a796af7a76
Previously, when inserting the entry function, we only checked for duplicate _definitions_ of `main`. However, it's possible to cause problems even only having a duplicate _declaration_. For example, shadowing `main` using an extern block isn't caught by the current check, and causes an assertion failure down the line in in LLVM code.
954 lines
36 KiB
Rust
954 lines
36 KiB
Rust
//! Codegen the completed AST to the LLVM IR.
|
||
//!
|
||
//! Some functions here, such as `codegen_block` and `codegen_expr`, return a value --
|
||
//! the result of the codegen to LLVM -- while others, such as `codegen_fn`
|
||
//! and `mono_item`, are called only for the side effect of adding a
|
||
//! particular definition to the LLVM IR output we're producing.
|
||
//!
|
||
//! Hopefully useful general knowledge about codegen:
|
||
//!
|
||
//! * There's no way to find out the `Ty` type of a `Value`. Doing so
|
||
//! would be "trying to get the eggs out of an omelette" (credit:
|
||
//! pcwalton). You can, instead, find out its `llvm::Type` by calling `val_ty`,
|
||
//! but one `llvm::Type` corresponds to many `Ty`s; for instance, `tup(int, int,
|
||
//! int)` and `rec(x=int, y=int, z=int)` will have the same `llvm::Type`.
|
||
|
||
use crate::back::write::{
|
||
start_async_codegen, submit_codegened_module_to_llvm, submit_post_lto_module_to_llvm,
|
||
submit_pre_lto_module_to_llvm, OngoingCodegen,
|
||
};
|
||
use crate::common::{IntPredicate, RealPredicate, TypeKind};
|
||
use crate::meth;
|
||
use crate::mir;
|
||
use crate::mir::operand::OperandValue;
|
||
use crate::mir::place::PlaceRef;
|
||
use crate::traits::*;
|
||
use crate::{CachedModuleCodegen, CrateInfo, MemFlags, ModuleCodegen, ModuleKind};
|
||
|
||
use rustc::middle::codegen_fn_attrs::CodegenFnAttrs;
|
||
use rustc::middle::cstore::EncodedMetadata;
|
||
use rustc::middle::cstore::{self, LinkagePreference};
|
||
use rustc::middle::lang_items;
|
||
use rustc::middle::lang_items::StartFnLangItem;
|
||
use rustc::mir::mono::{CodegenUnit, CodegenUnitNameBuilder, MonoItem};
|
||
use rustc::session::config::{self, EntryFnType, Lto};
|
||
use rustc::session::Session;
|
||
use rustc::ty::layout::{self, Align, HasTyCtxt, LayoutOf, TyLayout, VariantIdx};
|
||
use rustc::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA};
|
||
use rustc::ty::query::Providers;
|
||
use rustc::ty::{self, Instance, Ty, TyCtxt};
|
||
use rustc_attr as attr;
|
||
use rustc_codegen_utils::{check_for_rustc_errors_attr, symbol_names_test};
|
||
use rustc_data_structures::fx::FxHashMap;
|
||
use rustc_data_structures::profiling::print_time_passes_entry;
|
||
use rustc_data_structures::sync::{par_iter, Lock, ParallelIterator};
|
||
use rustc_hir as hir;
|
||
use rustc_hir::def_id::{DefId, LOCAL_CRATE};
|
||
use rustc_index::vec::Idx;
|
||
use rustc_session::cgu_reuse_tracker::CguReuse;
|
||
use rustc_span::Span;
|
||
|
||
use std::cmp;
|
||
use std::ops::{Deref, DerefMut};
|
||
use std::time::{Duration, Instant};
|
||
|
||
pub fn bin_op_to_icmp_predicate(op: hir::BinOpKind, signed: bool) -> IntPredicate {
|
||
match op {
|
||
hir::BinOpKind::Eq => IntPredicate::IntEQ,
|
||
hir::BinOpKind::Ne => IntPredicate::IntNE,
|
||
hir::BinOpKind::Lt => {
|
||
if signed {
|
||
IntPredicate::IntSLT
|
||
} else {
|
||
IntPredicate::IntULT
|
||
}
|
||
}
|
||
hir::BinOpKind::Le => {
|
||
if signed {
|
||
IntPredicate::IntSLE
|
||
} else {
|
||
IntPredicate::IntULE
|
||
}
|
||
}
|
||
hir::BinOpKind::Gt => {
|
||
if signed {
|
||
IntPredicate::IntSGT
|
||
} else {
|
||
IntPredicate::IntUGT
|
||
}
|
||
}
|
||
hir::BinOpKind::Ge => {
|
||
if signed {
|
||
IntPredicate::IntSGE
|
||
} else {
|
||
IntPredicate::IntUGE
|
||
}
|
||
}
|
||
op => bug!(
|
||
"comparison_op_to_icmp_predicate: expected comparison operator, \
|
||
found {:?}",
|
||
op
|
||
),
|
||
}
|
||
}
|
||
|
||
pub fn bin_op_to_fcmp_predicate(op: hir::BinOpKind) -> RealPredicate {
|
||
match op {
|
||
hir::BinOpKind::Eq => RealPredicate::RealOEQ,
|
||
hir::BinOpKind::Ne => RealPredicate::RealUNE,
|
||
hir::BinOpKind::Lt => RealPredicate::RealOLT,
|
||
hir::BinOpKind::Le => RealPredicate::RealOLE,
|
||
hir::BinOpKind::Gt => RealPredicate::RealOGT,
|
||
hir::BinOpKind::Ge => RealPredicate::RealOGE,
|
||
op => {
|
||
bug!(
|
||
"comparison_op_to_fcmp_predicate: expected comparison operator, \
|
||
found {:?}",
|
||
op
|
||
);
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn compare_simd_types<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
|
||
bx: &mut Bx,
|
||
lhs: Bx::Value,
|
||
rhs: Bx::Value,
|
||
t: Ty<'tcx>,
|
||
ret_ty: Bx::Type,
|
||
op: hir::BinOpKind,
|
||
) -> Bx::Value {
|
||
let signed = match t.kind {
|
||
ty::Float(_) => {
|
||
let cmp = bin_op_to_fcmp_predicate(op);
|
||
let cmp = bx.fcmp(cmp, lhs, rhs);
|
||
return bx.sext(cmp, ret_ty);
|
||
}
|
||
ty::Uint(_) => false,
|
||
ty::Int(_) => true,
|
||
_ => bug!("compare_simd_types: invalid SIMD type"),
|
||
};
|
||
|
||
let cmp = bin_op_to_icmp_predicate(op, signed);
|
||
let cmp = bx.icmp(cmp, lhs, rhs);
|
||
// LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
|
||
// to get the correctly sized type. This will compile to a single instruction
|
||
// once the IR is converted to assembly if the SIMD instruction is supported
|
||
// by the target architecture.
|
||
bx.sext(cmp, ret_ty)
|
||
}
|
||
|
||
/// Retrieves the information we are losing (making dynamic) in an unsizing
|
||
/// adjustment.
|
||
///
|
||
/// The `old_info` argument is a bit odd. It is intended for use in an upcast,
|
||
/// where the new vtable for an object will be derived from the old one.
|
||
pub fn unsized_info<'tcx, Cx: CodegenMethods<'tcx>>(
|
||
cx: &Cx,
|
||
source: Ty<'tcx>,
|
||
target: Ty<'tcx>,
|
||
old_info: Option<Cx::Value>,
|
||
) -> Cx::Value {
|
||
let (source, target) =
|
||
cx.tcx().struct_lockstep_tails_erasing_lifetimes(source, target, cx.param_env());
|
||
match (&source.kind, &target.kind) {
|
||
(&ty::Array(_, len), &ty::Slice(_)) => {
|
||
cx.const_usize(len.eval_usize(cx.tcx(), ty::ParamEnv::reveal_all()))
|
||
}
|
||
(&ty::Dynamic(..), &ty::Dynamic(..)) => {
|
||
// For now, upcasts are limited to changes in marker
|
||
// traits, and hence never actually require an actual
|
||
// change to the vtable.
|
||
old_info.expect("unsized_info: missing old info for trait upcast")
|
||
}
|
||
(_, &ty::Dynamic(ref data, ..)) => {
|
||
let vtable_ptr = cx.layout_of(cx.tcx().mk_mut_ptr(target)).field(cx, FAT_PTR_EXTRA);
|
||
cx.const_ptrcast(
|
||
meth::get_vtable(cx, source, data.principal()),
|
||
cx.backend_type(vtable_ptr),
|
||
)
|
||
}
|
||
_ => bug!("unsized_info: invalid unsizing {:?} -> {:?}", source, target),
|
||
}
|
||
}
|
||
|
||
/// Coerces `src` to `dst_ty`. `src_ty` must be a thin pointer.
|
||
pub fn unsize_thin_ptr<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
|
||
bx: &mut Bx,
|
||
src: Bx::Value,
|
||
src_ty: Ty<'tcx>,
|
||
dst_ty: Ty<'tcx>,
|
||
) -> (Bx::Value, Bx::Value) {
|
||
debug!("unsize_thin_ptr: {:?} => {:?}", src_ty, dst_ty);
|
||
match (&src_ty.kind, &dst_ty.kind) {
|
||
(&ty::Ref(_, a, _), &ty::Ref(_, b, _))
|
||
| (&ty::Ref(_, a, _), &ty::RawPtr(ty::TypeAndMut { ty: b, .. }))
|
||
| (&ty::RawPtr(ty::TypeAndMut { ty: a, .. }), &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) => {
|
||
assert!(bx.cx().type_is_sized(a));
|
||
let ptr_ty = bx.cx().type_ptr_to(bx.cx().backend_type(bx.cx().layout_of(b)));
|
||
(bx.pointercast(src, ptr_ty), unsized_info(bx.cx(), a, b, None))
|
||
}
|
||
(&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
|
||
assert_eq!(def_a, def_b);
|
||
|
||
let src_layout = bx.cx().layout_of(src_ty);
|
||
let dst_layout = bx.cx().layout_of(dst_ty);
|
||
let mut result = None;
|
||
for i in 0..src_layout.fields.count() {
|
||
let src_f = src_layout.field(bx.cx(), i);
|
||
assert_eq!(src_layout.fields.offset(i).bytes(), 0);
|
||
assert_eq!(dst_layout.fields.offset(i).bytes(), 0);
|
||
if src_f.is_zst() {
|
||
continue;
|
||
}
|
||
assert_eq!(src_layout.size, src_f.size);
|
||
|
||
let dst_f = dst_layout.field(bx.cx(), i);
|
||
assert_ne!(src_f.ty, dst_f.ty);
|
||
assert_eq!(result, None);
|
||
result = Some(unsize_thin_ptr(bx, src, src_f.ty, dst_f.ty));
|
||
}
|
||
let (lldata, llextra) = result.unwrap();
|
||
// HACK(eddyb) have to bitcast pointers until LLVM removes pointee types.
|
||
// FIXME(eddyb) move these out of this `match` arm, so they're always
|
||
// applied, uniformly, no matter the source/destination types.
|
||
(
|
||
bx.bitcast(lldata, bx.cx().scalar_pair_element_backend_type(dst_layout, 0, true)),
|
||
bx.bitcast(llextra, bx.cx().scalar_pair_element_backend_type(dst_layout, 1, true)),
|
||
)
|
||
}
|
||
_ => bug!("unsize_thin_ptr: called on bad types"),
|
||
}
|
||
}
|
||
|
||
/// Coerces `src`, which is a reference to a value of type `src_ty`,
|
||
/// to a value of type `dst_ty`, and stores the result in `dst`.
|
||
pub fn coerce_unsized_into<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
|
||
bx: &mut Bx,
|
||
src: PlaceRef<'tcx, Bx::Value>,
|
||
dst: PlaceRef<'tcx, Bx::Value>,
|
||
) {
|
||
let src_ty = src.layout.ty;
|
||
let dst_ty = dst.layout.ty;
|
||
match (&src_ty.kind, &dst_ty.kind) {
|
||
(&ty::Ref(..), &ty::Ref(..))
|
||
| (&ty::Ref(..), &ty::RawPtr(..))
|
||
| (&ty::RawPtr(..), &ty::RawPtr(..)) => {
|
||
let (base, info) = match bx.load_operand(src).val {
|
||
OperandValue::Pair(base, info) => {
|
||
// fat-ptr to fat-ptr unsize preserves the vtable
|
||
// i.e., &'a fmt::Debug+Send => &'a fmt::Debug
|
||
// So we need to pointercast the base to ensure
|
||
// the types match up.
|
||
// FIXME(eddyb) use `scalar_pair_element_backend_type` here,
|
||
// like `unsize_thin_ptr` does.
|
||
let thin_ptr = dst.layout.field(bx.cx(), FAT_PTR_ADDR);
|
||
(bx.pointercast(base, bx.cx().backend_type(thin_ptr)), info)
|
||
}
|
||
OperandValue::Immediate(base) => unsize_thin_ptr(bx, base, src_ty, dst_ty),
|
||
OperandValue::Ref(..) => bug!(),
|
||
};
|
||
OperandValue::Pair(base, info).store(bx, dst);
|
||
}
|
||
|
||
(&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
|
||
assert_eq!(def_a, def_b);
|
||
|
||
for i in 0..def_a.variants[VariantIdx::new(0)].fields.len() {
|
||
let src_f = src.project_field(bx, i);
|
||
let dst_f = dst.project_field(bx, i);
|
||
|
||
if dst_f.layout.is_zst() {
|
||
continue;
|
||
}
|
||
|
||
if src_f.layout.ty == dst_f.layout.ty {
|
||
memcpy_ty(
|
||
bx,
|
||
dst_f.llval,
|
||
dst_f.align,
|
||
src_f.llval,
|
||
src_f.align,
|
||
src_f.layout,
|
||
MemFlags::empty(),
|
||
);
|
||
} else {
|
||
coerce_unsized_into(bx, src_f, dst_f);
|
||
}
|
||
}
|
||
}
|
||
_ => bug!("coerce_unsized_into: invalid coercion {:?} -> {:?}", src_ty, dst_ty,),
|
||
}
|
||
}
|
||
|
||
pub fn cast_shift_expr_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
|
||
bx: &mut Bx,
|
||
op: hir::BinOpKind,
|
||
lhs: Bx::Value,
|
||
rhs: Bx::Value,
|
||
) -> Bx::Value {
|
||
cast_shift_rhs(bx, op, lhs, rhs)
|
||
}
|
||
|
||
fn cast_shift_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
|
||
bx: &mut Bx,
|
||
op: hir::BinOpKind,
|
||
lhs: Bx::Value,
|
||
rhs: Bx::Value,
|
||
) -> Bx::Value {
|
||
// Shifts may have any size int on the rhs
|
||
if op.is_shift() {
|
||
let mut rhs_llty = bx.cx().val_ty(rhs);
|
||
let mut lhs_llty = bx.cx().val_ty(lhs);
|
||
if bx.cx().type_kind(rhs_llty) == TypeKind::Vector {
|
||
rhs_llty = bx.cx().element_type(rhs_llty)
|
||
}
|
||
if bx.cx().type_kind(lhs_llty) == TypeKind::Vector {
|
||
lhs_llty = bx.cx().element_type(lhs_llty)
|
||
}
|
||
let rhs_sz = bx.cx().int_width(rhs_llty);
|
||
let lhs_sz = bx.cx().int_width(lhs_llty);
|
||
if lhs_sz < rhs_sz {
|
||
bx.trunc(rhs, lhs_llty)
|
||
} else if lhs_sz > rhs_sz {
|
||
// FIXME (#1877: If in the future shifting by negative
|
||
// values is no longer undefined then this is wrong.
|
||
bx.zext(rhs, lhs_llty)
|
||
} else {
|
||
rhs
|
||
}
|
||
} else {
|
||
rhs
|
||
}
|
||
}
|
||
|
||
/// Returns `true` if this session's target will use SEH-based unwinding.
|
||
///
|
||
/// This is only true for MSVC targets, and even then the 64-bit MSVC target
|
||
/// currently uses SEH-ish unwinding with DWARF info tables to the side (same as
|
||
/// 64-bit MinGW) instead of "full SEH".
|
||
pub fn wants_msvc_seh(sess: &Session) -> bool {
|
||
sess.target.target.options.is_like_msvc
|
||
}
|
||
|
||
pub fn from_immediate<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
|
||
bx: &mut Bx,
|
||
val: Bx::Value,
|
||
) -> Bx::Value {
|
||
if bx.cx().val_ty(val) == bx.cx().type_i1() { bx.zext(val, bx.cx().type_i8()) } else { val }
|
||
}
|
||
|
||
pub fn to_immediate<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
|
||
bx: &mut Bx,
|
||
val: Bx::Value,
|
||
layout: layout::TyLayout<'_>,
|
||
) -> Bx::Value {
|
||
if let layout::Abi::Scalar(ref scalar) = layout.abi {
|
||
return to_immediate_scalar(bx, val, scalar);
|
||
}
|
||
val
|
||
}
|
||
|
||
pub fn to_immediate_scalar<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
|
||
bx: &mut Bx,
|
||
val: Bx::Value,
|
||
scalar: &layout::Scalar,
|
||
) -> Bx::Value {
|
||
if scalar.is_bool() {
|
||
return bx.trunc(val, bx.cx().type_i1());
|
||
}
|
||
val
|
||
}
|
||
|
||
pub fn memcpy_ty<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
|
||
bx: &mut Bx,
|
||
dst: Bx::Value,
|
||
dst_align: Align,
|
||
src: Bx::Value,
|
||
src_align: Align,
|
||
layout: TyLayout<'tcx>,
|
||
flags: MemFlags,
|
||
) {
|
||
let size = layout.size.bytes();
|
||
if size == 0 {
|
||
return;
|
||
}
|
||
|
||
bx.memcpy(dst, dst_align, src, src_align, bx.cx().const_usize(size), flags);
|
||
}
|
||
|
||
pub fn codegen_instance<'a, 'tcx: 'a, Bx: BuilderMethods<'a, 'tcx>>(
|
||
cx: &'a Bx::CodegenCx,
|
||
instance: Instance<'tcx>,
|
||
) {
|
||
// this is an info! to allow collecting monomorphization statistics
|
||
// and to allow finding the last function before LLVM aborts from
|
||
// release builds.
|
||
info!("codegen_instance({})", instance);
|
||
|
||
mir::codegen_mir::<Bx>(cx, instance);
|
||
}
|
||
|
||
/// Creates the `main` function which will initialize the rust runtime and call
|
||
/// users main function.
|
||
pub fn maybe_create_entry_wrapper<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
|
||
cx: &'a Bx::CodegenCx,
|
||
) -> Option<Bx::Function> {
|
||
let (main_def_id, span) = match cx.tcx().entry_fn(LOCAL_CRATE) {
|
||
Some((def_id, _)) => (def_id, cx.tcx().def_span(def_id)),
|
||
None => return None,
|
||
};
|
||
|
||
let instance = Instance::mono(cx.tcx(), main_def_id);
|
||
|
||
if !cx.codegen_unit().contains_item(&MonoItem::Fn(instance)) {
|
||
// We want to create the wrapper in the same codegen unit as Rust's main
|
||
// function.
|
||
return None;
|
||
}
|
||
|
||
let main_llfn = cx.get_fn_addr(instance);
|
||
|
||
return cx.tcx().entry_fn(LOCAL_CRATE).map(|(_, et)| {
|
||
let use_start_lang_item = EntryFnType::Start != et;
|
||
create_entry_fn::<Bx>(cx, span, main_llfn, main_def_id, use_start_lang_item)
|
||
});
|
||
|
||
fn create_entry_fn<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
|
||
cx: &'a Bx::CodegenCx,
|
||
sp: Span,
|
||
rust_main: Bx::Value,
|
||
rust_main_def_id: DefId,
|
||
use_start_lang_item: bool,
|
||
) -> Bx::Function {
|
||
// The entry function is either `int main(void)` or `int main(int argc, char **argv)`,
|
||
// depending on whether the target needs `argc` and `argv` to be passed in.
|
||
let llfty = if cx.sess().target.target.options.main_needs_argc_argv {
|
||
cx.type_func(&[cx.type_int(), cx.type_ptr_to(cx.type_i8p())], cx.type_int())
|
||
} else {
|
||
cx.type_func(&[], cx.type_int())
|
||
};
|
||
|
||
let main_ret_ty = cx.tcx().fn_sig(rust_main_def_id).output();
|
||
// Given that `main()` has no arguments,
|
||
// then its return type cannot have
|
||
// late-bound regions, since late-bound
|
||
// regions must appear in the argument
|
||
// listing.
|
||
let main_ret_ty = cx.tcx().erase_regions(&main_ret_ty.no_bound_vars().unwrap());
|
||
|
||
if cx.get_declared_value("main").is_some() {
|
||
// FIXME: We should be smart and show a better diagnostic here.
|
||
cx.sess()
|
||
.struct_span_err(sp, "entry symbol `main` declared multiple times")
|
||
.help("did you use `#[no_mangle]` on `fn main`? Use `#[start]` instead")
|
||
.emit();
|
||
cx.sess().abort_if_errors();
|
||
bug!();
|
||
}
|
||
let llfn = cx.declare_cfn("main", llfty);
|
||
|
||
// `main` should respect same config for frame pointer elimination as rest of code
|
||
cx.set_frame_pointer_elimination(llfn);
|
||
cx.apply_target_cpu_attr(llfn);
|
||
|
||
let mut bx = Bx::new_block(&cx, llfn, "top");
|
||
|
||
bx.insert_reference_to_gdb_debug_scripts_section_global();
|
||
|
||
let (arg_argc, arg_argv) = get_argc_argv(cx, &mut bx);
|
||
|
||
let (start_fn, args) = if use_start_lang_item {
|
||
let start_def_id = cx.tcx().require_lang_item(StartFnLangItem, None);
|
||
let start_fn = cx.get_fn_addr(
|
||
ty::Instance::resolve(
|
||
cx.tcx(),
|
||
ty::ParamEnv::reveal_all(),
|
||
start_def_id,
|
||
cx.tcx().intern_substs(&[main_ret_ty.into()]),
|
||
)
|
||
.unwrap(),
|
||
);
|
||
(
|
||
start_fn,
|
||
vec![bx.pointercast(rust_main, cx.type_ptr_to(cx.type_i8p())), arg_argc, arg_argv],
|
||
)
|
||
} else {
|
||
debug!("using user-defined start fn");
|
||
(rust_main, vec![arg_argc, arg_argv])
|
||
};
|
||
|
||
let result = bx.call(start_fn, &args, None);
|
||
let cast = bx.intcast(result, cx.type_int(), true);
|
||
bx.ret(cast);
|
||
|
||
llfn
|
||
}
|
||
}
|
||
|
||
/// Obtain the `argc` and `argv` values to pass to the rust start function.
|
||
fn get_argc_argv<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
|
||
cx: &'a Bx::CodegenCx,
|
||
bx: &mut Bx,
|
||
) -> (Bx::Value, Bx::Value) {
|
||
if cx.sess().target.target.options.main_needs_argc_argv {
|
||
// Params from native `main()` used as args for rust start function
|
||
let param_argc = bx.get_param(0);
|
||
let param_argv = bx.get_param(1);
|
||
let arg_argc = bx.intcast(param_argc, cx.type_isize(), true);
|
||
let arg_argv = param_argv;
|
||
(arg_argc, arg_argv)
|
||
} else {
|
||
// The Rust start function doesn't need `argc` and `argv`, so just pass zeros.
|
||
let arg_argc = bx.const_int(cx.type_int(), 0);
|
||
let arg_argv = bx.const_null(cx.type_ptr_to(cx.type_i8p()));
|
||
(arg_argc, arg_argv)
|
||
}
|
||
}
|
||
|
||
pub const CODEGEN_WORKER_ID: usize = ::std::usize::MAX;
|
||
|
||
pub fn codegen_crate<B: ExtraBackendMethods>(
|
||
backend: B,
|
||
tcx: TyCtxt<'tcx>,
|
||
metadata: EncodedMetadata,
|
||
need_metadata_module: bool,
|
||
) -> OngoingCodegen<B> {
|
||
check_for_rustc_errors_attr(tcx);
|
||
|
||
// Skip crate items and just output metadata in -Z no-codegen mode.
|
||
if tcx.sess.opts.debugging_opts.no_codegen || !tcx.sess.opts.output_types.should_codegen() {
|
||
let ongoing_codegen = start_async_codegen(backend, tcx, metadata, 1);
|
||
|
||
ongoing_codegen.codegen_finished(tcx);
|
||
|
||
finalize_tcx(tcx);
|
||
|
||
ongoing_codegen.check_for_errors(tcx.sess);
|
||
|
||
return ongoing_codegen;
|
||
}
|
||
|
||
let cgu_name_builder = &mut CodegenUnitNameBuilder::new(tcx);
|
||
|
||
// Run the monomorphization collector and partition the collected items into
|
||
// codegen units.
|
||
let codegen_units = tcx.collect_and_partition_mono_items(LOCAL_CRATE).1;
|
||
let codegen_units = (*codegen_units).clone();
|
||
|
||
// Force all codegen_unit queries so they are already either red or green
|
||
// when compile_codegen_unit accesses them. We are not able to re-execute
|
||
// the codegen_unit query from just the DepNode, so an unknown color would
|
||
// lead to having to re-execute compile_codegen_unit, possibly
|
||
// unnecessarily.
|
||
if tcx.dep_graph.is_fully_enabled() {
|
||
for cgu in &codegen_units {
|
||
tcx.codegen_unit(cgu.name());
|
||
}
|
||
}
|
||
|
||
let ongoing_codegen = start_async_codegen(backend.clone(), tcx, metadata, codegen_units.len());
|
||
let ongoing_codegen = AbortCodegenOnDrop::<B>(Some(ongoing_codegen));
|
||
|
||
// Codegen an allocator shim, if necessary.
|
||
//
|
||
// If the crate doesn't have an `allocator_kind` set then there's definitely
|
||
// no shim to generate. Otherwise we also check our dependency graph for all
|
||
// our output crate types. If anything there looks like its a `Dynamic`
|
||
// linkage, then it's already got an allocator shim and we'll be using that
|
||
// one instead. If nothing exists then it's our job to generate the
|
||
// allocator!
|
||
let any_dynamic_crate = tcx.dependency_formats(LOCAL_CRATE).iter().any(|(_, list)| {
|
||
use rustc::middle::dependency_format::Linkage;
|
||
list.iter().any(|&linkage| linkage == Linkage::Dynamic)
|
||
});
|
||
let allocator_module = if any_dynamic_crate {
|
||
None
|
||
} else if let Some(kind) = tcx.allocator_kind() {
|
||
let llmod_id =
|
||
cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("allocator")).to_string();
|
||
let mut modules = backend.new_metadata(tcx, &llmod_id);
|
||
tcx.sess
|
||
.time("write_allocator_module", || backend.codegen_allocator(tcx, &mut modules, kind));
|
||
|
||
Some(ModuleCodegen { name: llmod_id, module_llvm: modules, kind: ModuleKind::Allocator })
|
||
} else {
|
||
None
|
||
};
|
||
|
||
if let Some(allocator_module) = allocator_module {
|
||
ongoing_codegen.submit_pre_codegened_module_to_llvm(tcx, allocator_module);
|
||
}
|
||
|
||
if need_metadata_module {
|
||
// Codegen the encoded metadata.
|
||
let metadata_cgu_name =
|
||
cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("metadata")).to_string();
|
||
let mut metadata_llvm_module = backend.new_metadata(tcx, &metadata_cgu_name);
|
||
tcx.sess.time("write_compressed_metadata", || {
|
||
backend.write_compressed_metadata(
|
||
tcx,
|
||
&ongoing_codegen.metadata,
|
||
&mut metadata_llvm_module,
|
||
);
|
||
});
|
||
|
||
let metadata_module = ModuleCodegen {
|
||
name: metadata_cgu_name,
|
||
module_llvm: metadata_llvm_module,
|
||
kind: ModuleKind::Metadata,
|
||
};
|
||
ongoing_codegen.submit_pre_codegened_module_to_llvm(tcx, metadata_module);
|
||
}
|
||
|
||
// We sort the codegen units by size. This way we can schedule work for LLVM
|
||
// a bit more efficiently.
|
||
let codegen_units = {
|
||
let mut codegen_units = codegen_units;
|
||
codegen_units.sort_by_cached_key(|cgu| cmp::Reverse(cgu.size_estimate()));
|
||
codegen_units
|
||
};
|
||
|
||
let total_codegen_time = Lock::new(Duration::new(0, 0));
|
||
|
||
// The non-parallel compiler can only translate codegen units to LLVM IR
|
||
// on a single thread, leading to a staircase effect where the N LLVM
|
||
// threads have to wait on the single codegen threads to generate work
|
||
// for them. The parallel compiler does not have this restriction, so
|
||
// we can pre-load the LLVM queue in parallel before handing off
|
||
// coordination to the OnGoingCodegen scheduler.
|
||
//
|
||
// This likely is a temporary measure. Once we don't have to support the
|
||
// non-parallel compiler anymore, we can compile CGUs end-to-end in
|
||
// parallel and get rid of the complicated scheduling logic.
|
||
let pre_compile_cgus = |cgu_reuse: &[CguReuse]| {
|
||
if cfg!(parallel_compiler) {
|
||
tcx.sess.time("compile_first_CGU_batch", || {
|
||
// Try to find one CGU to compile per thread.
|
||
let cgus: Vec<_> = cgu_reuse
|
||
.iter()
|
||
.enumerate()
|
||
.filter(|&(_, reuse)| reuse == &CguReuse::No)
|
||
.take(tcx.sess.threads())
|
||
.collect();
|
||
|
||
// Compile the found CGUs in parallel.
|
||
par_iter(cgus)
|
||
.map(|(i, _)| {
|
||
let start_time = Instant::now();
|
||
let module = backend.compile_codegen_unit(tcx, codegen_units[i].name());
|
||
let mut time = total_codegen_time.lock();
|
||
*time += start_time.elapsed();
|
||
(i, module)
|
||
})
|
||
.collect()
|
||
})
|
||
} else {
|
||
FxHashMap::default()
|
||
}
|
||
};
|
||
|
||
let mut cgu_reuse = Vec::new();
|
||
let mut pre_compiled_cgus: Option<FxHashMap<usize, _>> = None;
|
||
|
||
for (i, cgu) in codegen_units.iter().enumerate() {
|
||
ongoing_codegen.wait_for_signal_to_codegen_item();
|
||
ongoing_codegen.check_for_errors(tcx.sess);
|
||
|
||
// Do some setup work in the first iteration
|
||
if pre_compiled_cgus.is_none() {
|
||
// Calculate the CGU reuse
|
||
cgu_reuse = tcx.sess.time("find_cgu_reuse", || {
|
||
codegen_units.iter().map(|cgu| determine_cgu_reuse(tcx, &cgu)).collect()
|
||
});
|
||
// Pre compile some CGUs
|
||
pre_compiled_cgus = Some(pre_compile_cgus(&cgu_reuse));
|
||
}
|
||
|
||
let cgu_reuse = cgu_reuse[i];
|
||
tcx.sess.cgu_reuse_tracker.set_actual_reuse(&cgu.name().as_str(), cgu_reuse);
|
||
|
||
match cgu_reuse {
|
||
CguReuse::No => {
|
||
let (module, cost) =
|
||
if let Some(cgu) = pre_compiled_cgus.as_mut().unwrap().remove(&i) {
|
||
cgu
|
||
} else {
|
||
let start_time = Instant::now();
|
||
let module = backend.compile_codegen_unit(tcx, cgu.name());
|
||
let mut time = total_codegen_time.lock();
|
||
*time += start_time.elapsed();
|
||
module
|
||
};
|
||
submit_codegened_module_to_llvm(
|
||
&backend,
|
||
&ongoing_codegen.coordinator_send,
|
||
module,
|
||
cost,
|
||
);
|
||
false
|
||
}
|
||
CguReuse::PreLto => {
|
||
submit_pre_lto_module_to_llvm(
|
||
&backend,
|
||
tcx,
|
||
&ongoing_codegen.coordinator_send,
|
||
CachedModuleCodegen {
|
||
name: cgu.name().to_string(),
|
||
source: cgu.work_product(tcx),
|
||
},
|
||
);
|
||
true
|
||
}
|
||
CguReuse::PostLto => {
|
||
submit_post_lto_module_to_llvm(
|
||
&backend,
|
||
&ongoing_codegen.coordinator_send,
|
||
CachedModuleCodegen {
|
||
name: cgu.name().to_string(),
|
||
source: cgu.work_product(tcx),
|
||
},
|
||
);
|
||
true
|
||
}
|
||
};
|
||
}
|
||
|
||
ongoing_codegen.codegen_finished(tcx);
|
||
|
||
// Since the main thread is sometimes blocked during codegen, we keep track
|
||
// -Ztime-passes output manually.
|
||
print_time_passes_entry(
|
||
tcx.sess.time_passes(),
|
||
"codegen_to_LLVM_IR",
|
||
total_codegen_time.into_inner(),
|
||
);
|
||
|
||
::rustc_incremental::assert_module_sources::assert_module_sources(tcx);
|
||
|
||
symbol_names_test::report_symbol_names(tcx);
|
||
|
||
ongoing_codegen.check_for_errors(tcx.sess);
|
||
|
||
finalize_tcx(tcx);
|
||
|
||
ongoing_codegen.into_inner()
|
||
}
|
||
|
||
/// A curious wrapper structure whose only purpose is to call `codegen_aborted`
|
||
/// when it's dropped abnormally.
|
||
///
|
||
/// In the process of working on rust-lang/rust#55238 a mysterious segfault was
|
||
/// stumbled upon. The segfault was never reproduced locally, but it was
|
||
/// suspected to be related to the fact that codegen worker threads were
|
||
/// sticking around by the time the main thread was exiting, causing issues.
|
||
///
|
||
/// This structure is an attempt to fix that issue where the `codegen_aborted`
|
||
/// message will block until all workers have finished. This should ensure that
|
||
/// even if the main codegen thread panics we'll wait for pending work to
|
||
/// complete before returning from the main thread, hopefully avoiding
|
||
/// segfaults.
|
||
///
|
||
/// If you see this comment in the code, then it means that this workaround
|
||
/// worked! We may yet one day track down the mysterious cause of that
|
||
/// segfault...
|
||
struct AbortCodegenOnDrop<B: ExtraBackendMethods>(Option<OngoingCodegen<B>>);
|
||
|
||
impl<B: ExtraBackendMethods> AbortCodegenOnDrop<B> {
|
||
fn into_inner(mut self) -> OngoingCodegen<B> {
|
||
self.0.take().unwrap()
|
||
}
|
||
}
|
||
|
||
impl<B: ExtraBackendMethods> Deref for AbortCodegenOnDrop<B> {
|
||
type Target = OngoingCodegen<B>;
|
||
|
||
fn deref(&self) -> &OngoingCodegen<B> {
|
||
self.0.as_ref().unwrap()
|
||
}
|
||
}
|
||
|
||
impl<B: ExtraBackendMethods> DerefMut for AbortCodegenOnDrop<B> {
|
||
fn deref_mut(&mut self) -> &mut OngoingCodegen<B> {
|
||
self.0.as_mut().unwrap()
|
||
}
|
||
}
|
||
|
||
impl<B: ExtraBackendMethods> Drop for AbortCodegenOnDrop<B> {
|
||
fn drop(&mut self) {
|
||
if let Some(codegen) = self.0.take() {
|
||
codegen.codegen_aborted();
|
||
}
|
||
}
|
||
}
|
||
|
||
fn finalize_tcx(tcx: TyCtxt<'_>) {
|
||
tcx.sess.time("assert_dep_graph", || ::rustc_incremental::assert_dep_graph(tcx));
|
||
tcx.sess.time("serialize_dep_graph", || ::rustc_incremental::save_dep_graph(tcx));
|
||
|
||
// We assume that no queries are run past here. If there are new queries
|
||
// after this point, they'll show up as "<unknown>" in self-profiling data.
|
||
{
|
||
let _prof_timer = tcx.prof.generic_activity("self_profile_alloc_query_strings");
|
||
tcx.alloc_self_profile_query_strings();
|
||
}
|
||
}
|
||
|
||
impl CrateInfo {
|
||
pub fn new(tcx: TyCtxt<'_>) -> CrateInfo {
|
||
let mut info = CrateInfo {
|
||
panic_runtime: None,
|
||
compiler_builtins: None,
|
||
profiler_runtime: None,
|
||
is_no_builtins: Default::default(),
|
||
native_libraries: Default::default(),
|
||
used_libraries: tcx.native_libraries(LOCAL_CRATE),
|
||
link_args: tcx.link_args(LOCAL_CRATE),
|
||
crate_name: Default::default(),
|
||
used_crates_dynamic: cstore::used_crates(tcx, LinkagePreference::RequireDynamic),
|
||
used_crates_static: cstore::used_crates(tcx, LinkagePreference::RequireStatic),
|
||
used_crate_source: Default::default(),
|
||
lang_item_to_crate: Default::default(),
|
||
missing_lang_items: Default::default(),
|
||
dependency_formats: tcx.dependency_formats(LOCAL_CRATE),
|
||
};
|
||
let lang_items = tcx.lang_items();
|
||
|
||
let crates = tcx.crates();
|
||
|
||
let n_crates = crates.len();
|
||
info.native_libraries.reserve(n_crates);
|
||
info.crate_name.reserve(n_crates);
|
||
info.used_crate_source.reserve(n_crates);
|
||
info.missing_lang_items.reserve(n_crates);
|
||
|
||
for &cnum in crates.iter() {
|
||
info.native_libraries.insert(cnum, tcx.native_libraries(cnum));
|
||
info.crate_name.insert(cnum, tcx.crate_name(cnum).to_string());
|
||
info.used_crate_source.insert(cnum, tcx.used_crate_source(cnum));
|
||
if tcx.is_panic_runtime(cnum) {
|
||
info.panic_runtime = Some(cnum);
|
||
}
|
||
if tcx.is_compiler_builtins(cnum) {
|
||
info.compiler_builtins = Some(cnum);
|
||
}
|
||
if tcx.is_profiler_runtime(cnum) {
|
||
info.profiler_runtime = Some(cnum);
|
||
}
|
||
if tcx.is_no_builtins(cnum) {
|
||
info.is_no_builtins.insert(cnum);
|
||
}
|
||
let missing = tcx.missing_lang_items(cnum);
|
||
for &item in missing.iter() {
|
||
if let Ok(id) = lang_items.require(item) {
|
||
info.lang_item_to_crate.insert(item, id.krate);
|
||
}
|
||
}
|
||
|
||
// No need to look for lang items that are whitelisted and don't
|
||
// actually need to exist.
|
||
let missing =
|
||
missing.iter().cloned().filter(|&l| !lang_items::whitelisted(tcx, l)).collect();
|
||
info.missing_lang_items.insert(cnum, missing);
|
||
}
|
||
|
||
return info;
|
||
}
|
||
}
|
||
|
||
pub fn provide_both(providers: &mut Providers<'_>) {
|
||
providers.backend_optimization_level = |tcx, cratenum| {
|
||
let for_speed = match tcx.sess.opts.optimize {
|
||
// If globally no optimisation is done, #[optimize] has no effect.
|
||
//
|
||
// This is done because if we ended up "upgrading" to `-O2` here, we’d populate the
|
||
// pass manager and it is likely that some module-wide passes (such as inliner or
|
||
// cross-function constant propagation) would ignore the `optnone` annotation we put
|
||
// on the functions, thus necessarily involving these functions into optimisations.
|
||
config::OptLevel::No => return config::OptLevel::No,
|
||
// If globally optimise-speed is already specified, just use that level.
|
||
config::OptLevel::Less => return config::OptLevel::Less,
|
||
config::OptLevel::Default => return config::OptLevel::Default,
|
||
config::OptLevel::Aggressive => return config::OptLevel::Aggressive,
|
||
// If globally optimize-for-size has been requested, use -O2 instead (if optimize(size)
|
||
// are present).
|
||
config::OptLevel::Size => config::OptLevel::Default,
|
||
config::OptLevel::SizeMin => config::OptLevel::Default,
|
||
};
|
||
|
||
let (defids, _) = tcx.collect_and_partition_mono_items(cratenum);
|
||
for id in &*defids {
|
||
let CodegenFnAttrs { optimize, .. } = tcx.codegen_fn_attrs(*id);
|
||
match optimize {
|
||
attr::OptimizeAttr::None => continue,
|
||
attr::OptimizeAttr::Size => continue,
|
||
attr::OptimizeAttr::Speed => {
|
||
return for_speed;
|
||
}
|
||
}
|
||
}
|
||
return tcx.sess.opts.optimize;
|
||
};
|
||
|
||
providers.dllimport_foreign_items = |tcx, krate| {
|
||
let module_map = tcx.foreign_modules(krate);
|
||
let module_map =
|
||
module_map.iter().map(|lib| (lib.def_id, lib)).collect::<FxHashMap<_, _>>();
|
||
|
||
let dllimports = tcx
|
||
.native_libraries(krate)
|
||
.iter()
|
||
.filter(|lib| {
|
||
if lib.kind != cstore::NativeLibraryKind::NativeUnknown {
|
||
return false;
|
||
}
|
||
let cfg = match lib.cfg {
|
||
Some(ref cfg) => cfg,
|
||
None => return true,
|
||
};
|
||
attr::cfg_matches(cfg, &tcx.sess.parse_sess, None)
|
||
})
|
||
.filter_map(|lib| lib.foreign_module)
|
||
.map(|id| &module_map[&id])
|
||
.flat_map(|module| module.foreign_items.iter().cloned())
|
||
.collect();
|
||
tcx.arena.alloc(dllimports)
|
||
};
|
||
|
||
providers.is_dllimport_foreign_item =
|
||
|tcx, def_id| tcx.dllimport_foreign_items(def_id.krate).contains(&def_id);
|
||
}
|
||
|
||
fn determine_cgu_reuse<'tcx>(tcx: TyCtxt<'tcx>, cgu: &CodegenUnit<'tcx>) -> CguReuse {
|
||
if !tcx.dep_graph.is_fully_enabled() {
|
||
return CguReuse::No;
|
||
}
|
||
|
||
let work_product_id = &cgu.work_product_id();
|
||
if tcx.dep_graph.previous_work_product(work_product_id).is_none() {
|
||
// We don't have anything cached for this CGU. This can happen
|
||
// if the CGU did not exist in the previous session.
|
||
return CguReuse::No;
|
||
}
|
||
|
||
// Try to mark the CGU as green. If it we can do so, it means that nothing
|
||
// affecting the LLVM module has changed and we can re-use a cached version.
|
||
// If we compile with any kind of LTO, this means we can re-use the bitcode
|
||
// of the Pre-LTO stage (possibly also the Post-LTO version but we'll only
|
||
// know that later). If we are not doing LTO, there is only one optimized
|
||
// version of each module, so we re-use that.
|
||
let dep_node = cgu.codegen_dep_node(tcx);
|
||
assert!(
|
||
!tcx.dep_graph.dep_node_exists(&dep_node),
|
||
"CompileCodegenUnit dep-node for CGU `{}` already exists before marking.",
|
||
cgu.name()
|
||
);
|
||
|
||
if tcx.dep_graph.try_mark_green(tcx, &dep_node).is_some() {
|
||
// We can re-use either the pre- or the post-thinlto state
|
||
if tcx.sess.lto() != Lto::No { CguReuse::PreLto } else { CguReuse::PostLto }
|
||
} else {
|
||
CguReuse::No
|
||
}
|
||
}
|