rust/compiler/rustc_expand/src/expand.rs
Vadim Petrochenkov aca1b1e0b3 rustc_interface: Add a new query pre_configure
It partially expands crate attributes before the main expansion pass (without modifying the crate), and the produced preliminary crate attribute list is used for querying a few attributes that are required very early.

Crate-level cfg attributes are then expanded normally during the main expansion pass, like attributes on any other nodes.
2023-03-23 14:22:48 +04:00

1955 lines
76 KiB
Rust

use crate::base::*;
use crate::config::StripUnconfigured;
use crate::errors::{
IncompleteParse, RecursionLimitReached, RemoveExprNotSupported, RemoveNodeNotSupported,
UnsupportedKeyValue, WrongFragmentKind,
};
use crate::hygiene::SyntaxContext;
use crate::mbe::diagnostics::annotate_err_with_kind;
use crate::module::{mod_dir_path, parse_external_mod, DirOwnership, ParsedExternalMod};
use crate::placeholders::{placeholder, PlaceholderExpander};
use rustc_ast as ast;
use rustc_ast::mut_visit::*;
use rustc_ast::ptr::P;
use rustc_ast::token::{self, Delimiter};
use rustc_ast::tokenstream::TokenStream;
use rustc_ast::visit::{self, AssocCtxt, Visitor};
use rustc_ast::{AssocItemKind, AstNodeWrapper, AttrArgs, AttrStyle, AttrVec, ExprKind};
use rustc_ast::{ForeignItemKind, HasAttrs, HasNodeId};
use rustc_ast::{Inline, ItemKind, MacStmtStyle, MetaItemKind, ModKind};
use rustc_ast::{NestedMetaItem, NodeId, PatKind, StmtKind, TyKind};
use rustc_ast_pretty::pprust;
use rustc_data_structures::flat_map_in_place::FlatMapInPlace;
use rustc_data_structures::sync::Lrc;
use rustc_errors::PResult;
use rustc_feature::Features;
use rustc_parse::parser::{
AttemptLocalParseRecovery, CommaRecoveryMode, ForceCollect, Parser, RecoverColon, RecoverComma,
};
use rustc_parse::validate_attr;
use rustc_session::lint::builtin::{UNUSED_ATTRIBUTES, UNUSED_DOC_COMMENTS};
use rustc_session::lint::BuiltinLintDiagnostics;
use rustc_session::parse::{feature_err, ParseSess};
use rustc_session::Limit;
use rustc_span::symbol::{sym, Ident};
use rustc_span::{FileName, LocalExpnId, Span};
use smallvec::SmallVec;
use std::ops::Deref;
use std::path::PathBuf;
use std::rc::Rc;
use std::{iter, mem};
macro_rules! ast_fragments {
(
$($Kind:ident($AstTy:ty) {
$kind_name:expr;
$(one fn $mut_visit_ast:ident; fn $visit_ast:ident;)?
$(many fn $flat_map_ast_elt:ident; fn $visit_ast_elt:ident($($args:tt)*);)?
fn $make_ast:ident;
})*
) => {
/// A fragment of AST that can be produced by a single macro expansion.
/// Can also serve as an input and intermediate result for macro expansion operations.
pub enum AstFragment {
OptExpr(Option<P<ast::Expr>>),
MethodReceiverExpr(P<ast::Expr>),
$($Kind($AstTy),)*
}
/// "Discriminant" of an AST fragment.
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum AstFragmentKind {
OptExpr,
MethodReceiverExpr,
$($Kind,)*
}
impl AstFragmentKind {
pub fn name(self) -> &'static str {
match self {
AstFragmentKind::OptExpr => "expression",
AstFragmentKind::MethodReceiverExpr => "expression",
$(AstFragmentKind::$Kind => $kind_name,)*
}
}
fn make_from<'a>(self, result: Box<dyn MacResult + 'a>) -> Option<AstFragment> {
match self {
AstFragmentKind::OptExpr =>
result.make_expr().map(Some).map(AstFragment::OptExpr),
AstFragmentKind::MethodReceiverExpr =>
result.make_expr().map(AstFragment::MethodReceiverExpr),
$(AstFragmentKind::$Kind => result.$make_ast().map(AstFragment::$Kind),)*
}
}
}
impl AstFragment {
pub fn add_placeholders(&mut self, placeholders: &[NodeId]) {
if placeholders.is_empty() {
return;
}
match self {
$($(AstFragment::$Kind(ast) => ast.extend(placeholders.iter().flat_map(|id| {
${ignore(flat_map_ast_elt)}
placeholder(AstFragmentKind::$Kind, *id, None).$make_ast()
})),)?)*
_ => panic!("unexpected AST fragment kind")
}
}
pub fn make_opt_expr(self) -> Option<P<ast::Expr>> {
match self {
AstFragment::OptExpr(expr) => expr,
_ => panic!("AstFragment::make_* called on the wrong kind of fragment"),
}
}
pub fn make_method_receiver_expr(self) -> P<ast::Expr> {
match self {
AstFragment::MethodReceiverExpr(expr) => expr,
_ => panic!("AstFragment::make_* called on the wrong kind of fragment"),
}
}
$(pub fn $make_ast(self) -> $AstTy {
match self {
AstFragment::$Kind(ast) => ast,
_ => panic!("AstFragment::make_* called on the wrong kind of fragment"),
}
})*
fn make_ast<T: InvocationCollectorNode>(self) -> T::OutputTy {
T::fragment_to_output(self)
}
pub fn mut_visit_with<F: MutVisitor>(&mut self, vis: &mut F) {
match self {
AstFragment::OptExpr(opt_expr) => {
visit_clobber(opt_expr, |opt_expr| {
if let Some(expr) = opt_expr {
vis.filter_map_expr(expr)
} else {
None
}
});
}
AstFragment::MethodReceiverExpr(expr) => vis.visit_method_receiver_expr(expr),
$($(AstFragment::$Kind(ast) => vis.$mut_visit_ast(ast),)?)*
$($(AstFragment::$Kind(ast) =>
ast.flat_map_in_place(|ast| vis.$flat_map_ast_elt(ast)),)?)*
}
}
pub fn visit_with<'a, V: Visitor<'a>>(&'a self, visitor: &mut V) {
match self {
AstFragment::OptExpr(Some(expr)) => visitor.visit_expr(expr),
AstFragment::OptExpr(None) => {}
AstFragment::MethodReceiverExpr(expr) => visitor.visit_method_receiver_expr(expr),
$($(AstFragment::$Kind(ast) => visitor.$visit_ast(ast),)?)*
$($(AstFragment::$Kind(ast) => for ast_elt in &ast[..] {
visitor.$visit_ast_elt(ast_elt, $($args)*);
})?)*
}
}
}
impl<'a> MacResult for crate::mbe::macro_rules::ParserAnyMacro<'a> {
$(fn $make_ast(self: Box<crate::mbe::macro_rules::ParserAnyMacro<'a>>)
-> Option<$AstTy> {
Some(self.make(AstFragmentKind::$Kind).$make_ast())
})*
}
}
}
ast_fragments! {
Expr(P<ast::Expr>) { "expression"; one fn visit_expr; fn visit_expr; fn make_expr; }
Pat(P<ast::Pat>) { "pattern"; one fn visit_pat; fn visit_pat; fn make_pat; }
Ty(P<ast::Ty>) { "type"; one fn visit_ty; fn visit_ty; fn make_ty; }
Stmts(SmallVec<[ast::Stmt; 1]>) {
"statement"; many fn flat_map_stmt; fn visit_stmt(); fn make_stmts;
}
Items(SmallVec<[P<ast::Item>; 1]>) {
"item"; many fn flat_map_item; fn visit_item(); fn make_items;
}
TraitItems(SmallVec<[P<ast::AssocItem>; 1]>) {
"trait item";
many fn flat_map_trait_item;
fn visit_assoc_item(AssocCtxt::Trait);
fn make_trait_items;
}
ImplItems(SmallVec<[P<ast::AssocItem>; 1]>) {
"impl item";
many fn flat_map_impl_item;
fn visit_assoc_item(AssocCtxt::Impl);
fn make_impl_items;
}
ForeignItems(SmallVec<[P<ast::ForeignItem>; 1]>) {
"foreign item";
many fn flat_map_foreign_item;
fn visit_foreign_item();
fn make_foreign_items;
}
Arms(SmallVec<[ast::Arm; 1]>) {
"match arm"; many fn flat_map_arm; fn visit_arm(); fn make_arms;
}
ExprFields(SmallVec<[ast::ExprField; 1]>) {
"field expression"; many fn flat_map_expr_field; fn visit_expr_field(); fn make_expr_fields;
}
PatFields(SmallVec<[ast::PatField; 1]>) {
"field pattern";
many fn flat_map_pat_field;
fn visit_pat_field();
fn make_pat_fields;
}
GenericParams(SmallVec<[ast::GenericParam; 1]>) {
"generic parameter";
many fn flat_map_generic_param;
fn visit_generic_param();
fn make_generic_params;
}
Params(SmallVec<[ast::Param; 1]>) {
"function parameter"; many fn flat_map_param; fn visit_param(); fn make_params;
}
FieldDefs(SmallVec<[ast::FieldDef; 1]>) {
"field";
many fn flat_map_field_def;
fn visit_field_def();
fn make_field_defs;
}
Variants(SmallVec<[ast::Variant; 1]>) {
"variant"; many fn flat_map_variant; fn visit_variant(); fn make_variants;
}
Crate(ast::Crate) { "crate"; one fn visit_crate; fn visit_crate; fn make_crate; }
}
pub enum SupportsMacroExpansion {
No,
Yes { supports_inner_attrs: bool },
}
impl AstFragmentKind {
pub(crate) fn dummy(self, span: Span) -> AstFragment {
self.make_from(DummyResult::any(span)).expect("couldn't create a dummy AST fragment")
}
pub fn supports_macro_expansion(self) -> SupportsMacroExpansion {
match self {
AstFragmentKind::OptExpr
| AstFragmentKind::Expr
| AstFragmentKind::MethodReceiverExpr
| AstFragmentKind::Stmts
| AstFragmentKind::Ty
| AstFragmentKind::Pat => SupportsMacroExpansion::Yes { supports_inner_attrs: false },
AstFragmentKind::Items
| AstFragmentKind::TraitItems
| AstFragmentKind::ImplItems
| AstFragmentKind::ForeignItems
| AstFragmentKind::Crate => SupportsMacroExpansion::Yes { supports_inner_attrs: true },
AstFragmentKind::Arms
| AstFragmentKind::ExprFields
| AstFragmentKind::PatFields
| AstFragmentKind::GenericParams
| AstFragmentKind::Params
| AstFragmentKind::FieldDefs
| AstFragmentKind::Variants => SupportsMacroExpansion::No,
}
}
fn expect_from_annotatables<I: IntoIterator<Item = Annotatable>>(
self,
items: I,
) -> AstFragment {
let mut items = items.into_iter();
match self {
AstFragmentKind::Arms => {
AstFragment::Arms(items.map(Annotatable::expect_arm).collect())
}
AstFragmentKind::ExprFields => {
AstFragment::ExprFields(items.map(Annotatable::expect_expr_field).collect())
}
AstFragmentKind::PatFields => {
AstFragment::PatFields(items.map(Annotatable::expect_pat_field).collect())
}
AstFragmentKind::GenericParams => {
AstFragment::GenericParams(items.map(Annotatable::expect_generic_param).collect())
}
AstFragmentKind::Params => {
AstFragment::Params(items.map(Annotatable::expect_param).collect())
}
AstFragmentKind::FieldDefs => {
AstFragment::FieldDefs(items.map(Annotatable::expect_field_def).collect())
}
AstFragmentKind::Variants => {
AstFragment::Variants(items.map(Annotatable::expect_variant).collect())
}
AstFragmentKind::Items => {
AstFragment::Items(items.map(Annotatable::expect_item).collect())
}
AstFragmentKind::ImplItems => {
AstFragment::ImplItems(items.map(Annotatable::expect_impl_item).collect())
}
AstFragmentKind::TraitItems => {
AstFragment::TraitItems(items.map(Annotatable::expect_trait_item).collect())
}
AstFragmentKind::ForeignItems => {
AstFragment::ForeignItems(items.map(Annotatable::expect_foreign_item).collect())
}
AstFragmentKind::Stmts => {
AstFragment::Stmts(items.map(Annotatable::expect_stmt).collect())
}
AstFragmentKind::Expr => AstFragment::Expr(
items.next().expect("expected exactly one expression").expect_expr(),
),
AstFragmentKind::MethodReceiverExpr => AstFragment::MethodReceiverExpr(
items.next().expect("expected exactly one expression").expect_expr(),
),
AstFragmentKind::OptExpr => {
AstFragment::OptExpr(items.next().map(Annotatable::expect_expr))
}
AstFragmentKind::Crate => {
AstFragment::Crate(items.next().expect("expected exactly one crate").expect_crate())
}
AstFragmentKind::Pat | AstFragmentKind::Ty => {
panic!("patterns and types aren't annotatable")
}
}
}
}
pub struct Invocation {
pub kind: InvocationKind,
pub fragment_kind: AstFragmentKind,
pub expansion_data: ExpansionData,
}
pub enum InvocationKind {
Bang {
mac: P<ast::MacCall>,
span: Span,
},
Attr {
attr: ast::Attribute,
// Re-insertion position for inert attributes.
pos: usize,
item: Annotatable,
// Required for resolving derive helper attributes.
derives: Vec<ast::Path>,
},
Derive {
path: ast::Path,
is_const: bool,
item: Annotatable,
},
}
impl InvocationKind {
fn placeholder_visibility(&self) -> Option<ast::Visibility> {
// HACK: For unnamed fields placeholders should have the same visibility as the actual
// fields because for tuple structs/variants resolve determines visibilities of their
// constructor using these field visibilities before attributes on them are expanded.
// The assumption is that the attribute expansion cannot change field visibilities,
// and it holds because only inert attributes are supported in this position.
match self {
InvocationKind::Attr { item: Annotatable::FieldDef(field), .. }
| InvocationKind::Derive { item: Annotatable::FieldDef(field), .. }
if field.ident.is_none() =>
{
Some(field.vis.clone())
}
_ => None,
}
}
}
impl Invocation {
pub fn span(&self) -> Span {
match &self.kind {
InvocationKind::Bang { span, .. } => *span,
InvocationKind::Attr { attr, .. } => attr.span,
InvocationKind::Derive { path, .. } => path.span,
}
}
}
pub struct MacroExpander<'a, 'b> {
pub cx: &'a mut ExtCtxt<'b>,
monotonic: bool, // cf. `cx.monotonic_expander()`
}
impl<'a, 'b> MacroExpander<'a, 'b> {
pub fn new(cx: &'a mut ExtCtxt<'b>, monotonic: bool) -> Self {
MacroExpander { cx, monotonic }
}
pub fn expand_crate(&mut self, krate: ast::Crate) -> ast::Crate {
let file_path = match self.cx.source_map().span_to_filename(krate.spans.inner_span) {
FileName::Real(name) => name
.into_local_path()
.expect("attempting to resolve a file path in an external file"),
other => PathBuf::from(other.prefer_local().to_string()),
};
let dir_path = file_path.parent().unwrap_or(&file_path).to_owned();
self.cx.root_path = dir_path.clone();
self.cx.current_expansion.module = Rc::new(ModuleData {
mod_path: vec![Ident::from_str(&self.cx.ecfg.crate_name)],
file_path_stack: vec![file_path],
dir_path,
});
let krate = self.fully_expand_fragment(AstFragment::Crate(krate)).make_crate();
assert_eq!(krate.id, ast::CRATE_NODE_ID);
self.cx.trace_macros_diag();
krate
}
/// Recursively expand all macro invocations in this AST fragment.
pub fn fully_expand_fragment(&mut self, input_fragment: AstFragment) -> AstFragment {
let orig_expansion_data = self.cx.current_expansion.clone();
let orig_force_mode = self.cx.force_mode;
// Collect all macro invocations and replace them with placeholders.
let (mut fragment_with_placeholders, mut invocations) =
self.collect_invocations(input_fragment, &[]);
// Optimization: if we resolve all imports now,
// we'll be able to immediately resolve most of imported macros.
self.resolve_imports();
// Resolve paths in all invocations and produce output expanded fragments for them, but
// do not insert them into our input AST fragment yet, only store in `expanded_fragments`.
// The output fragments also go through expansion recursively until no invocations are left.
// Unresolved macros produce dummy outputs as a recovery measure.
invocations.reverse();
let mut expanded_fragments = Vec::new();
let mut undetermined_invocations = Vec::new();
let (mut progress, mut force) = (false, !self.monotonic);
loop {
let Some((invoc, ext)) = invocations.pop() else {
self.resolve_imports();
if undetermined_invocations.is_empty() {
break;
}
invocations = mem::take(&mut undetermined_invocations);
force = !mem::replace(&mut progress, false);
if force && self.monotonic {
self.cx.sess.delay_span_bug(
invocations.last().unwrap().0.span(),
"expansion entered force mode without producing any errors",
);
}
continue;
};
let ext = match ext {
Some(ext) => ext,
None => {
let eager_expansion_root = if self.monotonic {
invoc.expansion_data.id
} else {
orig_expansion_data.id
};
match self.cx.resolver.resolve_macro_invocation(
&invoc,
eager_expansion_root,
force,
) {
Ok(ext) => ext,
Err(Indeterminate) => {
// Cannot resolve, will retry this invocation later.
undetermined_invocations.push((invoc, None));
continue;
}
}
}
};
let ExpansionData { depth, id: expn_id, .. } = invoc.expansion_data;
let depth = depth - orig_expansion_data.depth;
self.cx.current_expansion = invoc.expansion_data.clone();
self.cx.force_mode = force;
let fragment_kind = invoc.fragment_kind;
let (expanded_fragment, new_invocations) = match self.expand_invoc(invoc, &ext.kind) {
ExpandResult::Ready(fragment) => {
let mut derive_invocations = Vec::new();
let derive_placeholders = self
.cx
.resolver
.take_derive_resolutions(expn_id)
.map(|derives| {
derive_invocations.reserve(derives.len());
derives
.into_iter()
.map(|(path, item, _exts, is_const)| {
// FIXME: Consider using the derive resolutions (`_exts`)
// instead of enqueuing the derives to be resolved again later.
let expn_id = LocalExpnId::fresh_empty();
derive_invocations.push((
Invocation {
kind: InvocationKind::Derive { path, item, is_const },
fragment_kind,
expansion_data: ExpansionData {
id: expn_id,
..self.cx.current_expansion.clone()
},
},
None,
));
NodeId::placeholder_from_expn_id(expn_id)
})
.collect::<Vec<_>>()
})
.unwrap_or_default();
let (fragment, collected_invocations) =
self.collect_invocations(fragment, &derive_placeholders);
// We choose to expand any derive invocations associated with this macro invocation
// *before* any macro invocations collected from the output fragment
derive_invocations.extend(collected_invocations);
(fragment, derive_invocations)
}
ExpandResult::Retry(invoc) => {
if force {
self.cx.span_bug(
invoc.span(),
"expansion entered force mode but is still stuck",
);
} else {
// Cannot expand, will retry this invocation later.
undetermined_invocations.push((invoc, Some(ext)));
continue;
}
}
};
progress = true;
if expanded_fragments.len() < depth {
expanded_fragments.push(Vec::new());
}
expanded_fragments[depth - 1].push((expn_id, expanded_fragment));
invocations.extend(new_invocations.into_iter().rev());
}
self.cx.current_expansion = orig_expansion_data;
self.cx.force_mode = orig_force_mode;
// Finally incorporate all the expanded macros into the input AST fragment.
let mut placeholder_expander = PlaceholderExpander::default();
while let Some(expanded_fragments) = expanded_fragments.pop() {
for (expn_id, expanded_fragment) in expanded_fragments.into_iter().rev() {
placeholder_expander
.add(NodeId::placeholder_from_expn_id(expn_id), expanded_fragment);
}
}
fragment_with_placeholders.mut_visit_with(&mut placeholder_expander);
fragment_with_placeholders
}
fn resolve_imports(&mut self) {
if self.monotonic {
self.cx.resolver.resolve_imports();
}
}
/// Collects all macro invocations reachable at this time in this AST fragment, and replace
/// them with "placeholders" - dummy macro invocations with specially crafted `NodeId`s.
/// Then call into resolver that builds a skeleton ("reduced graph") of the fragment and
/// prepares data for resolving paths of macro invocations.
fn collect_invocations(
&mut self,
mut fragment: AstFragment,
extra_placeholders: &[NodeId],
) -> (AstFragment, Vec<(Invocation, Option<Lrc<SyntaxExtension>>)>) {
// Resolve `$crate`s in the fragment for pretty-printing.
self.cx.resolver.resolve_dollar_crates();
let mut invocations = {
let mut collector = InvocationCollector {
// Non-derive macro invocations cannot see the results of cfg expansion - they
// will either be removed along with the item, or invoked before the cfg/cfg_attr
// attribute is expanded. Therefore, we don't need to configure the tokens
// Derive macros *can* see the results of cfg-expansion - they are handled
// specially in `fully_expand_fragment`
cx: self.cx,
invocations: Vec::new(),
monotonic: self.monotonic,
};
fragment.mut_visit_with(&mut collector);
fragment.add_placeholders(extra_placeholders);
collector.invocations
};
if self.monotonic {
self.cx
.resolver
.visit_ast_fragment_with_placeholders(self.cx.current_expansion.id, &fragment);
if self.cx.sess.opts.incremental_relative_spans() {
for (invoc, _) in invocations.iter_mut() {
let expn_id = invoc.expansion_data.id;
let parent_def = self.cx.resolver.invocation_parent(expn_id);
let span = match &mut invoc.kind {
InvocationKind::Bang { span, .. } => span,
InvocationKind::Attr { attr, .. } => &mut attr.span,
InvocationKind::Derive { path, .. } => &mut path.span,
};
*span = span.with_parent(Some(parent_def));
}
}
}
(fragment, invocations)
}
fn error_recursion_limit_reached(&mut self) {
let expn_data = self.cx.current_expansion.id.expn_data();
let suggested_limit = match self.cx.ecfg.recursion_limit {
Limit(0) => Limit(2),
limit => limit * 2,
};
self.cx.emit_err(RecursionLimitReached {
span: expn_data.call_site,
descr: expn_data.kind.descr(),
suggested_limit,
crate_name: &self.cx.ecfg.crate_name,
});
self.cx.trace_macros_diag();
}
/// A macro's expansion does not fit in this fragment kind.
/// For example, a non-type macro in a type position.
fn error_wrong_fragment_kind(&mut self, kind: AstFragmentKind, mac: &ast::MacCall, span: Span) {
self.cx.emit_err(WrongFragmentKind { span, kind: kind.name(), name: &mac.path });
self.cx.trace_macros_diag();
}
fn expand_invoc(
&mut self,
invoc: Invocation,
ext: &SyntaxExtensionKind,
) -> ExpandResult<AstFragment, Invocation> {
let recursion_limit =
self.cx.reduced_recursion_limit.unwrap_or(self.cx.ecfg.recursion_limit);
if !recursion_limit.value_within_limit(self.cx.current_expansion.depth) {
if self.cx.reduced_recursion_limit.is_none() {
self.error_recursion_limit_reached();
}
// Reduce the recursion limit by half each time it triggers.
self.cx.reduced_recursion_limit = Some(recursion_limit / 2);
return ExpandResult::Ready(invoc.fragment_kind.dummy(invoc.span()));
}
let (fragment_kind, span) = (invoc.fragment_kind, invoc.span());
ExpandResult::Ready(match invoc.kind {
InvocationKind::Bang { mac, .. } => match ext {
SyntaxExtensionKind::Bang(expander) => {
let Ok(tok_result) = expander.expand(self.cx, span, mac.args.tokens.clone()) else {
return ExpandResult::Ready(fragment_kind.dummy(span));
};
self.parse_ast_fragment(tok_result, fragment_kind, &mac.path, span)
}
SyntaxExtensionKind::LegacyBang(expander) => {
let prev = self.cx.current_expansion.prior_type_ascription;
self.cx.current_expansion.prior_type_ascription = mac.prior_type_ascription;
let tok_result = expander.expand(self.cx, span, mac.args.tokens.clone());
let result = if let Some(result) = fragment_kind.make_from(tok_result) {
result
} else {
self.error_wrong_fragment_kind(fragment_kind, &mac, span);
fragment_kind.dummy(span)
};
self.cx.current_expansion.prior_type_ascription = prev;
result
}
_ => unreachable!(),
},
InvocationKind::Attr { attr, pos, mut item, derives } => match ext {
SyntaxExtensionKind::Attr(expander) => {
self.gate_proc_macro_input(&item);
self.gate_proc_macro_attr_item(span, &item);
let tokens = match &item {
// FIXME: Collect tokens and use them instead of generating
// fake ones. These are unstable, so it needs to be
// fixed prior to stabilization
// Fake tokens when we are invoking an inner attribute, and
// we are invoking it on an out-of-line module or crate.
Annotatable::Crate(krate) => rustc_parse::fake_token_stream_for_crate(
&self.cx.sess.parse_sess,
krate,
),
Annotatable::Item(item_inner)
if matches!(attr.style, AttrStyle::Inner)
&& matches!(
item_inner.kind,
ItemKind::Mod(
_,
ModKind::Unloaded | ModKind::Loaded(_, Inline::No, _),
)
) =>
{
rustc_parse::fake_token_stream_for_item(
&self.cx.sess.parse_sess,
item_inner,
)
}
_ => item.to_tokens(),
};
let attr_item = attr.unwrap_normal_item();
if let AttrArgs::Eq(..) = attr_item.args {
self.cx.emit_err(UnsupportedKeyValue { span });
}
let inner_tokens = attr_item.args.inner_tokens();
let Ok(tok_result) = expander.expand(self.cx, span, inner_tokens, tokens) else {
return ExpandResult::Ready(fragment_kind.dummy(span));
};
self.parse_ast_fragment(tok_result, fragment_kind, &attr_item.path, span)
}
SyntaxExtensionKind::LegacyAttr(expander) => {
match validate_attr::parse_meta(&self.cx.sess.parse_sess, &attr) {
Ok(meta) => {
let items = match expander.expand(self.cx, span, &meta, item, false) {
ExpandResult::Ready(items) => items,
ExpandResult::Retry(item) => {
// Reassemble the original invocation for retrying.
return ExpandResult::Retry(Invocation {
kind: InvocationKind::Attr { attr, pos, item, derives },
..invoc
});
}
};
if fragment_kind == AstFragmentKind::Expr && items.is_empty() {
self.cx.emit_err(RemoveExprNotSupported { span });
fragment_kind.dummy(span)
} else {
fragment_kind.expect_from_annotatables(items)
}
}
Err(mut err) => {
err.emit();
fragment_kind.dummy(span)
}
}
}
SyntaxExtensionKind::NonMacroAttr => {
self.cx.expanded_inert_attrs.mark(&attr);
item.visit_attrs(|attrs| attrs.insert(pos, attr));
fragment_kind.expect_from_annotatables(iter::once(item))
}
_ => unreachable!(),
},
InvocationKind::Derive { path, item, is_const } => match ext {
SyntaxExtensionKind::Derive(expander)
| SyntaxExtensionKind::LegacyDerive(expander) => {
if let SyntaxExtensionKind::Derive(..) = ext {
self.gate_proc_macro_input(&item);
}
let meta = ast::MetaItem { kind: MetaItemKind::Word, span, path };
let items = match expander.expand(self.cx, span, &meta, item, is_const) {
ExpandResult::Ready(items) => items,
ExpandResult::Retry(item) => {
// Reassemble the original invocation for retrying.
return ExpandResult::Retry(Invocation {
kind: InvocationKind::Derive { path: meta.path, item, is_const },
..invoc
});
}
};
fragment_kind.expect_from_annotatables(items)
}
_ => unreachable!(),
},
})
}
fn gate_proc_macro_attr_item(&self, span: Span, item: &Annotatable) {
let kind = match item {
Annotatable::Item(_)
| Annotatable::TraitItem(_)
| Annotatable::ImplItem(_)
| Annotatable::ForeignItem(_)
| Annotatable::Crate(..) => return,
Annotatable::Stmt(stmt) => {
// Attributes are stable on item statements,
// but unstable on all other kinds of statements
if stmt.is_item() {
return;
}
"statements"
}
Annotatable::Expr(_) => "expressions",
Annotatable::Arm(..)
| Annotatable::ExprField(..)
| Annotatable::PatField(..)
| Annotatable::GenericParam(..)
| Annotatable::Param(..)
| Annotatable::FieldDef(..)
| Annotatable::Variant(..) => panic!("unexpected annotatable"),
};
if self.cx.ecfg.proc_macro_hygiene() {
return;
}
feature_err(
&self.cx.sess.parse_sess,
sym::proc_macro_hygiene,
span,
&format!("custom attributes cannot be applied to {}", kind),
)
.emit();
}
fn gate_proc_macro_input(&self, annotatable: &Annotatable) {
struct GateProcMacroInput<'a> {
parse_sess: &'a ParseSess,
}
impl<'ast, 'a> Visitor<'ast> for GateProcMacroInput<'a> {
fn visit_item(&mut self, item: &'ast ast::Item) {
match &item.kind {
ItemKind::Mod(_, mod_kind)
if !matches!(mod_kind, ModKind::Loaded(_, Inline::Yes, _)) =>
{
feature_err(
self.parse_sess,
sym::proc_macro_hygiene,
item.span,
"non-inline modules in proc macro input are unstable",
)
.emit();
}
_ => {}
}
visit::walk_item(self, item);
}
}
if !self.cx.ecfg.proc_macro_hygiene() {
annotatable
.visit_with(&mut GateProcMacroInput { parse_sess: &self.cx.sess.parse_sess });
}
}
fn parse_ast_fragment(
&mut self,
toks: TokenStream,
kind: AstFragmentKind,
path: &ast::Path,
span: Span,
) -> AstFragment {
let mut parser = self.cx.new_parser_from_tts(toks);
match parse_ast_fragment(&mut parser, kind) {
Ok(fragment) => {
ensure_complete_parse(&mut parser, path, kind.name(), span);
fragment
}
Err(mut err) => {
if err.span.is_dummy() {
err.set_span(span);
}
annotate_err_with_kind(&mut err, kind, span);
err.emit();
self.cx.trace_macros_diag();
kind.dummy(span)
}
}
}
}
pub fn parse_ast_fragment<'a>(
this: &mut Parser<'a>,
kind: AstFragmentKind,
) -> PResult<'a, AstFragment> {
Ok(match kind {
AstFragmentKind::Items => {
let mut items = SmallVec::new();
while let Some(item) = this.parse_item(ForceCollect::No)? {
items.push(item);
}
AstFragment::Items(items)
}
AstFragmentKind::TraitItems => {
let mut items = SmallVec::new();
while let Some(item) = this.parse_trait_item(ForceCollect::No)? {
items.extend(item);
}
AstFragment::TraitItems(items)
}
AstFragmentKind::ImplItems => {
let mut items = SmallVec::new();
while let Some(item) = this.parse_impl_item(ForceCollect::No)? {
items.extend(item);
}
AstFragment::ImplItems(items)
}
AstFragmentKind::ForeignItems => {
let mut items = SmallVec::new();
while let Some(item) = this.parse_foreign_item(ForceCollect::No)? {
items.extend(item);
}
AstFragment::ForeignItems(items)
}
AstFragmentKind::Stmts => {
let mut stmts = SmallVec::new();
// Won't make progress on a `}`.
while this.token != token::Eof && this.token != token::CloseDelim(Delimiter::Brace) {
if let Some(stmt) = this.parse_full_stmt(AttemptLocalParseRecovery::Yes)? {
stmts.push(stmt);
}
}
AstFragment::Stmts(stmts)
}
AstFragmentKind::Expr => AstFragment::Expr(this.parse_expr()?),
AstFragmentKind::MethodReceiverExpr => AstFragment::MethodReceiverExpr(this.parse_expr()?),
AstFragmentKind::OptExpr => {
if this.token != token::Eof {
AstFragment::OptExpr(Some(this.parse_expr()?))
} else {
AstFragment::OptExpr(None)
}
}
AstFragmentKind::Ty => AstFragment::Ty(this.parse_ty()?),
AstFragmentKind::Pat => AstFragment::Pat(this.parse_pat_allow_top_alt(
None,
RecoverComma::No,
RecoverColon::Yes,
CommaRecoveryMode::LikelyTuple,
)?),
AstFragmentKind::Crate => AstFragment::Crate(this.parse_crate_mod()?),
AstFragmentKind::Arms
| AstFragmentKind::ExprFields
| AstFragmentKind::PatFields
| AstFragmentKind::GenericParams
| AstFragmentKind::Params
| AstFragmentKind::FieldDefs
| AstFragmentKind::Variants => panic!("unexpected AST fragment kind"),
})
}
pub fn ensure_complete_parse<'a>(
parser: &mut Parser<'a>,
macro_path: &ast::Path,
kind_name: &str,
span: Span,
) {
if parser.token != token::Eof {
let token = pprust::token_to_string(&parser.token);
// Avoid emitting backtrace info twice.
let def_site_span = parser.token.span.with_ctxt(SyntaxContext::root());
let semi_span = parser.sess.source_map().next_point(span);
let add_semicolon = match &parser.sess.source_map().span_to_snippet(semi_span) {
Ok(snippet) if &snippet[..] != ";" && kind_name == "expression" => {
Some(span.shrink_to_hi())
}
_ => None,
};
parser.sess.emit_err(IncompleteParse {
span: def_site_span,
token,
label_span: span,
macro_path,
kind_name,
add_semicolon,
});
}
}
/// Wraps a call to `noop_visit_*` / `noop_flat_map_*`
/// for an AST node that supports attributes
/// (see the `Annotatable` enum)
/// This method assigns a `NodeId`, and sets that `NodeId`
/// as our current 'lint node id'. If a macro call is found
/// inside this AST node, we will use this AST node's `NodeId`
/// to emit lints associated with that macro (allowing
/// `#[allow]` / `#[deny]` to be applied close to
/// the macro invocation).
///
/// Do *not* call this for a macro AST node
/// (e.g. `ExprKind::MacCall`) - we cannot emit lints
/// at these AST nodes, since they are removed and
/// replaced with the result of macro expansion.
///
/// All other `NodeId`s are assigned by `visit_id`.
/// * `self` is the 'self' parameter for the current method,
/// * `id` is a mutable reference to the `NodeId` field
/// of the current AST node.
/// * `closure` is a closure that executes the
/// `noop_visit_*` / `noop_flat_map_*` method
/// for the current AST node.
macro_rules! assign_id {
($self:ident, $id:expr, $closure:expr) => {{
let old_id = $self.cx.current_expansion.lint_node_id;
if $self.monotonic {
debug_assert_eq!(*$id, ast::DUMMY_NODE_ID);
let new_id = $self.cx.resolver.next_node_id();
*$id = new_id;
$self.cx.current_expansion.lint_node_id = new_id;
}
let ret = ($closure)();
$self.cx.current_expansion.lint_node_id = old_id;
ret
}};
}
enum AddSemicolon {
Yes,
No,
}
/// A trait implemented for all `AstFragment` nodes and providing all pieces
/// of functionality used by `InvocationCollector`.
trait InvocationCollectorNode: HasAttrs + HasNodeId + Sized {
type OutputTy = SmallVec<[Self; 1]>;
type AttrsTy: Deref<Target = [ast::Attribute]> = ast::AttrVec;
const KIND: AstFragmentKind;
fn to_annotatable(self) -> Annotatable;
fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy;
fn descr() -> &'static str {
unreachable!()
}
fn noop_flat_map<V: MutVisitor>(self, _visitor: &mut V) -> Self::OutputTy {
unreachable!()
}
fn noop_visit<V: MutVisitor>(&mut self, _visitor: &mut V) {
unreachable!()
}
fn is_mac_call(&self) -> bool {
false
}
fn take_mac_call(self) -> (P<ast::MacCall>, Self::AttrsTy, AddSemicolon) {
unreachable!()
}
fn pre_flat_map_node_collect_attr(_cfg: &StripUnconfigured<'_>, _attr: &ast::Attribute) {}
fn post_flat_map_node_collect_bang(_output: &mut Self::OutputTy, _add_semicolon: AddSemicolon) {
}
fn wrap_flat_map_node_noop_flat_map(
node: Self,
collector: &mut InvocationCollector<'_, '_>,
noop_flat_map: impl FnOnce(Self, &mut InvocationCollector<'_, '_>) -> Self::OutputTy,
) -> Result<Self::OutputTy, Self> {
Ok(noop_flat_map(node, collector))
}
fn expand_cfg_false(&mut self, collector: &mut InvocationCollector<'_, '_>, span: Span) {
collector.cx.emit_err(RemoveNodeNotSupported { span, descr: Self::descr() });
}
}
impl InvocationCollectorNode for P<ast::Item> {
const KIND: AstFragmentKind = AstFragmentKind::Items;
fn to_annotatable(self) -> Annotatable {
Annotatable::Item(self)
}
fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
fragment.make_items()
}
fn noop_flat_map<V: MutVisitor>(self, visitor: &mut V) -> Self::OutputTy {
noop_flat_map_item(self, visitor)
}
fn is_mac_call(&self) -> bool {
matches!(self.kind, ItemKind::MacCall(..))
}
fn take_mac_call(self) -> (P<ast::MacCall>, Self::AttrsTy, AddSemicolon) {
let node = self.into_inner();
match node.kind {
ItemKind::MacCall(mac) => (mac, node.attrs, AddSemicolon::No),
_ => unreachable!(),
}
}
fn wrap_flat_map_node_noop_flat_map(
mut node: Self,
collector: &mut InvocationCollector<'_, '_>,
noop_flat_map: impl FnOnce(Self, &mut InvocationCollector<'_, '_>) -> Self::OutputTy,
) -> Result<Self::OutputTy, Self> {
if !matches!(node.kind, ItemKind::Mod(..)) {
return Ok(noop_flat_map(node, collector));
}
// Work around borrow checker not seeing through `P`'s deref.
let (ident, span, mut attrs) = (node.ident, node.span, mem::take(&mut node.attrs));
let ItemKind::Mod(_, mod_kind) = &mut node.kind else {
unreachable!()
};
let ecx = &mut collector.cx;
let (file_path, dir_path, dir_ownership) = match mod_kind {
ModKind::Loaded(_, inline, _) => {
// Inline `mod foo { ... }`, but we still need to push directories.
let (dir_path, dir_ownership) = mod_dir_path(
&ecx.sess,
ident,
&attrs,
&ecx.current_expansion.module,
ecx.current_expansion.dir_ownership,
*inline,
);
node.attrs = attrs;
(None, dir_path, dir_ownership)
}
ModKind::Unloaded => {
// We have an outline `mod foo;` so we need to parse the file.
let old_attrs_len = attrs.len();
let ParsedExternalMod { items, spans, file_path, dir_path, dir_ownership } =
parse_external_mod(
&ecx.sess,
ident,
span,
&ecx.current_expansion.module,
ecx.current_expansion.dir_ownership,
&mut attrs,
);
if let Some(lint_store) = ecx.lint_store {
lint_store.pre_expansion_lint(
ecx.sess,
ecx.resolver.registered_tools(),
ecx.current_expansion.lint_node_id,
&attrs,
&items,
ident.name,
);
}
*mod_kind = ModKind::Loaded(items, Inline::No, spans);
node.attrs = attrs;
if node.attrs.len() > old_attrs_len {
// If we loaded an out-of-line module and added some inner attributes,
// then we need to re-configure it and re-collect attributes for
// resolution and expansion.
return Err(node);
}
(Some(file_path), dir_path, dir_ownership)
}
};
// Set the module info before we flat map.
let mut module = ecx.current_expansion.module.with_dir_path(dir_path);
module.mod_path.push(ident);
if let Some(file_path) = file_path {
module.file_path_stack.push(file_path);
}
let orig_module = mem::replace(&mut ecx.current_expansion.module, Rc::new(module));
let orig_dir_ownership =
mem::replace(&mut ecx.current_expansion.dir_ownership, dir_ownership);
let res = Ok(noop_flat_map(node, collector));
collector.cx.current_expansion.dir_ownership = orig_dir_ownership;
collector.cx.current_expansion.module = orig_module;
res
}
}
struct TraitItemTag;
impl InvocationCollectorNode for AstNodeWrapper<P<ast::AssocItem>, TraitItemTag> {
type OutputTy = SmallVec<[P<ast::AssocItem>; 1]>;
const KIND: AstFragmentKind = AstFragmentKind::TraitItems;
fn to_annotatable(self) -> Annotatable {
Annotatable::TraitItem(self.wrapped)
}
fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
fragment.make_trait_items()
}
fn noop_flat_map<V: MutVisitor>(self, visitor: &mut V) -> Self::OutputTy {
noop_flat_map_assoc_item(self.wrapped, visitor)
}
fn is_mac_call(&self) -> bool {
matches!(self.wrapped.kind, AssocItemKind::MacCall(..))
}
fn take_mac_call(self) -> (P<ast::MacCall>, Self::AttrsTy, AddSemicolon) {
let item = self.wrapped.into_inner();
match item.kind {
AssocItemKind::MacCall(mac) => (mac, item.attrs, AddSemicolon::No),
_ => unreachable!(),
}
}
}
struct ImplItemTag;
impl InvocationCollectorNode for AstNodeWrapper<P<ast::AssocItem>, ImplItemTag> {
type OutputTy = SmallVec<[P<ast::AssocItem>; 1]>;
const KIND: AstFragmentKind = AstFragmentKind::ImplItems;
fn to_annotatable(self) -> Annotatable {
Annotatable::ImplItem(self.wrapped)
}
fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
fragment.make_impl_items()
}
fn noop_flat_map<V: MutVisitor>(self, visitor: &mut V) -> Self::OutputTy {
noop_flat_map_assoc_item(self.wrapped, visitor)
}
fn is_mac_call(&self) -> bool {
matches!(self.wrapped.kind, AssocItemKind::MacCall(..))
}
fn take_mac_call(self) -> (P<ast::MacCall>, Self::AttrsTy, AddSemicolon) {
let item = self.wrapped.into_inner();
match item.kind {
AssocItemKind::MacCall(mac) => (mac, item.attrs, AddSemicolon::No),
_ => unreachable!(),
}
}
}
impl InvocationCollectorNode for P<ast::ForeignItem> {
const KIND: AstFragmentKind = AstFragmentKind::ForeignItems;
fn to_annotatable(self) -> Annotatable {
Annotatable::ForeignItem(self)
}
fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
fragment.make_foreign_items()
}
fn noop_flat_map<V: MutVisitor>(self, visitor: &mut V) -> Self::OutputTy {
noop_flat_map_foreign_item(self, visitor)
}
fn is_mac_call(&self) -> bool {
matches!(self.kind, ForeignItemKind::MacCall(..))
}
fn take_mac_call(self) -> (P<ast::MacCall>, Self::AttrsTy, AddSemicolon) {
let node = self.into_inner();
match node.kind {
ForeignItemKind::MacCall(mac) => (mac, node.attrs, AddSemicolon::No),
_ => unreachable!(),
}
}
}
impl InvocationCollectorNode for ast::Variant {
const KIND: AstFragmentKind = AstFragmentKind::Variants;
fn to_annotatable(self) -> Annotatable {
Annotatable::Variant(self)
}
fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
fragment.make_variants()
}
fn noop_flat_map<V: MutVisitor>(self, visitor: &mut V) -> Self::OutputTy {
noop_flat_map_variant(self, visitor)
}
}
impl InvocationCollectorNode for ast::FieldDef {
const KIND: AstFragmentKind = AstFragmentKind::FieldDefs;
fn to_annotatable(self) -> Annotatable {
Annotatable::FieldDef(self)
}
fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
fragment.make_field_defs()
}
fn noop_flat_map<V: MutVisitor>(self, visitor: &mut V) -> Self::OutputTy {
noop_flat_map_field_def(self, visitor)
}
}
impl InvocationCollectorNode for ast::PatField {
const KIND: AstFragmentKind = AstFragmentKind::PatFields;
fn to_annotatable(self) -> Annotatable {
Annotatable::PatField(self)
}
fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
fragment.make_pat_fields()
}
fn noop_flat_map<V: MutVisitor>(self, visitor: &mut V) -> Self::OutputTy {
noop_flat_map_pat_field(self, visitor)
}
}
impl InvocationCollectorNode for ast::ExprField {
const KIND: AstFragmentKind = AstFragmentKind::ExprFields;
fn to_annotatable(self) -> Annotatable {
Annotatable::ExprField(self)
}
fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
fragment.make_expr_fields()
}
fn noop_flat_map<V: MutVisitor>(self, visitor: &mut V) -> Self::OutputTy {
noop_flat_map_expr_field(self, visitor)
}
}
impl InvocationCollectorNode for ast::Param {
const KIND: AstFragmentKind = AstFragmentKind::Params;
fn to_annotatable(self) -> Annotatable {
Annotatable::Param(self)
}
fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
fragment.make_params()
}
fn noop_flat_map<V: MutVisitor>(self, visitor: &mut V) -> Self::OutputTy {
noop_flat_map_param(self, visitor)
}
}
impl InvocationCollectorNode for ast::GenericParam {
const KIND: AstFragmentKind = AstFragmentKind::GenericParams;
fn to_annotatable(self) -> Annotatable {
Annotatable::GenericParam(self)
}
fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
fragment.make_generic_params()
}
fn noop_flat_map<V: MutVisitor>(self, visitor: &mut V) -> Self::OutputTy {
noop_flat_map_generic_param(self, visitor)
}
}
impl InvocationCollectorNode for ast::Arm {
const KIND: AstFragmentKind = AstFragmentKind::Arms;
fn to_annotatable(self) -> Annotatable {
Annotatable::Arm(self)
}
fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
fragment.make_arms()
}
fn noop_flat_map<V: MutVisitor>(self, visitor: &mut V) -> Self::OutputTy {
noop_flat_map_arm(self, visitor)
}
}
impl InvocationCollectorNode for ast::Stmt {
type AttrsTy = ast::AttrVec;
const KIND: AstFragmentKind = AstFragmentKind::Stmts;
fn to_annotatable(self) -> Annotatable {
Annotatable::Stmt(P(self))
}
fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
fragment.make_stmts()
}
fn noop_flat_map<V: MutVisitor>(self, visitor: &mut V) -> Self::OutputTy {
noop_flat_map_stmt(self, visitor)
}
fn is_mac_call(&self) -> bool {
match &self.kind {
StmtKind::MacCall(..) => true,
StmtKind::Item(item) => matches!(item.kind, ItemKind::MacCall(..)),
StmtKind::Semi(expr) => matches!(expr.kind, ExprKind::MacCall(..)),
StmtKind::Expr(..) => unreachable!(),
StmtKind::Local(..) | StmtKind::Empty => false,
}
}
fn take_mac_call(self) -> (P<ast::MacCall>, Self::AttrsTy, AddSemicolon) {
// We pull macro invocations (both attributes and fn-like macro calls) out of their
// `StmtKind`s and treat them as statement macro invocations, not as items or expressions.
let (add_semicolon, mac, attrs) = match self.kind {
StmtKind::MacCall(mac) => {
let ast::MacCallStmt { mac, style, attrs, .. } = mac.into_inner();
(style == MacStmtStyle::Semicolon, mac, attrs)
}
StmtKind::Item(item) => match item.into_inner() {
ast::Item { kind: ItemKind::MacCall(mac), attrs, .. } => {
(mac.args.need_semicolon(), mac, attrs)
}
_ => unreachable!(),
},
StmtKind::Semi(expr) => match expr.into_inner() {
ast::Expr { kind: ExprKind::MacCall(mac), attrs, .. } => {
(mac.args.need_semicolon(), mac, attrs)
}
_ => unreachable!(),
},
_ => unreachable!(),
};
(mac, attrs, if add_semicolon { AddSemicolon::Yes } else { AddSemicolon::No })
}
fn post_flat_map_node_collect_bang(stmts: &mut Self::OutputTy, add_semicolon: AddSemicolon) {
// If this is a macro invocation with a semicolon, then apply that
// semicolon to the final statement produced by expansion.
if matches!(add_semicolon, AddSemicolon::Yes) {
if let Some(stmt) = stmts.pop() {
stmts.push(stmt.add_trailing_semicolon());
}
}
}
}
impl InvocationCollectorNode for ast::Crate {
type OutputTy = ast::Crate;
const KIND: AstFragmentKind = AstFragmentKind::Crate;
fn to_annotatable(self) -> Annotatable {
Annotatable::Crate(self)
}
fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
fragment.make_crate()
}
fn noop_visit<V: MutVisitor>(&mut self, visitor: &mut V) {
noop_visit_crate(self, visitor)
}
fn expand_cfg_false(&mut self, collector: &mut InvocationCollector<'_, '_>, _span: Span) {
self.attrs.clear();
// Standard prelude imports are left in the crate for backward compatibility.
self.items.truncate(collector.cx.num_standard_library_imports);
}
}
impl InvocationCollectorNode for P<ast::Ty> {
type OutputTy = P<ast::Ty>;
const KIND: AstFragmentKind = AstFragmentKind::Ty;
fn to_annotatable(self) -> Annotatable {
unreachable!()
}
fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
fragment.make_ty()
}
fn noop_visit<V: MutVisitor>(&mut self, visitor: &mut V) {
noop_visit_ty(self, visitor)
}
fn is_mac_call(&self) -> bool {
matches!(self.kind, ast::TyKind::MacCall(..))
}
fn take_mac_call(self) -> (P<ast::MacCall>, Self::AttrsTy, AddSemicolon) {
let node = self.into_inner();
match node.kind {
TyKind::MacCall(mac) => (mac, AttrVec::new(), AddSemicolon::No),
_ => unreachable!(),
}
}
}
impl InvocationCollectorNode for P<ast::Pat> {
type OutputTy = P<ast::Pat>;
const KIND: AstFragmentKind = AstFragmentKind::Pat;
fn to_annotatable(self) -> Annotatable {
unreachable!()
}
fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
fragment.make_pat()
}
fn noop_visit<V: MutVisitor>(&mut self, visitor: &mut V) {
noop_visit_pat(self, visitor)
}
fn is_mac_call(&self) -> bool {
matches!(self.kind, PatKind::MacCall(..))
}
fn take_mac_call(self) -> (P<ast::MacCall>, Self::AttrsTy, AddSemicolon) {
let node = self.into_inner();
match node.kind {
PatKind::MacCall(mac) => (mac, AttrVec::new(), AddSemicolon::No),
_ => unreachable!(),
}
}
}
impl InvocationCollectorNode for P<ast::Expr> {
type OutputTy = P<ast::Expr>;
type AttrsTy = ast::AttrVec;
const KIND: AstFragmentKind = AstFragmentKind::Expr;
fn to_annotatable(self) -> Annotatable {
Annotatable::Expr(self)
}
fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
fragment.make_expr()
}
fn descr() -> &'static str {
"an expression"
}
fn noop_visit<V: MutVisitor>(&mut self, visitor: &mut V) {
noop_visit_expr(self, visitor)
}
fn is_mac_call(&self) -> bool {
matches!(self.kind, ExprKind::MacCall(..))
}
fn take_mac_call(self) -> (P<ast::MacCall>, Self::AttrsTy, AddSemicolon) {
let node = self.into_inner();
match node.kind {
ExprKind::MacCall(mac) => (mac, node.attrs, AddSemicolon::No),
_ => unreachable!(),
}
}
}
struct OptExprTag;
impl InvocationCollectorNode for AstNodeWrapper<P<ast::Expr>, OptExprTag> {
type OutputTy = Option<P<ast::Expr>>;
type AttrsTy = ast::AttrVec;
const KIND: AstFragmentKind = AstFragmentKind::OptExpr;
fn to_annotatable(self) -> Annotatable {
Annotatable::Expr(self.wrapped)
}
fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
fragment.make_opt_expr()
}
fn noop_flat_map<V: MutVisitor>(mut self, visitor: &mut V) -> Self::OutputTy {
noop_visit_expr(&mut self.wrapped, visitor);
Some(self.wrapped)
}
fn is_mac_call(&self) -> bool {
matches!(self.wrapped.kind, ast::ExprKind::MacCall(..))
}
fn take_mac_call(self) -> (P<ast::MacCall>, Self::AttrsTy, AddSemicolon) {
let node = self.wrapped.into_inner();
match node.kind {
ExprKind::MacCall(mac) => (mac, node.attrs, AddSemicolon::No),
_ => unreachable!(),
}
}
fn pre_flat_map_node_collect_attr(cfg: &StripUnconfigured<'_>, attr: &ast::Attribute) {
cfg.maybe_emit_expr_attr_err(&attr);
}
}
/// This struct is a hack to workaround unstable of `stmt_expr_attributes`.
/// It can be removed once that feature is stabilized.
struct MethodReceiverTag;
impl DummyAstNode for MethodReceiverTag {
fn dummy() -> MethodReceiverTag {
MethodReceiverTag
}
}
impl InvocationCollectorNode for AstNodeWrapper<P<ast::Expr>, MethodReceiverTag> {
type OutputTy = Self;
type AttrsTy = ast::AttrVec;
const KIND: AstFragmentKind = AstFragmentKind::MethodReceiverExpr;
fn descr() -> &'static str {
"an expression"
}
fn to_annotatable(self) -> Annotatable {
Annotatable::Expr(self.wrapped)
}
fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
AstNodeWrapper::new(fragment.make_method_receiver_expr(), MethodReceiverTag)
}
fn noop_visit<V: MutVisitor>(&mut self, visitor: &mut V) {
noop_visit_expr(&mut self.wrapped, visitor)
}
fn is_mac_call(&self) -> bool {
matches!(self.wrapped.kind, ast::ExprKind::MacCall(..))
}
fn take_mac_call(self) -> (P<ast::MacCall>, Self::AttrsTy, AddSemicolon) {
let node = self.wrapped.into_inner();
match node.kind {
ExprKind::MacCall(mac) => (mac, node.attrs, AddSemicolon::No),
_ => unreachable!(),
}
}
}
struct InvocationCollector<'a, 'b> {
cx: &'a mut ExtCtxt<'b>,
invocations: Vec<(Invocation, Option<Lrc<SyntaxExtension>>)>,
monotonic: bool,
}
impl<'a, 'b> InvocationCollector<'a, 'b> {
fn cfg(&self) -> StripUnconfigured<'_> {
StripUnconfigured {
sess: &self.cx.sess,
features: self.cx.ecfg.features,
config_tokens: false,
lint_node_id: self.cx.current_expansion.lint_node_id,
}
}
fn collect(&mut self, fragment_kind: AstFragmentKind, kind: InvocationKind) -> AstFragment {
let expn_id = LocalExpnId::fresh_empty();
let vis = kind.placeholder_visibility();
self.invocations.push((
Invocation {
kind,
fragment_kind,
expansion_data: ExpansionData {
id: expn_id,
depth: self.cx.current_expansion.depth + 1,
..self.cx.current_expansion.clone()
},
},
None,
));
placeholder(fragment_kind, NodeId::placeholder_from_expn_id(expn_id), vis)
}
fn collect_bang(&mut self, mac: P<ast::MacCall>, kind: AstFragmentKind) -> AstFragment {
// cache the macro call span so that it can be
// easily adjusted for incremental compilation
let span = mac.span();
self.collect(kind, InvocationKind::Bang { mac, span })
}
fn collect_attr(
&mut self,
(attr, pos, derives): (ast::Attribute, usize, Vec<ast::Path>),
item: Annotatable,
kind: AstFragmentKind,
) -> AstFragment {
self.collect(kind, InvocationKind::Attr { attr, pos, item, derives })
}
/// If `item` is an attribute invocation, remove the attribute and return it together with
/// its position and derives following it. We have to collect the derives in order to resolve
/// legacy derive helpers (helpers written before derives that introduce them).
fn take_first_attr(
&self,
item: &mut impl HasAttrs,
) -> Option<(ast::Attribute, usize, Vec<ast::Path>)> {
let mut attr = None;
let mut cfg_pos = None;
let mut attr_pos = None;
for (pos, attr) in item.attrs().iter().enumerate() {
if !attr.is_doc_comment() && !self.cx.expanded_inert_attrs.is_marked(attr) {
let name = attr.ident().map(|ident| ident.name);
if name == Some(sym::cfg) || name == Some(sym::cfg_attr) {
cfg_pos = Some(pos); // a cfg attr found, no need to search anymore
break;
} else if attr_pos.is_none()
&& !name.map_or(false, rustc_feature::is_builtin_attr_name)
{
attr_pos = Some(pos); // a non-cfg attr found, still may find a cfg attr
}
}
}
item.visit_attrs(|attrs| {
attr = Some(match (cfg_pos, attr_pos) {
(Some(pos), _) => (attrs.remove(pos), pos, Vec::new()),
(_, Some(pos)) => {
let attr = attrs.remove(pos);
let following_derives = attrs[pos..]
.iter()
.filter(|a| a.has_name(sym::derive))
.flat_map(|a| a.meta_item_list().unwrap_or_default())
.filter_map(|nested_meta| match nested_meta {
NestedMetaItem::MetaItem(ast::MetaItem {
kind: MetaItemKind::Word,
path,
..
}) => Some(path),
_ => None,
})
.collect();
(attr, pos, following_derives)
}
_ => return,
});
});
attr
}
// Detect use of feature-gated or invalid attributes on macro invocations
// since they will not be detected after macro expansion.
fn check_attributes(&self, attrs: &[ast::Attribute], call: &ast::MacCall) {
let features = self.cx.ecfg.features.unwrap();
let mut attrs = attrs.iter().peekable();
let mut span: Option<Span> = None;
while let Some(attr) = attrs.next() {
rustc_ast_passes::feature_gate::check_attribute(attr, self.cx.sess, features);
validate_attr::check_attr(&self.cx.sess.parse_sess, attr);
let current_span = if let Some(sp) = span { sp.to(attr.span) } else { attr.span };
span = Some(current_span);
if attrs.peek().map_or(false, |next_attr| next_attr.doc_str().is_some()) {
continue;
}
if attr.is_doc_comment() {
self.cx.sess.parse_sess.buffer_lint_with_diagnostic(
&UNUSED_DOC_COMMENTS,
current_span,
self.cx.current_expansion.lint_node_id,
"unused doc comment",
BuiltinLintDiagnostics::UnusedDocComment(attr.span),
);
} else if rustc_attr::is_builtin_attr(attr) {
let attr_name = attr.ident().unwrap().name;
// `#[cfg]` and `#[cfg_attr]` are special - they are
// eagerly evaluated.
if attr_name != sym::cfg && attr_name != sym::cfg_attr {
self.cx.sess.parse_sess.buffer_lint_with_diagnostic(
&UNUSED_ATTRIBUTES,
attr.span,
self.cx.current_expansion.lint_node_id,
&format!("unused attribute `{}`", attr_name),
BuiltinLintDiagnostics::UnusedBuiltinAttribute {
attr_name,
macro_name: pprust::path_to_string(&call.path),
invoc_span: call.path.span,
},
);
}
}
}
}
fn expand_cfg_true(
&mut self,
node: &mut impl HasAttrs,
attr: ast::Attribute,
pos: usize,
) -> bool {
let res = self.cfg().cfg_true(&attr);
if res {
// FIXME: `cfg(TRUE)` attributes do not currently remove themselves during expansion,
// and some tools like rustdoc and clippy rely on that. Find a way to remove them
// while keeping the tools working.
self.cx.expanded_inert_attrs.mark(&attr);
node.visit_attrs(|attrs| attrs.insert(pos, attr));
}
res
}
fn expand_cfg_attr(&self, node: &mut impl HasAttrs, attr: &ast::Attribute, pos: usize) {
node.visit_attrs(|attrs| {
// Repeated `insert` calls is inefficient, but the number of
// insertions is almost always 0 or 1 in practice.
for cfg in self.cfg().expand_cfg_attr(attr, false).into_iter().rev() {
attrs.insert(pos, cfg)
}
});
}
fn flat_map_node<Node: InvocationCollectorNode<OutputTy: Default>>(
&mut self,
mut node: Node,
) -> Node::OutputTy {
loop {
return match self.take_first_attr(&mut node) {
Some((attr, pos, derives)) => match attr.name_or_empty() {
sym::cfg => {
if self.expand_cfg_true(&mut node, attr, pos) {
continue;
}
Default::default()
}
sym::cfg_attr => {
self.expand_cfg_attr(&mut node, &attr, pos);
continue;
}
_ => {
Node::pre_flat_map_node_collect_attr(&self.cfg(), &attr);
self.collect_attr((attr, pos, derives), node.to_annotatable(), Node::KIND)
.make_ast::<Node>()
}
},
None if node.is_mac_call() => {
let (mac, attrs, add_semicolon) = node.take_mac_call();
self.check_attributes(&attrs, &mac);
let mut res = self.collect_bang(mac, Node::KIND).make_ast::<Node>();
Node::post_flat_map_node_collect_bang(&mut res, add_semicolon);
res
}
None => {
match Node::wrap_flat_map_node_noop_flat_map(node, self, |mut node, this| {
assign_id!(this, node.node_id_mut(), || node.noop_flat_map(this))
}) {
Ok(output) => output,
Err(returned_node) => {
node = returned_node;
continue;
}
}
}
};
}
}
fn visit_node<Node: InvocationCollectorNode<OutputTy = Node> + DummyAstNode>(
&mut self,
node: &mut Node,
) {
loop {
return match self.take_first_attr(node) {
Some((attr, pos, derives)) => match attr.name_or_empty() {
sym::cfg => {
let span = attr.span;
if self.expand_cfg_true(node, attr, pos) {
continue;
}
node.expand_cfg_false(self, span);
continue;
}
sym::cfg_attr => {
self.expand_cfg_attr(node, &attr, pos);
continue;
}
_ => visit_clobber(node, |node| {
self.collect_attr((attr, pos, derives), node.to_annotatable(), Node::KIND)
.make_ast::<Node>()
}),
},
None if node.is_mac_call() => {
visit_clobber(node, |node| {
// Do not clobber unless it's actually a macro (uncommon case).
let (mac, attrs, _) = node.take_mac_call();
self.check_attributes(&attrs, &mac);
self.collect_bang(mac, Node::KIND).make_ast::<Node>()
})
}
None => {
assign_id!(self, node.node_id_mut(), || node.noop_visit(self))
}
};
}
}
}
impl<'a, 'b> MutVisitor for InvocationCollector<'a, 'b> {
fn flat_map_item(&mut self, node: P<ast::Item>) -> SmallVec<[P<ast::Item>; 1]> {
self.flat_map_node(node)
}
fn flat_map_trait_item(&mut self, node: P<ast::AssocItem>) -> SmallVec<[P<ast::AssocItem>; 1]> {
self.flat_map_node(AstNodeWrapper::new(node, TraitItemTag))
}
fn flat_map_impl_item(&mut self, node: P<ast::AssocItem>) -> SmallVec<[P<ast::AssocItem>; 1]> {
self.flat_map_node(AstNodeWrapper::new(node, ImplItemTag))
}
fn flat_map_foreign_item(
&mut self,
node: P<ast::ForeignItem>,
) -> SmallVec<[P<ast::ForeignItem>; 1]> {
self.flat_map_node(node)
}
fn flat_map_variant(&mut self, node: ast::Variant) -> SmallVec<[ast::Variant; 1]> {
self.flat_map_node(node)
}
fn flat_map_field_def(&mut self, node: ast::FieldDef) -> SmallVec<[ast::FieldDef; 1]> {
self.flat_map_node(node)
}
fn flat_map_pat_field(&mut self, node: ast::PatField) -> SmallVec<[ast::PatField; 1]> {
self.flat_map_node(node)
}
fn flat_map_expr_field(&mut self, node: ast::ExprField) -> SmallVec<[ast::ExprField; 1]> {
self.flat_map_node(node)
}
fn flat_map_param(&mut self, node: ast::Param) -> SmallVec<[ast::Param; 1]> {
self.flat_map_node(node)
}
fn flat_map_generic_param(
&mut self,
node: ast::GenericParam,
) -> SmallVec<[ast::GenericParam; 1]> {
self.flat_map_node(node)
}
fn flat_map_arm(&mut self, node: ast::Arm) -> SmallVec<[ast::Arm; 1]> {
self.flat_map_node(node)
}
fn flat_map_stmt(&mut self, node: ast::Stmt) -> SmallVec<[ast::Stmt; 1]> {
// FIXME: invocations in semicolon-less expressions positions are expanded as expressions,
// changing that requires some compatibility measures.
if node.is_expr() {
// The only way that we can end up with a `MacCall` expression statement,
// (as opposed to a `StmtKind::MacCall`) is if we have a macro as the
// trailing expression in a block (e.g. `fn foo() { my_macro!() }`).
// Record this information, so that we can report a more specific
// `SEMICOLON_IN_EXPRESSIONS_FROM_MACROS` lint if needed.
// See #78991 for an investigation of treating macros in this position
// as statements, rather than expressions, during parsing.
return match &node.kind {
StmtKind::Expr(expr)
if matches!(**expr, ast::Expr { kind: ExprKind::MacCall(..), .. }) =>
{
self.cx.current_expansion.is_trailing_mac = true;
// Don't use `assign_id` for this statement - it may get removed
// entirely due to a `#[cfg]` on the contained expression
let res = noop_flat_map_stmt(node, self);
self.cx.current_expansion.is_trailing_mac = false;
res
}
_ => noop_flat_map_stmt(node, self),
};
}
self.flat_map_node(node)
}
fn visit_crate(&mut self, node: &mut ast::Crate) {
self.visit_node(node)
}
fn visit_ty(&mut self, node: &mut P<ast::Ty>) {
self.visit_node(node)
}
fn visit_pat(&mut self, node: &mut P<ast::Pat>) {
self.visit_node(node)
}
fn visit_expr(&mut self, node: &mut P<ast::Expr>) {
// FIXME: Feature gating is performed inconsistently between `Expr` and `OptExpr`.
if let Some(attr) = node.attrs.first() {
self.cfg().maybe_emit_expr_attr_err(attr);
}
self.visit_node(node)
}
fn visit_method_receiver_expr(&mut self, node: &mut P<ast::Expr>) {
visit_clobber(node, |node| {
let mut wrapper = AstNodeWrapper::new(node, MethodReceiverTag);
self.visit_node(&mut wrapper);
wrapper.wrapped
})
}
fn filter_map_expr(&mut self, node: P<ast::Expr>) -> Option<P<ast::Expr>> {
self.flat_map_node(AstNodeWrapper::new(node, OptExprTag))
}
fn visit_block(&mut self, node: &mut P<ast::Block>) {
let orig_dir_ownership = mem::replace(
&mut self.cx.current_expansion.dir_ownership,
DirOwnership::UnownedViaBlock,
);
noop_visit_block(node, self);
self.cx.current_expansion.dir_ownership = orig_dir_ownership;
}
fn visit_id(&mut self, id: &mut NodeId) {
// We may have already assigned a `NodeId`
// by calling `assign_id`
if self.monotonic && *id == ast::DUMMY_NODE_ID {
*id = self.cx.resolver.next_node_id();
}
}
}
pub struct ExpansionConfig<'feat> {
pub crate_name: String,
pub features: Option<&'feat Features>,
pub recursion_limit: Limit,
pub trace_mac: bool,
/// If false, strip `#[test]` nodes
pub should_test: bool,
/// If true, use verbose debugging for `proc_macro::Span`
pub span_debug: bool,
/// If true, show backtraces for proc-macro panics
pub proc_macro_backtrace: bool,
}
impl<'feat> ExpansionConfig<'feat> {
pub fn default(crate_name: String) -> ExpansionConfig<'static> {
ExpansionConfig {
crate_name,
features: None,
recursion_limit: Limit::new(1024),
trace_mac: false,
should_test: false,
span_debug: false,
proc_macro_backtrace: false,
}
}
fn proc_macro_hygiene(&self) -> bool {
self.features.map_or(false, |features| features.proc_macro_hygiene)
}
}