rust/src/libstd/io/buffered.rs
Brian Anderson ef788d51dd std: Modify TempDir to not fail on drop. Closes #12628
After discussion with Alex, we think the proper policy is for dtors
to not fail. This is consistent with C++. BufferedWriter already
does this, so this patch modifies TempDir to not fail in the dtor,
adding a `close` method for handling errors on destruction.
2014-05-15 13:50:24 -07:00

627 lines
20 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Buffering wrappers for I/O traits
use cmp;
use container::Container;
use io::{Reader, Writer, Stream, Buffer, DEFAULT_BUF_SIZE, IoResult};
use iter::ExactSize;
use ops::Drop;
use option::{Some, None, Option};
use result::{Ok, Err, ResultUnwrap};
use slice::{ImmutableVector, MutableVector};
use slice;
use vec::Vec;
/// Wraps a Reader and buffers input from it
///
/// It can be excessively inefficient to work directly with a `Reader`. For
/// example, every call to `read` on `TcpStream` results in a system call. A
/// `BufferedReader` performs large, infrequent reads on the underlying
/// `Reader` and maintains an in-memory buffer of the results.
///
/// # Example
///
/// ```rust
/// use std::io::{BufferedReader, File};
///
/// let file = File::open(&Path::new("message.txt"));
/// let mut reader = BufferedReader::new(file);
///
/// let mut buf = [0, ..100];
/// match reader.read(buf) {
/// Ok(nread) => println!("Read {} bytes", nread),
/// Err(e) => println!("error reading: {}", e)
/// }
/// ```
pub struct BufferedReader<R> {
inner: R,
buf: Vec<u8>,
pos: uint,
cap: uint,
}
impl<R: Reader> BufferedReader<R> {
/// Creates a new `BufferedReader` with the specified buffer capacity
pub fn with_capacity(cap: uint, inner: R) -> BufferedReader<R> {
// It's *much* faster to create an uninitialized buffer than it is to
// fill everything in with 0. This buffer is entirely an implementation
// detail and is never exposed, so we're safe to not initialize
// everything up-front. This allows creation of BufferedReader instances
// to be very cheap (large mallocs are not nearly as expensive as large
// callocs).
let mut buf = Vec::with_capacity(cap);
unsafe { buf.set_len(cap); }
BufferedReader {
inner: inner,
buf: buf,
pos: 0,
cap: 0,
}
}
/// Creates a new `BufferedReader` with a default buffer capacity
pub fn new(inner: R) -> BufferedReader<R> {
BufferedReader::with_capacity(DEFAULT_BUF_SIZE, inner)
}
/// Gets a reference to the underlying reader.
///
/// This type does not expose the ability to get a mutable reference to the
/// underlying reader because that could possibly corrupt the buffer.
pub fn get_ref<'a>(&'a self) -> &'a R { &self.inner }
/// Unwraps this `BufferedReader`, returning the underlying reader.
///
/// Note that any leftover data in the internal buffer is lost.
pub fn unwrap(self) -> R { self.inner }
}
impl<R: Reader> Buffer for BufferedReader<R> {
fn fill_buf<'a>(&'a mut self) -> IoResult<&'a [u8]> {
if self.pos == self.cap {
self.cap = try!(self.inner.read(self.buf.as_mut_slice()));
self.pos = 0;
}
Ok(self.buf.slice(self.pos, self.cap))
}
fn consume(&mut self, amt: uint) {
self.pos += amt;
assert!(self.pos <= self.cap);
}
}
impl<R: Reader> Reader for BufferedReader<R> {
fn read(&mut self, buf: &mut [u8]) -> IoResult<uint> {
let nread = {
let available = try!(self.fill_buf());
let nread = cmp::min(available.len(), buf.len());
slice::bytes::copy_memory(buf, available.slice_to(nread));
nread
};
self.pos += nread;
Ok(nread)
}
}
/// Wraps a Writer and buffers output to it
///
/// It can be excessively inefficient to work directly with a `Writer`. For
/// example, every call to `write` on `TcpStream` results in a system call. A
/// `BufferedWriter` keeps an in memory buffer of data and writes it to the
/// underlying `Writer` in large, infrequent batches.
///
/// This writer will be flushed when it is dropped.
///
/// # Example
///
/// ```rust
/// # #![allow(unused_must_use)]
/// use std::io::{BufferedWriter, File};
///
/// let file = File::open(&Path::new("message.txt"));
/// let mut writer = BufferedWriter::new(file);
///
/// writer.write_str("hello, world");
/// writer.flush();
/// ```
pub struct BufferedWriter<W> {
inner: Option<W>,
buf: Vec<u8>,
pos: uint
}
impl<W: Writer> BufferedWriter<W> {
/// Creates a new `BufferedWriter` with the specified buffer capacity
pub fn with_capacity(cap: uint, inner: W) -> BufferedWriter<W> {
// See comments in BufferedReader for why this uses unsafe code.
let mut buf = Vec::with_capacity(cap);
unsafe { buf.set_len(cap); }
BufferedWriter {
inner: Some(inner),
buf: buf,
pos: 0
}
}
/// Creates a new `BufferedWriter` with a default buffer capacity
pub fn new(inner: W) -> BufferedWriter<W> {
BufferedWriter::with_capacity(DEFAULT_BUF_SIZE, inner)
}
fn flush_buf(&mut self) -> IoResult<()> {
if self.pos != 0 {
let ret = self.inner.get_mut_ref().write(self.buf.slice_to(self.pos));
self.pos = 0;
ret
} else {
Ok(())
}
}
/// Gets a reference to the underlying writer.
///
/// This type does not expose the ability to get a mutable reference to the
/// underlying reader because that could possibly corrupt the buffer.
pub fn get_ref<'a>(&'a self) -> &'a W { self.inner.get_ref() }
/// Unwraps this `BufferedWriter`, returning the underlying writer.
///
/// The buffer is flushed before returning the writer.
pub fn unwrap(mut self) -> W {
// FIXME(#12628): is failing the right thing to do if flushing fails?
self.flush_buf().unwrap();
self.inner.take_unwrap()
}
}
impl<W: Writer> Writer for BufferedWriter<W> {
fn write(&mut self, buf: &[u8]) -> IoResult<()> {
if self.pos + buf.len() > self.buf.len() {
try!(self.flush_buf());
}
if buf.len() > self.buf.len() {
self.inner.get_mut_ref().write(buf)
} else {
let dst = self.buf.mut_slice_from(self.pos);
slice::bytes::copy_memory(dst, buf);
self.pos += buf.len();
Ok(())
}
}
fn flush(&mut self) -> IoResult<()> {
self.flush_buf().and_then(|()| self.inner.get_mut_ref().flush())
}
}
#[unsafe_destructor]
impl<W: Writer> Drop for BufferedWriter<W> {
fn drop(&mut self) {
if self.inner.is_some() {
// dtors should not fail, so we ignore a failed flush
let _ = self.flush_buf();
}
}
}
/// Wraps a Writer and buffers output to it, flushing whenever a newline (`0x0a`,
/// `'\n'`) is detected.
///
/// This writer will be flushed when it is dropped.
pub struct LineBufferedWriter<W> {
inner: BufferedWriter<W>,
}
impl<W: Writer> LineBufferedWriter<W> {
/// Creates a new `LineBufferedWriter`
pub fn new(inner: W) -> LineBufferedWriter<W> {
// Lines typically aren't that long, don't use a giant buffer
LineBufferedWriter {
inner: BufferedWriter::with_capacity(1024, inner)
}
}
/// Gets a reference to the underlying writer.
///
/// This type does not expose the ability to get a mutable reference to the
/// underlying reader because that could possibly corrupt the buffer.
pub fn get_ref<'a>(&'a self) -> &'a W { self.inner.get_ref() }
/// Unwraps this `LineBufferedWriter`, returning the underlying writer.
///
/// The internal buffer is flushed before returning the writer.
pub fn unwrap(self) -> W { self.inner.unwrap() }
}
impl<W: Writer> Writer for LineBufferedWriter<W> {
fn write(&mut self, buf: &[u8]) -> IoResult<()> {
match buf.iter().rposition(|&b| b == '\n' as u8) {
Some(i) => {
try!(self.inner.write(buf.slice_to(i + 1)));
try!(self.inner.flush());
try!(self.inner.write(buf.slice_from(i + 1)));
Ok(())
}
None => self.inner.write(buf),
}
}
fn flush(&mut self) -> IoResult<()> { self.inner.flush() }
}
struct InternalBufferedWriter<W>(BufferedWriter<W>);
impl<W> InternalBufferedWriter<W> {
fn get_mut_ref<'a>(&'a mut self) -> &'a mut BufferedWriter<W> {
let InternalBufferedWriter(ref mut w) = *self;
return w;
}
}
impl<W: Reader> Reader for InternalBufferedWriter<W> {
fn read(&mut self, buf: &mut [u8]) -> IoResult<uint> {
self.get_mut_ref().inner.get_mut_ref().read(buf)
}
}
/// Wraps a Stream and buffers input and output to and from it.
///
/// It can be excessively inefficient to work directly with a `Stream`. For
/// example, every call to `read` or `write` on `TcpStream` results in a system
/// call. A `BufferedStream` keeps in memory buffers of data, making large,
/// infrequent calls to `read` and `write` on the underlying `Stream`.
///
/// The output half will be flushed when this stream is dropped.
///
/// # Example
///
/// ```rust
/// # #![allow(unused_must_use)]
/// use std::io::{BufferedStream, File};
///
/// let file = File::open(&Path::new("message.txt"));
/// let mut stream = BufferedStream::new(file);
///
/// stream.write("hello, world".as_bytes());
/// stream.flush();
///
/// let mut buf = [0, ..100];
/// match stream.read(buf) {
/// Ok(nread) => println!("Read {} bytes", nread),
/// Err(e) => println!("error reading: {}", e)
/// }
/// ```
pub struct BufferedStream<S> {
inner: BufferedReader<InternalBufferedWriter<S>>
}
impl<S: Stream> BufferedStream<S> {
/// Creates a new buffered stream with explicitly listed capacities for the
/// reader/writer buffer.
pub fn with_capacities(reader_cap: uint, writer_cap: uint, inner: S)
-> BufferedStream<S> {
let writer = BufferedWriter::with_capacity(writer_cap, inner);
let internal_writer = InternalBufferedWriter(writer);
let reader = BufferedReader::with_capacity(reader_cap,
internal_writer);
BufferedStream { inner: reader }
}
/// Creates a new buffered stream with the default reader/writer buffer
/// capacities.
pub fn new(inner: S) -> BufferedStream<S> {
BufferedStream::with_capacities(DEFAULT_BUF_SIZE, DEFAULT_BUF_SIZE,
inner)
}
/// Gets a reference to the underlying stream.
///
/// This type does not expose the ability to get a mutable reference to the
/// underlying reader because that could possibly corrupt the buffer.
pub fn get_ref<'a>(&'a self) -> &'a S {
let InternalBufferedWriter(ref w) = self.inner.inner;
w.get_ref()
}
/// Unwraps this `BufferedStream`, returning the underlying stream.
///
/// The internal buffer is flushed before returning the stream. Any leftover
/// data in the read buffer is lost.
pub fn unwrap(self) -> S {
let InternalBufferedWriter(w) = self.inner.inner;
w.unwrap()
}
}
impl<S: Stream> Buffer for BufferedStream<S> {
fn fill_buf<'a>(&'a mut self) -> IoResult<&'a [u8]> { self.inner.fill_buf() }
fn consume(&mut self, amt: uint) { self.inner.consume(amt) }
}
impl<S: Stream> Reader for BufferedStream<S> {
fn read(&mut self, buf: &mut [u8]) -> IoResult<uint> {
self.inner.read(buf)
}
}
impl<S: Stream> Writer for BufferedStream<S> {
fn write(&mut self, buf: &[u8]) -> IoResult<()> {
self.inner.inner.get_mut_ref().write(buf)
}
fn flush(&mut self) -> IoResult<()> {
self.inner.inner.get_mut_ref().flush()
}
}
#[cfg(test)]
mod test {
extern crate test;
use io;
use prelude::*;
use super::*;
use super::super::{IoResult, EndOfFile};
use super::super::mem::{MemReader, MemWriter, BufReader};
use self::test::Bencher;
use str::StrSlice;
/// A type, free to create, primarily intended for benchmarking creation of
/// wrappers that, just for construction, don't need a Reader/Writer that
/// does anything useful. Is equivalent to `/dev/null` in semantics.
#[deriving(Clone,Eq,Ord)]
pub struct NullStream;
impl Reader for NullStream {
fn read(&mut self, _: &mut [u8]) -> io::IoResult<uint> {
Err(io::standard_error(io::EndOfFile))
}
}
impl Writer for NullStream {
fn write(&mut self, _: &[u8]) -> io::IoResult<()> { Ok(()) }
}
/// A dummy reader intended at testing short-reads propagation.
pub struct ShortReader {
lengths: Vec<uint>,
}
impl Reader for ShortReader {
fn read(&mut self, _: &mut [u8]) -> io::IoResult<uint> {
match self.lengths.shift() {
Some(i) => Ok(i),
None => Err(io::standard_error(io::EndOfFile))
}
}
}
#[test]
fn test_buffered_reader() {
let inner = MemReader::new(vec!(0, 1, 2, 3, 4));
let mut reader = BufferedReader::with_capacity(2, inner);
let mut buf = [0, 0, 0];
let nread = reader.read(buf);
assert_eq!(Ok(2), nread);
assert_eq!(buf.as_slice(), &[0, 1, 0]);
let mut buf = [0];
let nread = reader.read(buf);
assert_eq!(Ok(1), nread);
assert_eq!(buf.as_slice(), &[2]);
let mut buf = [0, 0, 0];
let nread = reader.read(buf);
assert_eq!(Ok(1), nread);
assert_eq!(buf.as_slice(), &[3, 0, 0]);
let nread = reader.read(buf);
assert_eq!(Ok(1), nread);
assert_eq!(buf.as_slice(), &[4, 0, 0]);
assert!(reader.read(buf).is_err());
}
#[test]
fn test_buffered_writer() {
let inner = MemWriter::new();
let mut writer = BufferedWriter::with_capacity(2, inner);
writer.write([0, 1]).unwrap();
assert_eq!(writer.get_ref().get_ref(), &[]);
writer.write([2]).unwrap();
assert_eq!(writer.get_ref().get_ref(), &[0, 1]);
writer.write([3]).unwrap();
assert_eq!(writer.get_ref().get_ref(), &[0, 1]);
writer.flush().unwrap();
assert_eq!(&[0, 1, 2, 3], writer.get_ref().get_ref());
writer.write([4]).unwrap();
writer.write([5]).unwrap();
assert_eq!(&[0, 1, 2, 3], writer.get_ref().get_ref());
writer.write([6]).unwrap();
assert_eq!(&[0, 1, 2, 3, 4, 5],
writer.get_ref().get_ref());
writer.write([7, 8]).unwrap();
assert_eq!(&[0, 1, 2, 3, 4, 5, 6],
writer.get_ref().get_ref());
writer.write([9, 10, 11]).unwrap();
assert_eq!(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
writer.get_ref().get_ref());
writer.flush().unwrap();
assert_eq!(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
writer.get_ref().get_ref());
}
#[test]
fn test_buffered_writer_inner_flushes() {
let mut w = BufferedWriter::with_capacity(3, MemWriter::new());
w.write([0, 1]).unwrap();
assert_eq!(&[], w.get_ref().get_ref());
let w = w.unwrap();
assert_eq!(&[0, 1], w.get_ref());
}
// This is just here to make sure that we don't infinite loop in the
// newtype struct autoderef weirdness
#[test]
fn test_buffered_stream() {
struct S;
impl io::Writer for S {
fn write(&mut self, _: &[u8]) -> io::IoResult<()> { Ok(()) }
}
impl io::Reader for S {
fn read(&mut self, _: &mut [u8]) -> io::IoResult<uint> {
Err(io::standard_error(io::EndOfFile))
}
}
let mut stream = BufferedStream::new(S);
let mut buf = [];
assert!(stream.read(buf).is_err());
stream.write(buf).unwrap();
stream.flush().unwrap();
}
#[test]
fn test_read_until() {
let inner = MemReader::new(vec!(0, 1, 2, 1, 0));
let mut reader = BufferedReader::with_capacity(2, inner);
assert_eq!(reader.read_until(0), Ok(vec!(0)));
assert_eq!(reader.read_until(2), Ok(vec!(1, 2)));
assert_eq!(reader.read_until(1), Ok(vec!(1)));
assert_eq!(reader.read_until(8), Ok(vec!(0)));
assert!(reader.read_until(9).is_err());
}
#[test]
fn test_line_buffer() {
let mut writer = LineBufferedWriter::new(MemWriter::new());
writer.write([0]).unwrap();
assert_eq!(writer.get_ref().get_ref(), &[]);
writer.write([1]).unwrap();
assert_eq!(writer.get_ref().get_ref(), &[]);
writer.flush().unwrap();
assert_eq!(writer.get_ref().get_ref(), &[0, 1]);
writer.write([0, '\n' as u8, 1, '\n' as u8, 2]).unwrap();
assert_eq!(writer.get_ref().get_ref(),
&[0, 1, 0, '\n' as u8, 1, '\n' as u8]);
writer.flush().unwrap();
assert_eq!(writer.get_ref().get_ref(),
&[0, 1, 0, '\n' as u8, 1, '\n' as u8, 2]);
writer.write([3, '\n' as u8]).unwrap();
assert_eq!(writer.get_ref().get_ref(),
&[0, 1, 0, '\n' as u8, 1, '\n' as u8, 2, 3, '\n' as u8]);
}
#[test]
fn test_read_line() {
let in_buf = MemReader::new(Vec::from_slice(bytes!("a\nb\nc")));
let mut reader = BufferedReader::with_capacity(2, in_buf);
assert_eq!(reader.read_line(), Ok("a\n".to_owned()));
assert_eq!(reader.read_line(), Ok("b\n".to_owned()));
assert_eq!(reader.read_line(), Ok("c".to_owned()));
assert!(reader.read_line().is_err());
}
#[test]
fn test_lines() {
let in_buf = MemReader::new(Vec::from_slice(bytes!("a\nb\nc")));
let mut reader = BufferedReader::with_capacity(2, in_buf);
let mut it = reader.lines();
assert_eq!(it.next(), Some(Ok("a\n".to_owned())));
assert_eq!(it.next(), Some(Ok("b\n".to_owned())));
assert_eq!(it.next(), Some(Ok("c".to_owned())));
assert_eq!(it.next(), None);
}
#[test]
fn test_short_reads() {
let inner = ShortReader{lengths: vec![0, 1, 2, 0, 1, 0]};
let mut reader = BufferedReader::new(inner);
let mut buf = [0, 0];
assert_eq!(reader.read(buf), Ok(0));
assert_eq!(reader.read(buf), Ok(1));
assert_eq!(reader.read(buf), Ok(2));
assert_eq!(reader.read(buf), Ok(0));
assert_eq!(reader.read(buf), Ok(1));
assert_eq!(reader.read(buf), Ok(0));
assert!(reader.read(buf).is_err());
}
#[test]
fn read_char_buffered() {
let buf = [195u8, 159u8];
let mut reader = BufferedReader::with_capacity(1, BufReader::new(buf));
assert_eq!(reader.read_char(), Ok('ß'));
}
#[test]
fn test_chars() {
let buf = [195u8, 159u8, 'a' as u8];
let mut reader = BufferedReader::with_capacity(1, BufReader::new(buf));
let mut it = reader.chars();
assert_eq!(it.next(), Some(Ok('ß')));
assert_eq!(it.next(), Some(Ok('a')));
assert_eq!(it.next(), None);
}
#[test]
#[should_fail]
fn dont_fail_in_drop_on_failed_flush() {
struct FailFlushWriter;
impl Writer for FailFlushWriter {
fn write(&mut self, _buf: &[u8]) -> IoResult<()> { Ok(()) }
fn flush(&mut self) -> IoResult<()> { Err(io::standard_error(EndOfFile)) }
}
let writer = FailFlushWriter;
let _writer = BufferedWriter::new(writer);
// Trigger failure. If writer fails *again* due to the flush
// error then the process will abort.
fail!();
}
#[bench]
fn bench_buffered_reader(b: &mut Bencher) {
b.iter(|| {
BufferedReader::new(NullStream)
});
}
#[bench]
fn bench_buffered_writer(b: &mut Bencher) {
b.iter(|| {
BufferedWriter::new(NullStream)
});
}
#[bench]
fn bench_buffered_stream(b: &mut Bencher) {
b.iter(|| {
BufferedStream::new(NullStream);
});
}
}