rust/src/libstd/sync.rs
2013-05-14 16:36:24 +02:00

1353 lines
44 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/**
* The concurrency primitives you know and love.
*
* Maybe once we have a "core exports x only to std" mechanism, these can be
* in std.
*/
use core::unstable::sync::{Exclusive, exclusive};
use core::ptr;
use core::task;
use core::util;
use core::vec;
/****************************************************************************
* Internals
****************************************************************************/
// Each waiting task receives on one of these.
#[doc(hidden)]
type WaitEnd = comm::PortOne<()>;
#[doc(hidden)]
type SignalEnd = comm::ChanOne<()>;
// A doubly-ended queue of waiting tasks.
#[doc(hidden)]
struct Waitqueue { head: comm::Port<SignalEnd>,
tail: comm::Chan<SignalEnd> }
fn new_waitqueue() -> Waitqueue {
let (block_head, block_tail) = comm::stream();
Waitqueue { head: block_head, tail: block_tail }
}
// Signals one live task from the queue.
#[doc(hidden)]
fn signal_waitqueue(q: &Waitqueue) -> bool {
// The peek is mandatory to make sure recv doesn't block.
if q.head.peek() {
// Pop and send a wakeup signal. If the waiter was killed, its port
// will have closed. Keep trying until we get a live task.
if comm::try_send_one(q.head.recv(), ()) {
true
} else {
signal_waitqueue(q)
}
} else {
false
}
}
#[doc(hidden)]
fn broadcast_waitqueue(q: &Waitqueue) -> uint {
let mut count = 0;
while q.head.peek() {
if comm::try_send_one(q.head.recv(), ()) {
count += 1;
}
}
count
}
// The building-block used to make semaphores, mutexes, and rwlocks.
#[doc(hidden)]
struct SemInner<Q> {
count: int,
waiters: Waitqueue,
// Can be either unit or another waitqueue. Some sems shouldn't come with
// a condition variable attached, others should.
blocked: Q
}
#[doc(hidden)]
struct Sem<Q>(Exclusive<SemInner<Q>>);
#[doc(hidden)]
fn new_sem<Q:Owned>(count: int, q: Q) -> Sem<Q> {
Sem(exclusive(SemInner {
count: count, waiters: new_waitqueue(), blocked: q }))
}
#[doc(hidden)]
fn new_sem_and_signal(count: int, num_condvars: uint)
-> Sem<~[Waitqueue]> {
let mut queues = ~[];
for num_condvars.times {
queues.push(new_waitqueue());
}
new_sem(count, queues)
}
#[doc(hidden)]
pub impl<Q:Owned> Sem<Q> {
fn acquire(&self) {
let mut waiter_nobe = None;
do (**self).with |state| {
state.count -= 1;
if state.count < 0 {
// Create waiter nobe.
let (WaitEnd, SignalEnd) = comm::oneshot();
// Tell outer scope we need to block.
waiter_nobe = Some(WaitEnd);
// Enqueue ourself.
state.waiters.tail.send(SignalEnd);
}
}
// Uncomment if you wish to test for sem races. Not valgrind-friendly.
/* for 1000.times { task::yield(); } */
// Need to wait outside the exclusive.
if waiter_nobe.is_some() {
let _ = comm::recv_one(waiter_nobe.unwrap());
}
}
fn release(&self) {
do (**self).with |state| {
state.count += 1;
if state.count <= 0 {
signal_waitqueue(&state.waiters);
}
}
}
}
// FIXME(#3154) move both copies of this into Sem<Q>, and unify the 2 structs
#[doc(hidden)]
pub impl Sem<()> {
fn access<U>(&self, blk: &fn() -> U) -> U {
let mut release = None;
unsafe {
do task::unkillable {
self.acquire();
release = Some(SemRelease(self));
}
}
blk()
}
}
#[doc(hidden)]
pub impl Sem<~[Waitqueue]> {
fn access<U>(&self, blk: &fn() -> U) -> U {
let mut release = None;
unsafe {
do task::unkillable {
self.acquire();
release = Some(SemAndSignalRelease(self));
}
}
blk()
}
}
// FIXME(#3588) should go inside of access()
#[doc(hidden)]
type SemRelease<'self> = SemReleaseGeneric<'self, ()>;
type SemAndSignalRelease<'self> = SemReleaseGeneric<'self, ~[Waitqueue]>;
struct SemReleaseGeneric<'self, Q> { sem: &'self Sem<Q> }
#[unsafe_destructor]
impl<'self, Q:Owned> Drop for SemReleaseGeneric<'self, Q> {
fn finalize(&self) {
self.sem.release();
}
}
fn SemRelease<'r>(sem: &'r Sem<()>) -> SemRelease<'r> {
SemReleaseGeneric {
sem: sem
}
}
fn SemAndSignalRelease<'r>(sem: &'r Sem<~[Waitqueue]>)
-> SemAndSignalRelease<'r> {
SemReleaseGeneric {
sem: sem
}
}
/// A mechanism for atomic-unlock-and-deschedule blocking and signalling.
pub struct Condvar<'self> { priv sem: &'self Sem<~[Waitqueue]> }
#[unsafe_destructor]
impl<'self> Drop for Condvar<'self> { fn finalize(&self) {} }
pub impl<'self> Condvar<'self> {
/**
* Atomically drop the associated lock, and block until a signal is sent.
*
* # Failure
* A task which is killed (i.e., by linked failure with another task)
* while waiting on a condition variable will wake up, fail, and unlock
* the associated lock as it unwinds.
*/
fn wait(&self) { self.wait_on(0) }
/**
* As wait(), but can specify which of multiple condition variables to
* wait on. Only a signal_on() or broadcast_on() with the same condvar_id
* will wake this thread.
*
* The associated lock must have been initialised with an appropriate
* number of condvars. The condvar_id must be between 0 and num_condvars-1
* or else this call will fail.
*
* wait() is equivalent to wait_on(0).
*/
fn wait_on(&self, condvar_id: uint) {
// Create waiter nobe.
let (WaitEnd, SignalEnd) = comm::oneshot();
let mut WaitEnd = Some(WaitEnd);
let mut SignalEnd = Some(SignalEnd);
let mut reacquire = None;
let mut out_of_bounds = None;
unsafe {
do task::unkillable {
// Release lock, 'atomically' enqueuing ourselves in so doing.
do (**self.sem).with |state| {
if condvar_id < vec::len(state.blocked) {
// Drop the lock.
state.count += 1;
if state.count <= 0 {
signal_waitqueue(&state.waiters);
}
// Enqueue ourself to be woken up by a signaller.
let SignalEnd = SignalEnd.swap_unwrap();
state.blocked[condvar_id].tail.send(SignalEnd);
} else {
out_of_bounds = Some(vec::len(state.blocked));
}
}
// If yield checks start getting inserted anywhere, we can be
// killed before or after enqueueing. Deciding whether to
// unkillably reacquire the lock needs to happen atomically
// wrt enqueuing.
if out_of_bounds.is_none() {
reacquire = Some(SemAndSignalReacquire(self.sem));
}
}
}
do check_cvar_bounds(out_of_bounds, condvar_id, "cond.wait_on()") {
// Unconditionally "block". (Might not actually block if a
// signaller already sent -- I mean 'unconditionally' in contrast
// with acquire().)
let _ = comm::recv_one(WaitEnd.swap_unwrap());
}
// This is needed for a failing condition variable to reacquire the
// mutex during unwinding. As long as the wrapper (mutex, etc) is
// bounded in when it gets released, this shouldn't hang forever.
struct SemAndSignalReacquire<'self> {
sem: &'self Sem<~[Waitqueue]>,
}
#[unsafe_destructor]
impl<'self> Drop for SemAndSignalReacquire<'self> {
fn finalize(&self) {
unsafe {
// Needs to succeed, instead of itself dying.
do task::unkillable {
self.sem.acquire();
}
}
}
}
fn SemAndSignalReacquire<'r>(sem: &'r Sem<~[Waitqueue]>)
-> SemAndSignalReacquire<'r> {
SemAndSignalReacquire {
sem: sem
}
}
}
/// Wake up a blocked task. Returns false if there was no blocked task.
fn signal(&self) -> bool { self.signal_on(0) }
/// As signal, but with a specified condvar_id. See wait_on.
fn signal_on(&self, condvar_id: uint) -> bool {
let mut out_of_bounds = None;
let mut result = false;
do (**self.sem).with |state| {
if condvar_id < vec::len(state.blocked) {
result = signal_waitqueue(&state.blocked[condvar_id]);
} else {
out_of_bounds = Some(vec::len(state.blocked));
}
}
do check_cvar_bounds(out_of_bounds, condvar_id, "cond.signal_on()") {
result
}
}
/// Wake up all blocked tasks. Returns the number of tasks woken.
fn broadcast(&self) -> uint { self.broadcast_on(0) }
/// As broadcast, but with a specified condvar_id. See wait_on.
fn broadcast_on(&self, condvar_id: uint) -> uint {
let mut out_of_bounds = None;
let mut queue = None;
do (**self.sem).with |state| {
if condvar_id < vec::len(state.blocked) {
// To avoid :broadcast_heavy, we make a new waitqueue,
// swap it out with the old one, and broadcast on the
// old one outside of the little-lock.
queue = Some(util::replace(&mut state.blocked[condvar_id],
new_waitqueue()));
} else {
out_of_bounds = Some(vec::len(state.blocked));
}
}
do check_cvar_bounds(out_of_bounds, condvar_id, "cond.signal_on()") {
let queue = queue.swap_unwrap();
broadcast_waitqueue(&queue)
}
}
}
// Checks whether a condvar ID was out of bounds, and fails if so, or does
// something else next on success.
#[inline(always)]
#[doc(hidden)]
fn check_cvar_bounds<U>(out_of_bounds: Option<uint>, id: uint, act: &str,
blk: &fn() -> U) -> U {
match out_of_bounds {
Some(0) =>
fail!("%s with illegal ID %u - this lock has no condvars!", act, id),
Some(length) =>
fail!("%s with illegal ID %u - ID must be less than %u", act, id, length),
None => blk()
}
}
#[doc(hidden)]
pub impl Sem<~[Waitqueue]> {
// The only other place that condvars get built is rwlock_write_mode.
fn access_cond<U>(&self, blk: &fn(c: &Condvar) -> U) -> U {
do self.access { blk(&Condvar { sem: self }) }
}
}
/****************************************************************************
* Semaphores
****************************************************************************/
/// A counting, blocking, bounded-waiting semaphore.
struct Semaphore { priv sem: Sem<()> }
/// Create a new semaphore with the specified count.
pub fn semaphore(count: int) -> Semaphore {
Semaphore { sem: new_sem(count, ()) }
}
impl Clone for Semaphore {
/// Create a new handle to the semaphore.
fn clone(&self) -> Semaphore {
Semaphore { sem: Sem((*self.sem).clone()) }
}
}
pub impl Semaphore {
/**
* Acquire a resource represented by the semaphore. Blocks if necessary
* until resource(s) become available.
*/
fn acquire(&self) { (&self.sem).acquire() }
/**
* Release a held resource represented by the semaphore. Wakes a blocked
* contending task, if any exist. Won't block the caller.
*/
fn release(&self) { (&self.sem).release() }
/// Run a function with ownership of one of the semaphore's resources.
fn access<U>(&self, blk: &fn() -> U) -> U { (&self.sem).access(blk) }
}
/****************************************************************************
* Mutexes
****************************************************************************/
/**
* A blocking, bounded-waiting, mutual exclusion lock with an associated
* FIFO condition variable.
*
* # Failure
* A task which fails while holding a mutex will unlock the mutex as it
* unwinds.
*/
pub struct Mutex { priv sem: Sem<~[Waitqueue]> }
/// Create a new mutex, with one associated condvar.
pub fn Mutex() -> Mutex { mutex_with_condvars(1) }
/**
* Create a new mutex, with a specified number of associated condvars. This
* will allow calling wait_on/signal_on/broadcast_on with condvar IDs between
* 0 and num_condvars-1. (If num_condvars is 0, lock_cond will be allowed but
* any operations on the condvar will fail.)
*/
pub fn mutex_with_condvars(num_condvars: uint) -> Mutex {
Mutex { sem: new_sem_and_signal(1, num_condvars) }
}
impl Clone for Mutex {
/// Create a new handle to the mutex.
fn clone(&self) -> Mutex { Mutex { sem: Sem((*self.sem).clone()) } }
}
pub impl Mutex {
/// Run a function with ownership of the mutex.
fn lock<U>(&self, blk: &fn() -> U) -> U { (&self.sem).access(blk) }
/// Run a function with ownership of the mutex and a handle to a condvar.
fn lock_cond<U>(&self, blk: &fn(c: &Condvar) -> U) -> U {
(&self.sem).access_cond(blk)
}
}
/****************************************************************************
* Reader-writer locks
****************************************************************************/
// NB: Wikipedia - Readers-writers_problem#The_third_readers-writers_problem
#[doc(hidden)]
struct RWlockInner {
read_mode: bool,
read_count: uint
}
/**
* A blocking, no-starvation, reader-writer lock with an associated condvar.
*
* # Failure
* A task which fails while holding an rwlock will unlock the rwlock as it
* unwinds.
*/
pub struct RWlock {
priv order_lock: Semaphore,
priv access_lock: Sem<~[Waitqueue]>,
priv state: Exclusive<RWlockInner>
}
/// Create a new rwlock, with one associated condvar.
pub fn RWlock() -> RWlock { rwlock_with_condvars(1) }
/**
* Create a new rwlock, with a specified number of associated condvars.
* Similar to mutex_with_condvars.
*/
pub fn rwlock_with_condvars(num_condvars: uint) -> RWlock {
RWlock { order_lock: semaphore(1),
access_lock: new_sem_and_signal(1, num_condvars),
state: exclusive(RWlockInner { read_mode: false,
read_count: 0 }) }
}
pub impl RWlock {
/// Create a new handle to the rwlock.
fn clone(&self) -> RWlock {
RWlock { order_lock: (&(self.order_lock)).clone(),
access_lock: Sem((*self.access_lock).clone()),
state: self.state.clone() }
}
/**
* Run a function with the rwlock in read mode. Calls to 'read' from other
* tasks may run concurrently with this one.
*/
fn read<U>(&self, blk: &fn() -> U) -> U {
let mut release = None;
unsafe {
do task::unkillable {
do (&self.order_lock).access {
let mut first_reader = false;
do self.state.with |state| {
first_reader = (state.read_count == 0);
state.read_count += 1;
}
if first_reader {
(&self.access_lock).acquire();
do self.state.with |state| {
// Must happen *after* getting access_lock. If
// this is set while readers are waiting, but
// while a writer holds the lock, the writer will
// be confused if they downgrade-then-unlock.
state.read_mode = true;
}
}
}
release = Some(RWlockReleaseRead(self));
}
}
blk()
}
/**
* Run a function with the rwlock in write mode. No calls to 'read' or
* 'write' from other tasks will run concurrently with this one.
*/
fn write<U>(&self, blk: &fn() -> U) -> U {
unsafe {
do task::unkillable {
(&self.order_lock).acquire();
do (&self.access_lock).access {
(&self.order_lock).release();
task::rekillable(blk)
}
}
}
}
/**
* As write(), but also with a handle to a condvar. Waiting on this
* condvar will allow readers and writers alike to take the rwlock before
* the waiting task is signalled. (Note: a writer that waited and then
* was signalled might reacquire the lock before other waiting writers.)
*/
fn write_cond<U>(&self, blk: &fn(c: &Condvar) -> U) -> U {
// NB: You might think I should thread the order_lock into the cond
// wait call, so that it gets waited on before access_lock gets
// reacquired upon being woken up. However, (a) this would be not
// pleasant to implement (and would mandate a new 'rw_cond' type) and
// (b) I think violating no-starvation in that case is appropriate.
unsafe {
do task::unkillable {
(&self.order_lock).acquire();
do (&self.access_lock).access_cond |cond| {
(&self.order_lock).release();
do task::rekillable { blk(cond) }
}
}
}
}
/**
* As write(), but with the ability to atomically 'downgrade' the lock;
* i.e., to become a reader without letting other writers get the lock in
* the meantime (such as unlocking and then re-locking as a reader would
* do). The block takes a "write mode token" argument, which can be
* transformed into a "read mode token" by calling downgrade(). Example:
* ~~~
* do lock.write_downgrade |write_mode| {
* do (&write_mode).write_cond |condvar| {
* ... exclusive access ...
* }
* let read_mode = lock.downgrade(write_mode);
* do (&read_mode).read {
* ... shared access ...
* }
* }
* ~~~
*/
fn write_downgrade<U>(&self, blk: &fn(v: RWlockWriteMode) -> U) -> U {
// Implementation slightly different from the slicker 'write's above.
// The exit path is conditional on whether the caller downgrades.
let mut _release = None;
unsafe {
do task::unkillable {
(&self.order_lock).acquire();
(&self.access_lock).acquire();
(&self.order_lock).release();
}
_release = Some(RWlockReleaseDowngrade(self));
}
blk(RWlockWriteMode { lock: self })
}
/// To be called inside of the write_downgrade block.
fn downgrade<'a>(&self,
token: RWlockWriteMode<'a>)
-> RWlockReadMode<'a> {
if !ptr::ref_eq(self, token.lock) {
fail!("Can't downgrade() with a different rwlock's write_mode!");
}
unsafe {
do task::unkillable {
let mut first_reader = false;
do self.state.with |state| {
assert!(!state.read_mode);
state.read_mode = true;
first_reader = (state.read_count == 0);
state.read_count += 1;
}
if !first_reader {
// Guaranteed not to let another writer in, because
// another reader was holding the order_lock. Hence they
// must be the one to get the access_lock (because all
// access_locks are acquired with order_lock held).
(&self.access_lock).release();
}
}
}
RWlockReadMode { lock: token.lock }
}
}
// FIXME(#3588) should go inside of read()
#[doc(hidden)]
struct RWlockReleaseRead<'self> {
lock: &'self RWlock,
}
#[unsafe_destructor]
impl<'self> Drop for RWlockReleaseRead<'self> {
fn finalize(&self) {
unsafe {
do task::unkillable {
let mut last_reader = false;
do self.lock.state.with |state| {
assert!(state.read_mode);
assert!(state.read_count > 0);
state.read_count -= 1;
if state.read_count == 0 {
last_reader = true;
state.read_mode = false;
}
}
if last_reader {
(&self.lock.access_lock).release();
}
}
}
}
}
fn RWlockReleaseRead<'r>(lock: &'r RWlock) -> RWlockReleaseRead<'r> {
RWlockReleaseRead {
lock: lock
}
}
// FIXME(#3588) should go inside of downgrade()
#[doc(hidden)]
#[unsafe_destructor]
struct RWlockReleaseDowngrade<'self> {
lock: &'self RWlock,
}
#[unsafe_destructor]
impl<'self> Drop for RWlockReleaseDowngrade<'self> {
fn finalize(&self) {
unsafe {
do task::unkillable {
let mut writer_or_last_reader = false;
do self.lock.state.with |state| {
if state.read_mode {
assert!(state.read_count > 0);
state.read_count -= 1;
if state.read_count == 0 {
// Case 1: Writer downgraded & was the last reader
writer_or_last_reader = true;
state.read_mode = false;
} else {
// Case 2: Writer downgraded & was not the last
// reader
}
} else {
// Case 3: Writer did not downgrade
writer_or_last_reader = true;
}
}
if writer_or_last_reader {
(&self.lock.access_lock).release();
}
}
}
}
}
fn RWlockReleaseDowngrade<'r>(lock: &'r RWlock)
-> RWlockReleaseDowngrade<'r> {
RWlockReleaseDowngrade {
lock: lock
}
}
/// The "write permission" token used for rwlock.write_downgrade().
pub struct RWlockWriteMode<'self> { priv lock: &'self RWlock }
#[unsafe_destructor]
impl<'self> Drop for RWlockWriteMode<'self> { fn finalize(&self) {} }
/// The "read permission" token used for rwlock.write_downgrade().
pub struct RWlockReadMode<'self> { priv lock: &'self RWlock }
#[unsafe_destructor]
impl<'self> Drop for RWlockReadMode<'self> { fn finalize(&self) {} }
pub impl<'self> RWlockWriteMode<'self> {
/// Access the pre-downgrade rwlock in write mode.
fn write<U>(&self, blk: &fn() -> U) -> U { blk() }
/// Access the pre-downgrade rwlock in write mode with a condvar.
fn write_cond<U>(&self, blk: &fn(c: &Condvar) -> U) -> U {
blk(&Condvar { sem: &self.lock.access_lock })
}
}
pub impl<'self> RWlockReadMode<'self> {
/// Access the post-downgrade rwlock in read mode.
fn read<U>(&self, blk: &fn() -> U) -> U { blk() }
}
/****************************************************************************
* Tests
****************************************************************************/
#[cfg(test)]
mod tests {
use sync::*;
use core::cast;
use core::cell::Cell;
use core::ptr;
use core::result;
use core::task;
use core::vec;
/************************************************************************
* Semaphore tests
************************************************************************/
#[test]
fn test_sem_acquire_release() {
let s = ~semaphore(1);
s.acquire();
s.release();
s.acquire();
}
#[test]
fn test_sem_basic() {
let s = ~semaphore(1);
do s.access { }
}
#[test]
fn test_sem_as_mutex() {
let s = ~semaphore(1);
let s2 = ~s.clone();
do task::spawn || {
do s2.access {
for 5.times { task::yield(); }
}
}
do s.access {
for 5.times { task::yield(); }
}
}
#[test]
fn test_sem_as_cvar() {
/* Child waits and parent signals */
let (p,c) = comm::stream();
let s = ~semaphore(0);
let s2 = ~s.clone();
do task::spawn || {
s2.acquire();
c.send(());
}
for 5.times { task::yield(); }
s.release();
let _ = p.recv();
/* Parent waits and child signals */
let (p,c) = comm::stream();
let s = ~semaphore(0);
let s2 = ~s.clone();
do task::spawn || {
for 5.times { task::yield(); }
s2.release();
let _ = p.recv();
}
s.acquire();
c.send(());
}
#[test]
fn test_sem_multi_resource() {
// Parent and child both get in the critical section at the same
// time, and shake hands.
let s = ~semaphore(2);
let s2 = ~s.clone();
let (p1,c1) = comm::stream();
let (p2,c2) = comm::stream();
do task::spawn || {
do s2.access {
let _ = p2.recv();
c1.send(());
}
}
do s.access {
c2.send(());
let _ = p1.recv();
}
}
#[test]
fn test_sem_runtime_friendly_blocking() {
// Force the runtime to schedule two threads on the same sched_loop.
// When one blocks, it should schedule the other one.
do task::spawn_sched(task::ManualThreads(1)) {
let s = ~semaphore(1);
let s2 = ~s.clone();
let (p,c) = comm::stream();
let child_data = Cell((s2, c));
do s.access {
let (s2, c) = child_data.take();
do task::spawn || {
c.send(());
do s2.access { }
c.send(());
}
let _ = p.recv(); // wait for child to come alive
for 5.times { task::yield(); } // let the child contend
}
let _ = p.recv(); // wait for child to be done
}
}
/************************************************************************
* Mutex tests
************************************************************************/
#[test]
fn test_mutex_lock() {
// Unsafely achieve shared state, and do the textbook
// "load tmp = move ptr; inc tmp; store ptr <- tmp" dance.
let (p,c) = comm::stream();
let m = ~Mutex();
let m2 = m.clone();
let mut sharedstate = ~0;
{
let ptr: *int = &*sharedstate;
do task::spawn || {
let sharedstate: &mut int =
unsafe { cast::transmute(ptr) };
access_shared(sharedstate, m2, 10);
c.send(());
}
}
{
access_shared(sharedstate, m, 10);
let _ = p.recv();
assert!(*sharedstate == 20);
}
fn access_shared(sharedstate: &mut int, m: &Mutex, n: uint) {
for n.times {
do m.lock {
let oldval = *sharedstate;
task::yield();
*sharedstate = oldval + 1;
}
}
}
}
#[test]
fn test_mutex_cond_wait() {
let m = ~Mutex();
// Child wakes up parent
do m.lock_cond |cond| {
let m2 = ~m.clone();
do task::spawn || {
do m2.lock_cond |cond| {
let woken = cond.signal();
assert!(woken);
}
}
cond.wait();
}
// Parent wakes up child
let (port,chan) = comm::stream();
let m3 = ~m.clone();
do task::spawn || {
do m3.lock_cond |cond| {
chan.send(());
cond.wait();
chan.send(());
}
}
let _ = port.recv(); // Wait until child gets in the mutex
do m.lock_cond |cond| {
let woken = cond.signal();
assert!(woken);
}
let _ = port.recv(); // Wait until child wakes up
}
#[cfg(test)]
fn test_mutex_cond_broadcast_helper(num_waiters: uint) {
let m = ~Mutex();
let mut ports = ~[];
for num_waiters.times {
let mi = ~m.clone();
let (port, chan) = comm::stream();
ports.push(port);
do task::spawn || {
do mi.lock_cond |cond| {
chan.send(());
cond.wait();
chan.send(());
}
}
}
// wait until all children get in the mutex
for ports.each |port| { let _ = port.recv(); }
do m.lock_cond |cond| {
let num_woken = cond.broadcast();
assert!(num_woken == num_waiters);
}
// wait until all children wake up
for ports.each |port| { let _ = port.recv(); }
}
#[test]
fn test_mutex_cond_broadcast() {
test_mutex_cond_broadcast_helper(12);
}
#[test]
fn test_mutex_cond_broadcast_none() {
test_mutex_cond_broadcast_helper(0);
}
#[test]
fn test_mutex_cond_no_waiter() {
let m = ~Mutex();
let m2 = ~m.clone();
do task::try || {
do m.lock_cond |_x| { }
};
do m2.lock_cond |cond| {
assert!(!cond.signal());
}
}
#[test] #[ignore(cfg(windows))]
fn test_mutex_killed_simple() {
// Mutex must get automatically unlocked if failed/killed within.
let m = ~Mutex();
let m2 = ~m.clone();
let result: result::Result<(),()> = do task::try || {
do m2.lock {
fail!();
}
};
assert!(result.is_err());
// child task must have finished by the time try returns
do m.lock { }
}
#[test] #[ignore(cfg(windows))]
fn test_mutex_killed_cond() {
// Getting killed during cond wait must not corrupt the mutex while
// unwinding (e.g. double unlock).
let m = ~Mutex();
let m2 = ~m.clone();
let result: result::Result<(),()> = do task::try || {
let (p,c) = comm::stream();
do task::spawn || { // linked
let _ = p.recv(); // wait for sibling to get in the mutex
task::yield();
fail!();
}
do m2.lock_cond |cond| {
c.send(()); // tell sibling go ahead
cond.wait(); // block forever
}
};
assert!(result.is_err());
// child task must have finished by the time try returns
do m.lock_cond |cond| {
let woken = cond.signal();
assert!(!woken);
}
}
#[test] #[ignore(cfg(windows))]
fn test_mutex_killed_broadcast() {
let m = ~Mutex();
let m2 = ~m.clone();
let (p,c) = comm::stream();
let result: result::Result<(),()> = do task::try || {
let mut sibling_convos = ~[];
for 2.times {
let (p,c) = comm::stream();
let c = Cell(c);
sibling_convos.push(p);
let mi = ~m2.clone();
// spawn sibling task
do task::spawn { // linked
do mi.lock_cond |cond| {
let c = c.take();
c.send(()); // tell sibling to go ahead
let _z = SendOnFailure(c);
cond.wait(); // block forever
}
}
}
for sibling_convos.each |p| {
let _ = p.recv(); // wait for sibling to get in the mutex
}
do m2.lock { }
c.send(sibling_convos); // let parent wait on all children
fail!();
};
assert!(result.is_err());
// child task must have finished by the time try returns
for vec::each(p.recv()) |p| { p.recv(); } // wait on all its siblings
do m.lock_cond |cond| {
let woken = cond.broadcast();
assert!(woken == 0);
}
struct SendOnFailure {
c: comm::Chan<()>,
}
impl Drop for SendOnFailure {
fn finalize(&self) {
self.c.send(());
}
}
fn SendOnFailure(c: comm::Chan<()>) -> SendOnFailure {
SendOnFailure {
c: c
}
}
}
#[test]
fn test_mutex_cond_signal_on_0() {
// Tests that signal_on(0) is equivalent to signal().
let m = ~Mutex();
do m.lock_cond |cond| {
let m2 = ~m.clone();
do task::spawn || {
do m2.lock_cond |cond| {
cond.signal_on(0);
}
}
cond.wait();
}
}
#[test] #[ignore(cfg(windows))]
fn test_mutex_different_conds() {
let result = do task::try {
let m = ~mutex_with_condvars(2);
let m2 = ~m.clone();
let (p,c) = comm::stream();
do task::spawn || {
do m2.lock_cond |cond| {
c.send(());
cond.wait_on(1);
}
}
let _ = p.recv();
do m.lock_cond |cond| {
if !cond.signal_on(0) {
fail!(); // success; punt sibling awake.
}
}
};
assert!(result.is_err());
}
#[test] #[ignore(cfg(windows))]
fn test_mutex_no_condvars() {
let result = do task::try {
let m = ~mutex_with_condvars(0);
do m.lock_cond |cond| { cond.wait(); }
};
assert!(result.is_err());
let result = do task::try {
let m = ~mutex_with_condvars(0);
do m.lock_cond |cond| { cond.signal(); }
};
assert!(result.is_err());
let result = do task::try {
let m = ~mutex_with_condvars(0);
do m.lock_cond |cond| { cond.broadcast(); }
};
assert!(result.is_err());
}
/************************************************************************
* Reader/writer lock tests
************************************************************************/
#[cfg(test)]
pub enum RWlockMode { Read, Write, Downgrade, DowngradeRead }
#[cfg(test)]
fn lock_rwlock_in_mode(x: &RWlock, mode: RWlockMode, blk: &fn()) {
match mode {
Read => x.read(blk),
Write => x.write(blk),
Downgrade =>
do x.write_downgrade |mode| {
(&mode).write(blk);
},
DowngradeRead =>
do x.write_downgrade |mode| {
let mode = x.downgrade(mode);
(&mode).read(blk);
},
}
}
#[cfg(test)]
fn test_rwlock_exclusion(x: ~RWlock,
mode1: RWlockMode,
mode2: RWlockMode) {
// Test mutual exclusion between readers and writers. Just like the
// mutex mutual exclusion test, a ways above.
let (p,c) = comm::stream();
let x2 = (*x).clone();
let mut sharedstate = ~0;
{
let ptr: *int = &*sharedstate;
do task::spawn || {
let sharedstate: &mut int =
unsafe { cast::transmute(ptr) };
access_shared(sharedstate, &x2, mode1, 10);
c.send(());
}
}
{
access_shared(sharedstate, x, mode2, 10);
let _ = p.recv();
assert!(*sharedstate == 20);
}
fn access_shared(sharedstate: &mut int, x: &RWlock, mode: RWlockMode,
n: uint) {
for n.times {
do lock_rwlock_in_mode(x, mode) {
let oldval = *sharedstate;
task::yield();
*sharedstate = oldval + 1;
}
}
}
}
#[test]
fn test_rwlock_readers_wont_modify_the_data() {
test_rwlock_exclusion(~RWlock(), Read, Write);
test_rwlock_exclusion(~RWlock(), Write, Read);
test_rwlock_exclusion(~RWlock(), Read, Downgrade);
test_rwlock_exclusion(~RWlock(), Downgrade, Read);
}
#[test]
fn test_rwlock_writers_and_writers() {
test_rwlock_exclusion(~RWlock(), Write, Write);
test_rwlock_exclusion(~RWlock(), Write, Downgrade);
test_rwlock_exclusion(~RWlock(), Downgrade, Write);
test_rwlock_exclusion(~RWlock(), Downgrade, Downgrade);
}
#[cfg(test)]
fn test_rwlock_handshake(x: ~RWlock,
mode1: RWlockMode,
mode2: RWlockMode,
make_mode2_go_first: bool) {
// Much like sem_multi_resource.
let x2 = (*x).clone();
let (p1,c1) = comm::stream();
let (p2,c2) = comm::stream();
do task::spawn || {
if !make_mode2_go_first {
let _ = p2.recv(); // parent sends to us once it locks, or ...
}
do lock_rwlock_in_mode(&x2, mode2) {
if make_mode2_go_first {
c1.send(()); // ... we send to it once we lock
}
let _ = p2.recv();
c1.send(());
}
}
if make_mode2_go_first {
let _ = p1.recv(); // child sends to us once it locks, or ...
}
do lock_rwlock_in_mode(x, mode1) {
if !make_mode2_go_first {
c2.send(()); // ... we send to it once we lock
}
c2.send(());
let _ = p1.recv();
}
}
#[test]
fn test_rwlock_readers_and_readers() {
test_rwlock_handshake(~RWlock(), Read, Read, false);
// The downgrader needs to get in before the reader gets in, otherwise
// they cannot end up reading at the same time.
test_rwlock_handshake(~RWlock(), DowngradeRead, Read, false);
test_rwlock_handshake(~RWlock(), Read, DowngradeRead, true);
// Two downgrade_reads can never both end up reading at the same time.
}
#[test]
fn test_rwlock_downgrade_unlock() {
// Tests that downgrade can unlock the lock in both modes
let x = ~RWlock();
do lock_rwlock_in_mode(x, Downgrade) { }
test_rwlock_handshake(x, Read, Read, false);
let y = ~RWlock();
do lock_rwlock_in_mode(y, DowngradeRead) { }
test_rwlock_exclusion(y, Write, Write);
}
#[test]
fn test_rwlock_read_recursive() {
let x = ~RWlock();
do x.read { do x.read { } }
}
#[test]
fn test_rwlock_cond_wait() {
// As test_mutex_cond_wait above.
let x = ~RWlock();
// Child wakes up parent
do x.write_cond |cond| {
let x2 = (*x).clone();
do task::spawn || {
do x2.write_cond |cond| {
let woken = cond.signal();
assert!(woken);
}
}
cond.wait();
}
// Parent wakes up child
let (port,chan) = comm::stream();
let x3 = (*x).clone();
do task::spawn || {
do x3.write_cond |cond| {
chan.send(());
cond.wait();
chan.send(());
}
}
let _ = port.recv(); // Wait until child gets in the rwlock
do x.read { } // Must be able to get in as a reader in the meantime
do x.write_cond |cond| { // Or as another writer
let woken = cond.signal();
assert!(woken);
}
let _ = port.recv(); // Wait until child wakes up
do x.read { } // Just for good measure
}
#[cfg(test)]
fn test_rwlock_cond_broadcast_helper(num_waiters: uint,
dg1: bool,
dg2: bool) {
// Much like the mutex broadcast test. Downgrade-enabled.
fn lock_cond(x: &RWlock, downgrade: bool, blk: &fn(c: &Condvar)) {
if downgrade {
do x.write_downgrade |mode| {
(&mode).write_cond(blk)
}
} else {
x.write_cond(blk)
}
}
let x = ~RWlock();
let mut ports = ~[];
for num_waiters.times {
let xi = (*x).clone();
let (port, chan) = comm::stream();
ports.push(port);
do task::spawn || {
do lock_cond(&xi, dg1) |cond| {
chan.send(());
cond.wait();
chan.send(());
}
}
}
// wait until all children get in the mutex
for ports.each |port| { let _ = port.recv(); }
do lock_cond(x, dg2) |cond| {
let num_woken = cond.broadcast();
assert!(num_woken == num_waiters);
}
// wait until all children wake up
for ports.each |port| { let _ = port.recv(); }
}
#[test]
fn test_rwlock_cond_broadcast() {
test_rwlock_cond_broadcast_helper(0, true, true);
test_rwlock_cond_broadcast_helper(0, true, false);
test_rwlock_cond_broadcast_helper(0, false, true);
test_rwlock_cond_broadcast_helper(0, false, false);
test_rwlock_cond_broadcast_helper(12, true, true);
test_rwlock_cond_broadcast_helper(12, true, false);
test_rwlock_cond_broadcast_helper(12, false, true);
test_rwlock_cond_broadcast_helper(12, false, false);
}
#[cfg(test)] #[ignore(cfg(windows))]
fn rwlock_kill_helper(mode1: RWlockMode, mode2: RWlockMode) {
// Mutex must get automatically unlocked if failed/killed within.
let x = ~RWlock();
let x2 = (*x).clone();
let result: result::Result<(),()> = do task::try || {
do lock_rwlock_in_mode(&x2, mode1) {
fail!();
}
};
assert!(result.is_err());
// child task must have finished by the time try returns
do lock_rwlock_in_mode(x, mode2) { }
}
#[test] #[ignore(cfg(windows))]
fn test_rwlock_reader_killed_writer() {
rwlock_kill_helper(Read, Write);
}
#[test] #[ignore(cfg(windows))]
fn test_rwlock_writer_killed_reader() {
rwlock_kill_helper(Write,Read );
}
#[test] #[ignore(cfg(windows))]
fn test_rwlock_reader_killed_reader() {
rwlock_kill_helper(Read, Read );
}
#[test] #[ignore(cfg(windows))]
fn test_rwlock_writer_killed_writer() {
rwlock_kill_helper(Write,Write);
}
#[test] #[ignore(cfg(windows))]
fn test_rwlock_kill_downgrader() {
rwlock_kill_helper(Downgrade, Read);
rwlock_kill_helper(Read, Downgrade);
rwlock_kill_helper(Downgrade, Write);
rwlock_kill_helper(Write, Downgrade);
rwlock_kill_helper(DowngradeRead, Read);
rwlock_kill_helper(Read, DowngradeRead);
rwlock_kill_helper(DowngradeRead, Write);
rwlock_kill_helper(Write, DowngradeRead);
rwlock_kill_helper(DowngradeRead, Downgrade);
rwlock_kill_helper(DowngradeRead, Downgrade);
rwlock_kill_helper(Downgrade, DowngradeRead);
rwlock_kill_helper(Downgrade, DowngradeRead);
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_rwlock_downgrade_cant_swap() {
// Tests that you can't downgrade with a different rwlock's token.
let x = ~RWlock();
let y = ~RWlock();
do x.write_downgrade |xwrite| {
let mut xopt = Some(xwrite);
do y.write_downgrade |_ywrite| {
y.downgrade(xopt.swap_unwrap());
error!("oops, y.downgrade(x) should have failed!");
}
}
}
}