra::{LPVOID, DWORD, SIZE_T, HANDLE};
let mut lpAddress: LPVOID = ptr::mut_null();
let mut readable = false;
let mut writable = false;
let mut executable = false;
let mut fd: c_int = -1;
let mut offset: uint = 0;
let len = round_up(min_len, page_size());
for &o in options.iter() {
match o {
MapReadable => { readable = true; },
MapWritable => { writable = true; },
MapExecutable => { executable = true; }
MapAddr(addr_) => { lpAddress = addr_ as LPVOID; },
MapFd(fd_) => { fd = fd_; },
MapOffset(offset_) => { offset = offset_; },
MapNonStandardFlags(..) => {}
}
}
let flProtect = match (executable, readable, writable) {
(false, false, false) if fd == -1 => libc::PAGE_NOACCESS,
(false, true, false) => libc::PAGE_READONLY,
(false, true, true) => libc::PAGE_READWRITE,
(true, false, false) if fd == -1 => libc::PAGE_EXECUTE,
(true, true, false) => libc::PAGE_EXECUTE_READ,
(true, true, true) => libc::PAGE_EXECUTE_READWRITE,
_ => return Err(ErrUnsupProt)
};
if fd == -1 {
if offset != 0 {
return Err(ErrUnsupOffset);
}
let r = unsafe {
libc::VirtualAlloc(lpAddress,
len as SIZE_T,
libc::MEM_COMMIT | libc::MEM_RESERVE,
flProtect)
};
match r as uint {
0 => Err(ErrVirtualAlloc(errno())),
_ => Ok(MemoryMap {
data: r as *mut u8,
len: len,
kind: MapVirtual
})
}
} else {
let dwDesiredAccess = match (executable, readable, writable) {
(false, true, false) => libc::FILE_MAP_READ,
(false, true, true) => libc::FILE_MAP_WRITE,
(true, true, false) => libc::FILE_MAP_READ | libc::FILE_MAP_EXECUTE,
(true, true, true) => libc::FILE_MAP_WRITE | libc::FILE_MAP_EXECUTE,
_ => return Err(ErrUnsupProt) // Actually, because of the check above,
// we should never get here.
};
unsafe {
let hFile = libc::get_osfhandle(fd) as HANDLE;
let mapping = libc::CreateFileMappingW(hFile,
ptr::mut_null(),
flProtect,
0,
0,
ptr::null());
if mapping == ptr::mut_null() {
return Err(ErrCreateFileMappingW(errno()));
}
if errno() as c_int == libc::ERROR_ALREADY_EXISTS {
return Err(ErrAlreadyExists);
}
let r = libc::MapViewOfFile(mapping,
dwDesiredAccess,
((len as u64) >> 32) as DWORD,
(offset & 0xffff_ffff) as DWORD,
0);
match r as uint {
0 => Err(ErrMapViewOfFile(errno())),
_ => Ok(MemoryMap {
data: r as *mut u8,
len: len,
kind: MapFile(mapping as *u8)
})
}
}
}
}
/// Granularity of MapAddr() and MapOffset() parameter values.
/// This may be greater than the value returned by page_size().
pub fn granularity() -> uint {
use mem;
unsafe {
let mut info = mem::uninit();
libc::GetSystemInfo(&mut info);
return info.dwAllocationGranularity as uint;
}
}
}
#[cfg(windows)]
impl Drop for MemoryMap {
/// Unmap the mapping. Fails the task if any of `VirtualFree`,
/// `UnmapViewOfFile`, or `CloseHandle` fail.
fn drop(&mut self) {
use libc::types::os::arch::extra::{LPCVOID, HANDLE};
use libc::consts::os::extra::FALSE;
if self.len == 0 { return }
unsafe {
match self.kind {
MapVirtual => {
if libc::VirtualFree(self.data as *mut c_void, 0,
libc::MEM_RELEASE) == 0 {
println!("VirtualFree failed: {}", errno());
}
},
MapFile(mapping) => {
if libc::UnmapViewOfFile(self.data as LPCVOID) == FALSE {
println!("UnmapViewOfFile failed: {}", errno());
}
if libc::CloseHandle(mapping as HANDLE) == FALSE {
println!("CloseHandle failed: {}", errno());
}
}
}
}
}
}
#[cfg(target_os = "linux")]
pub mod consts {
pub use std::os::arch_consts::ARCH;
pub static FAMILY: &'static str = "unix";
/// A string describing the specific operating system in use: in this
/// case, `linux`.
pub static SYSNAME: &'static str = "linux";
/// Specifies the filename prefix used for shared libraries on this
/// platform: in this case, `lib`.
pub static DLL_PREFIX: &'static str = "lib";
/// Specifies the filename suffix used for shared libraries on this
/// platform: in this case, `.so`.
pub static DLL_SUFFIX: &'static str = ".so";
/// Specifies the file extension used for shared libraries on this
/// platform that goes after the dot: in this case, `so`.
pub static DLL_EXTENSION: &'static str = "so";
/// Specifies the filename suffix used for executable binaries on this
/// platform: in this case, the empty string.
pub static EXE_SUFFIX: &'static str = "";
/// Specifies the file extension, if any, used for executable binaries
/// on this platform: in this case, the empty string.
pub static EXE_EXTENSION: &'static str = "";
}
#[cfg(target_os = "macos")]
pub mod consts {
pub use std::os::arch_consts::ARCH;
pub static FAMILY: &'static str = "unix";
/// A string describing the specific operating system in use: in this
/// case, `macos`.
pub static SYSNAME: &'static str = "macos";
/// Specifies the filename prefix used for shared libraries on this
/// platform: in this case, `lib`.
pub static DLL_PREFIX: &'static str = "lib";
/// Specifies the filename suffix used for shared libraries on this
/// platform: in this case, `.dylib`.
pub static DLL_SUFFIX: &'static str = ".dylib";
/// Specifies the file extension used for shared libraries on this
/// platform that goes after the dot: in this case, `dylib`.
pub static DLL_EXTENSION: &'static str = "dylib";
/// Specifies the filename suffix used for executable binaries on this
/// platform: in this case, the empty string.
pub static EXE_SUFFIX: &'static str = "";
/// Specifies the file extension, if any, used for executable binaries
/// on this platform: in this case, the empty string.
pub static EXE_EXTENSION: &'static str = "";
}
#[cfg(target_os = "freebsd")]
pub mod consts {
pub use std::os::arch_consts::ARCH;
pub static FAMILY: &'static str = "unix";
/// A string describing the specific operating system in use: in this
/// case, `freebsd`.
pub static SYSNAME: &'static str = "freebsd";
/// Specifies the filename prefix used for shared libraries on this
/// platform: in this case, `lib`.
pub static DLL_PREFIX: &'static str = "lib";
/// Specifies the filename suffix used for shared libraries on this
/// platform: in this case, `.so`.
pub static DLL_SUFFIX: &'static str = ".so";
/// Specifies the file extension used for shared libraries on this
/// platform that goes after the dot: in this case, `so`.
pub static DLL_EXTENSION: &'static str = "so";
/// Specifies the filename suffix used for executable binaries on this
/// platform: in this case, the empty string.
pub static EXE_SUFFIX: &'static str = "";
/// Specifies the file extension, if any, used for executable binaries
/// on this platform: in this case, the empty string.
pub static EXE_EXTENSION: &'static str = "";
}
#[cfg(target_os = "android")]
pub mod consts {
pub use std::os::arch_consts::ARCH;
pub static FAMILY: &'static str = "unix";
/// A string describing the specific operating system in use: in this
/// case, `android`.
pub static SYSNAME: &'static str = "android";
/// Specifies the filename prefix used for shared libraries on this
/// platform: in this case, `lib`.
pub static DLL_PREFIX: &'static str = "lib";
/// Specifies the filename suffix used for shared libraries on this
/// platform: in this case, `.so`.
pub static DLL_SUFFIX: &'static str = ".so";
/// Specifies the file extension used for shared libraries on this
/// platform that goes after the dot: in this case, `so`.
pub static DLL_EXTENSION: &'static str = "so";
/// Specifies the filename suffix used for executable binaries on this
/// platform: in this case, the empty string.
pub static EXE_SUFFIX: &'static str = "";
/// Specifies the file extension, if any, used for executable binaries
/// on this platform: in this case, the empty string.
pub static EXE_EXTENSION: &'static str = "";
}
#[cfg(target_os = "win32")]
pub mod consts {
pub use std::os::arch_consts::ARCH;
pub static FAMILY: &'static str = "windows";
/// A string describing the specific operating system in use: in this
/// case, `win32`.
pub static SYSNAME: &'static str = "win32";
/// Specifies the filename prefix used for shared libraries on this
/// platform: in this case, the empty string.
pub static DLL_PREFIX: &'static str = "";
/// Specifies the filename suffix used for shared libraries on this
/// platform: in this case, `.dll`.
pub static DLL_SUFFIX: &'static str = ".dll";
/// Specifies the file extension used for shared libraries on this
/// platform that goes after the dot: in this case, `dll`.
pub static DLL_EXTENSION: &'static str = "dll";
/// Specifies the filename suffix used for executable binaries on this
/// platform: in this case, `.exe`.
pub static EXE_SUFFIX: &'static str = ".exe";
/// Specifies the file extension, if any, used for executable binaries
/// on this platform: in this case, `exe`.
pub static EXE_EXTENSION: &'static str = "exe";
}
#[cfg(target_arch = "x86")]
mod arch_consts {
pub static ARCH: &'static str = "x86";
}
#[cfg(target_arch = "x86_64")]
mod arch_consts {
pub static ARCH: &'static str = "x86_64";
}
#[cfg(target_arch = "arm")]
mod arch_consts {
pub static ARCH: &'static str = "arm";
}
#[cfg(target_arch = "mips")]
mod arch_consts {
pub static ARCH: &'static str = "mips";
}
#[cfg(test)]
mod tests {
use prelude::*;
use c_str::ToCStr;
use option;
use os::{env, getcwd, getenv, make_absolute, args};
use os::{setenv, unsetenv};
use os;
use rand::Rng;
use rand;
#[test]
pub fn last_os_error() {
debug!("{}", os::last_os_error());
}
#[test]
pub fn test_args() {
let a = args();
assert!(a.len() >= 1);
}
fn make_rand_name() -> ~str {
let mut rng = rand::task_rng();
let n = format_strbuf!("TEST{}", rng.gen_ascii_str(10u).as_slice());
assert!(getenv(n.as_slice()).is_none());
n.into_owned()
}
#[test]
fn test_setenv() {
let n = make_rand_name();
setenv(n, "VALUE");
assert_eq!(getenv(n), option::Some("VALUE".to_owned()));
}
#[test]
fn test_unsetenv() {
let n = make_rand_name();
setenv(n, "VALUE");
unsetenv(n);
assert_eq!(getenv(n), option::None);
}
#[test]
#[ignore]
fn test_setenv_overwrite() {
let n = make_rand_name();
setenv(n, "1");
setenv(n, "2");
assert_eq!(getenv(n), option::Some("2".to_owned()));
setenv(n, "");
assert_eq!(getenv(n), option::Some("".to_owned()));
}
// Windows GetEnvironmentVariable requires some extra work to make sure
// the buffer the variable is copied into is the right size
#[test]
#[ignore]
fn test_getenv_big() {
let mut s = "".to_owned();
let mut i = 0;
while i < 100 {
s = s + "aaaaaaaaaa";
i += 1;
}
let n = make_rand_name();
setenv(n, s);
debug!("{}", s.clone());
assert_eq!(getenv(n), option::Some(s));
}
#[test]
fn test_self_exe_name() {
let path = os::self_exe_name();
assert!(path.is_some());
let path = path.unwrap();
debug!("{:?}", path.clone());
// Hard to test this function
assert!(path.is_absolute());
}
#[test]
fn test_self_exe_path() {
let path = os::self_exe_path();
assert!(path.is_some());
let path = path.unwrap();
debug!("{:?}", path.clone());
// Hard to test this function
assert!(path.is_absolute());
}
#[test]
#[ignore]
fn test_env_getenv() {
let e = env();
assert!(e.len() > 0u);
for p in e.iter() {
let (n, v) = (*p).clone();
debug!("{:?}", n.clone());
let v2 = getenv(n);
// MingW seems to set some funky environment variables like
// "=C:=C:\MinGW\msys\1.0\bin" and "!::=::\" that are returned
// from env() but not visible from getenv().
assert!(v2.is_none() || v2 == option::Some(v));
}
}
#[test]
fn test_env_set_get_huge() {
let n = make_rand_name();
let s = "x".repeat(10000);
setenv(n, s);
assert_eq!(getenv(n), Some(s));
unsetenv(n);
assert_eq!(getenv(n), None);
}
#[test]
fn test_env_setenv() {
let n = make_rand_name();
let mut e = env();
setenv(n, "VALUE");
assert!(!e.contains(&(n.clone(), "VALUE".to_owned())));
e = env();
assert!(e.contains(&(n, "VALUE".to_owned())));
}
#[test]
fn test() {
assert!((!Path::new("test-path").is_absolute()));
let cwd = getcwd();
debug!("Current working directory: {}", cwd.display());
debug!("{:?}", make_absolute(&Path::new("test-path")));
debug!("{:?}", make_absolute(&Path::new("/usr/bin")));
}
#[test]
#[cfg(unix)]
fn homedir() {
let oldhome = getenv("HOME");
setenv("HOME", "/home/MountainView");
assert!(os::homedir() == Some(Path::new("/home/MountainView")));
setenv("HOME", "");
assert!(os::homedir().is_none());
for s in oldhome.iter() { setenv("HOME", *s) }
}
#[test]
#[cfg(windows)]
fn homedir() {
let oldhome = getenv("HOME");
let olduserprofile = getenv("USERPROFILE");
setenv("HOME", "");
setenv("USERPROFILE", "");
assert!(os::homedir().is_none());
setenv("HOME", "/home/MountainView");
assert!(os::homedir() == Some(Path::new("/home/MountainView")));
setenv("HOME", "");
setenv("USERPROFILE", "/home/MountainView");
assert!(os::homedir() == Some(Path::new("/home/MountainView")));
setenv("HOME", "/home/MountainView");
setenv("USERPROFILE", "/home/PaloAlto");
assert!(os::homedir() == Some(Path::new("/home/MountainView")));
for s in oldhome.iter() { setenv("HOME", *s) }
for s in olduserprofile.iter() { setenv("USERPROFILE", *s) }
}
#[test]
fn memory_map_rw() {
use result::{Ok, Err};
let chunk = match os::MemoryMap::new(16, [
os::MapReadable,
os::MapWritable
]) {
Ok(chunk) => chunk,
Err(msg) => fail!("{}", msg)
};
assert!(chunk.len >= 16);
unsafe {
*chunk.data = 0xBE;
assert!(*chunk.data == 0xBE);
}
}
#[test]
fn memory_map_file() {
use result::{Ok, Err};
use os::*;
use libc::*;
use io::fs;
#[cfg(unix)]
fn lseek_(fd: c_int, size: uint) {
unsafe {
assert!(lseek(fd, size as off_t, SEEK_SET) == size as off_t);
}
}
#[cfg(windows)]
fn lseek_(fd: c_int, size: uint) {
unsafe {
assert!(lseek(fd, size as c_long, SEEK_SET) == size as c_long);
}
}
let mut path = tmpdir();
path.push("mmap_file.tmp");
let size = MemoryMap::granularity() * 2;
let fd = unsafe {
let fd = path.with_c_str(|path| {
open(path, O_CREAT | O_RDWR | O_TRUNC, S_IRUSR | S_IWUSR)
});
lseek_(fd, size);
"x".with_c_str(|x| assert!(write(fd, x as *c_void, 1) == 1));
fd
};
let chunk = match MemoryMap::new(size / 2, [
MapReadable,
MapWritable,
MapFd(fd),
MapOffset(size / 2)
]) {
Ok(chunk) => chunk,
Err(msg) => fail!("{}", msg)
};
assert!(chunk.len > 0);
unsafe {
*chunk.data = 0xbe;
assert!(*chunk.data == 0xbe);
close(fd);
}
drop(chunk);
fs::unlink(&path).unwrap();
}
// More recursive_mkdir tests are in extra::tempfile
}