Nilstrieb 5830ca216d Add internal_features lint
It lints against features that are inteded to be internal to the
compiler and standard library. Implements MCP #596.

We allow `internal_features` in the standard library and compiler as those
use many features and this _is_ the standard library from the "internal to the compiler and
standard library" after all.

Marking some features as internal wasn't exactly the most scientific approach, I just marked some
mostly obvious features. While there is a categorization in the macro,
it's not very well upheld (should probably be fixed in another PR).

We always pass `-Ainternal_features` in the testsuite
About 400 UI tests and several other tests use internal features.
Instead of throwing the attribute on each one, just always allow them.
There's nothing wrong with testing internal features^^
2023-08-03 14:50:50 +02:00

678 lines
23 KiB
Rust

//! The arena, a fast but limited type of allocator.
//!
//! Arenas are a type of allocator that destroy the objects within, all at
//! once, once the arena itself is destroyed. They do not support deallocation
//! of individual objects while the arena itself is still alive. The benefit
//! of an arena is very fast allocation; just a pointer bump.
//!
//! This crate implements several kinds of arena.
#![doc(
html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/",
test(no_crate_inject, attr(deny(warnings)))
)]
#![feature(dropck_eyepatch)]
#![feature(new_uninit)]
#![feature(maybe_uninit_slice)]
#![feature(min_specialization)]
#![feature(decl_macro)]
#![feature(pointer_byte_offsets)]
#![feature(rustc_attrs)]
#![cfg_attr(test, feature(test))]
#![feature(strict_provenance)]
#![deny(unsafe_op_in_unsafe_fn)]
#![deny(rustc::untranslatable_diagnostic)]
#![deny(rustc::diagnostic_outside_of_impl)]
#![cfg_attr(not(bootstrap), allow(internal_features))]
#![allow(clippy::mut_from_ref)] // Arena allocators are one of the places where this pattern is fine.
use smallvec::SmallVec;
use std::alloc::Layout;
use std::cell::{Cell, RefCell};
use std::cmp;
use std::marker::PhantomData;
use std::mem::{self, MaybeUninit};
use std::ptr::{self, NonNull};
use std::slice;
#[inline(never)]
#[cold]
fn cold_path<F: FnOnce() -> R, R>(f: F) -> R {
f()
}
/// An arena that can hold objects of only one type.
pub struct TypedArena<T> {
/// A pointer to the next object to be allocated.
ptr: Cell<*mut T>,
/// A pointer to the end of the allocated area. When this pointer is
/// reached, a new chunk is allocated.
end: Cell<*mut T>,
/// A vector of arena chunks.
chunks: RefCell<Vec<ArenaChunk<T>>>,
/// Marker indicating that dropping the arena causes its owned
/// instances of `T` to be dropped.
_own: PhantomData<T>,
}
struct ArenaChunk<T = u8> {
/// The raw storage for the arena chunk.
storage: NonNull<[MaybeUninit<T>]>,
/// The number of valid entries in the chunk.
entries: usize,
}
unsafe impl<#[may_dangle] T> Drop for ArenaChunk<T> {
fn drop(&mut self) {
unsafe { drop(Box::from_raw(self.storage.as_mut())) }
}
}
impl<T> ArenaChunk<T> {
#[inline]
unsafe fn new(capacity: usize) -> ArenaChunk<T> {
ArenaChunk {
storage: NonNull::from(Box::leak(Box::new_uninit_slice(capacity))),
entries: 0,
}
}
/// Destroys this arena chunk.
///
/// # Safety
///
/// The caller must ensure that `len` elements of this chunk have been initialized.
#[inline]
unsafe fn destroy(&mut self, len: usize) {
// The branch on needs_drop() is an -O1 performance optimization.
// Without the branch, dropping TypedArena<T> takes linear time.
if mem::needs_drop::<T>() {
// SAFETY: The caller must ensure that `len` elements of this chunk have
// been initialized.
unsafe {
let slice = self.storage.as_mut();
ptr::drop_in_place(MaybeUninit::slice_assume_init_mut(&mut slice[..len]));
}
}
}
// Returns a pointer to the first allocated object.
#[inline]
fn start(&mut self) -> *mut T {
self.storage.as_ptr() as *mut T
}
// Returns a pointer to the end of the allocated space.
#[inline]
fn end(&mut self) -> *mut T {
unsafe {
if mem::size_of::<T>() == 0 {
// A pointer as large as possible for zero-sized elements.
ptr::invalid_mut(!0)
} else {
self.start().add(self.storage.len())
}
}
}
}
// The arenas start with PAGE-sized chunks, and then each new chunk is twice as
// big as its predecessor, up until we reach HUGE_PAGE-sized chunks, whereupon
// we stop growing. This scales well, from arenas that are barely used up to
// arenas that are used for 100s of MiBs. Note also that the chosen sizes match
// the usual sizes of pages and huge pages on Linux.
const PAGE: usize = 4096;
const HUGE_PAGE: usize = 2 * 1024 * 1024;
impl<T> Default for TypedArena<T> {
/// Creates a new `TypedArena`.
fn default() -> TypedArena<T> {
TypedArena {
// We set both `ptr` and `end` to 0 so that the first call to
// alloc() will trigger a grow().
ptr: Cell::new(ptr::null_mut()),
end: Cell::new(ptr::null_mut()),
chunks: Default::default(),
_own: PhantomData,
}
}
}
trait IterExt<T> {
fn alloc_from_iter(self, arena: &TypedArena<T>) -> &mut [T];
}
impl<I, T> IterExt<T> for I
where
I: IntoIterator<Item = T>,
{
// This default collects into a `SmallVec` and then allocates by copying
// from it. The specializations below for types like `Vec` are more
// efficient, copying directly without the intermediate collecting step.
// This default could be made more efficient, like
// `DroplessArena::alloc_from_iter`, but it's not hot enough to bother.
#[inline]
default fn alloc_from_iter(self, arena: &TypedArena<T>) -> &mut [T] {
let vec: SmallVec<[_; 8]> = self.into_iter().collect();
vec.alloc_from_iter(arena)
}
}
impl<T, const N: usize> IterExt<T> for std::array::IntoIter<T, N> {
#[inline]
fn alloc_from_iter(self, arena: &TypedArena<T>) -> &mut [T] {
let len = self.len();
if len == 0 {
return &mut [];
}
// Move the content to the arena by copying and then forgetting it.
unsafe {
let start_ptr = arena.alloc_raw_slice(len);
self.as_slice().as_ptr().copy_to_nonoverlapping(start_ptr, len);
mem::forget(self);
slice::from_raw_parts_mut(start_ptr, len)
}
}
}
impl<T> IterExt<T> for Vec<T> {
#[inline]
fn alloc_from_iter(mut self, arena: &TypedArena<T>) -> &mut [T] {
let len = self.len();
if len == 0 {
return &mut [];
}
// Move the content to the arena by copying and then forgetting it.
unsafe {
let start_ptr = arena.alloc_raw_slice(len);
self.as_ptr().copy_to_nonoverlapping(start_ptr, len);
self.set_len(0);
slice::from_raw_parts_mut(start_ptr, len)
}
}
}
impl<A: smallvec::Array> IterExt<A::Item> for SmallVec<A> {
#[inline]
fn alloc_from_iter(mut self, arena: &TypedArena<A::Item>) -> &mut [A::Item] {
let len = self.len();
if len == 0 {
return &mut [];
}
// Move the content to the arena by copying and then forgetting it.
unsafe {
let start_ptr = arena.alloc_raw_slice(len);
self.as_ptr().copy_to_nonoverlapping(start_ptr, len);
self.set_len(0);
slice::from_raw_parts_mut(start_ptr, len)
}
}
}
impl<T> TypedArena<T> {
/// Allocates an object in the `TypedArena`, returning a reference to it.
#[inline]
pub fn alloc(&self, object: T) -> &mut T {
if self.ptr == self.end {
self.grow(1)
}
unsafe {
if mem::size_of::<T>() == 0 {
self.ptr.set(self.ptr.get().wrapping_byte_add(1));
let ptr = ptr::NonNull::<T>::dangling().as_ptr();
// Don't drop the object. This `write` is equivalent to `forget`.
ptr::write(ptr, object);
&mut *ptr
} else {
let ptr = self.ptr.get();
// Advance the pointer.
self.ptr.set(self.ptr.get().add(1));
// Write into uninitialized memory.
ptr::write(ptr, object);
&mut *ptr
}
}
}
#[inline]
fn can_allocate(&self, additional: usize) -> bool {
// FIXME: this should *likely* use `offset_from`, but more
// investigation is needed (including running tests in miri).
let available_bytes = self.end.get().addr() - self.ptr.get().addr();
let additional_bytes = additional.checked_mul(mem::size_of::<T>()).unwrap();
available_bytes >= additional_bytes
}
/// Ensures there's enough space in the current chunk to fit `len` objects.
#[inline]
fn ensure_capacity(&self, additional: usize) {
if !self.can_allocate(additional) {
self.grow(additional);
debug_assert!(self.can_allocate(additional));
}
}
#[inline]
unsafe fn alloc_raw_slice(&self, len: usize) -> *mut T {
assert!(mem::size_of::<T>() != 0);
assert!(len != 0);
self.ensure_capacity(len);
let start_ptr = self.ptr.get();
// SAFETY: `self.ensure_capacity` makes sure that there is enough space
// for `len` elements.
unsafe { self.ptr.set(start_ptr.add(len)) };
start_ptr
}
#[inline]
pub fn alloc_from_iter<I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
assert!(mem::size_of::<T>() != 0);
iter.alloc_from_iter(self)
}
/// Grows the arena.
#[inline(never)]
#[cold]
fn grow(&self, additional: usize) {
unsafe {
// We need the element size to convert chunk sizes (ranging from
// PAGE to HUGE_PAGE bytes) to element counts.
let elem_size = cmp::max(1, mem::size_of::<T>());
let mut chunks = self.chunks.borrow_mut();
let mut new_cap;
if let Some(last_chunk) = chunks.last_mut() {
// If a type is `!needs_drop`, we don't need to keep track of how many elements
// the chunk stores - the field will be ignored anyway.
if mem::needs_drop::<T>() {
// FIXME: this should *likely* use `offset_from`, but more
// investigation is needed (including running tests in miri).
let used_bytes = self.ptr.get().addr() - last_chunk.start().addr();
last_chunk.entries = used_bytes / mem::size_of::<T>();
}
// If the previous chunk's len is less than HUGE_PAGE
// bytes, then this chunk will be least double the previous
// chunk's size.
new_cap = last_chunk.storage.len().min(HUGE_PAGE / elem_size / 2);
new_cap *= 2;
} else {
new_cap = PAGE / elem_size;
}
// Also ensure that this chunk can fit `additional`.
new_cap = cmp::max(additional, new_cap);
let mut chunk = ArenaChunk::<T>::new(new_cap);
self.ptr.set(chunk.start());
self.end.set(chunk.end());
chunks.push(chunk);
}
}
// Drops the contents of the last chunk. The last chunk is partially empty, unlike all other
// chunks.
fn clear_last_chunk(&self, last_chunk: &mut ArenaChunk<T>) {
// Determine how much was filled.
let start = last_chunk.start().addr();
// We obtain the value of the pointer to the first uninitialized element.
let end = self.ptr.get().addr();
// We then calculate the number of elements to be dropped in the last chunk,
// which is the filled area's length.
let diff = if mem::size_of::<T>() == 0 {
// `T` is ZST. It can't have a drop flag, so the value here doesn't matter. We get
// the number of zero-sized values in the last and only chunk, just out of caution.
// Recall that `end` was incremented for each allocated value.
end - start
} else {
// FIXME: this should *likely* use `offset_from`, but more
// investigation is needed (including running tests in miri).
(end - start) / mem::size_of::<T>()
};
// Pass that to the `destroy` method.
unsafe {
last_chunk.destroy(diff);
}
// Reset the chunk.
self.ptr.set(last_chunk.start());
}
}
unsafe impl<#[may_dangle] T> Drop for TypedArena<T> {
fn drop(&mut self) {
unsafe {
// Determine how much was filled.
let mut chunks_borrow = self.chunks.borrow_mut();
if let Some(mut last_chunk) = chunks_borrow.pop() {
// Drop the contents of the last chunk.
self.clear_last_chunk(&mut last_chunk);
// The last chunk will be dropped. Destroy all other chunks.
for chunk in chunks_borrow.iter_mut() {
chunk.destroy(chunk.entries);
}
}
// Box handles deallocation of `last_chunk` and `self.chunks`.
}
}
}
unsafe impl<T: Send> Send for TypedArena<T> {}
/// An arena that can hold objects of multiple different types that impl `Copy`
/// and/or satisfy `!mem::needs_drop`.
pub struct DroplessArena {
/// A pointer to the start of the free space.
start: Cell<*mut u8>,
/// A pointer to the end of free space.
///
/// The allocation proceeds downwards from the end of the chunk towards the
/// start. (This is slightly simpler and faster than allocating upwards,
/// see <https://fitzgeraldnick.com/2019/11/01/always-bump-downwards.html>.)
/// When this pointer crosses the start pointer, a new chunk is allocated.
end: Cell<*mut u8>,
/// A vector of arena chunks.
chunks: RefCell<Vec<ArenaChunk>>,
}
unsafe impl Send for DroplessArena {}
impl Default for DroplessArena {
#[inline]
fn default() -> DroplessArena {
DroplessArena {
start: Cell::new(ptr::null_mut()),
end: Cell::new(ptr::null_mut()),
chunks: Default::default(),
}
}
}
impl DroplessArena {
#[inline(never)]
#[cold]
fn grow(&self, additional: usize) {
unsafe {
let mut chunks = self.chunks.borrow_mut();
let mut new_cap;
if let Some(last_chunk) = chunks.last_mut() {
// There is no need to update `last_chunk.entries` because that
// field isn't used by `DroplessArena`.
// If the previous chunk's len is less than HUGE_PAGE
// bytes, then this chunk will be least double the previous
// chunk's size.
new_cap = last_chunk.storage.len().min(HUGE_PAGE / 2);
new_cap *= 2;
} else {
new_cap = PAGE;
}
// Also ensure that this chunk can fit `additional`.
new_cap = cmp::max(additional, new_cap);
let mut chunk = ArenaChunk::new(new_cap);
self.start.set(chunk.start());
self.end.set(chunk.end());
chunks.push(chunk);
}
}
/// Allocates a byte slice with specified layout from the current memory
/// chunk. Returns `None` if there is no free space left to satisfy the
/// request.
#[inline]
fn alloc_raw_without_grow(&self, layout: Layout) -> Option<*mut u8> {
let start = self.start.get().addr();
let old_end = self.end.get();
let end = old_end.addr();
let align = layout.align();
let bytes = layout.size();
let new_end = end.checked_sub(bytes)? & !(align - 1);
if start <= new_end {
let new_end = old_end.with_addr(new_end);
self.end.set(new_end);
Some(new_end)
} else {
None
}
}
#[inline]
pub fn alloc_raw(&self, layout: Layout) -> *mut u8 {
assert!(layout.size() != 0);
loop {
if let Some(a) = self.alloc_raw_without_grow(layout) {
break a;
}
// No free space left. Allocate a new chunk to satisfy the request.
// On failure the grow will panic or abort.
self.grow(layout.size());
}
}
#[inline]
pub fn alloc<T>(&self, object: T) -> &mut T {
assert!(!mem::needs_drop::<T>());
let mem = self.alloc_raw(Layout::for_value::<T>(&object)) as *mut T;
unsafe {
// Write into uninitialized memory.
ptr::write(mem, object);
&mut *mem
}
}
/// Allocates a slice of objects that are copied into the `DroplessArena`, returning a mutable
/// reference to it. Will panic if passed a zero-sized type.
///
/// Panics:
///
/// - Zero-sized types
/// - Zero-length slices
#[inline]
pub fn alloc_slice<T>(&self, slice: &[T]) -> &mut [T]
where
T: Copy,
{
assert!(!mem::needs_drop::<T>());
assert!(mem::size_of::<T>() != 0);
assert!(!slice.is_empty());
let mem = self.alloc_raw(Layout::for_value::<[T]>(slice)) as *mut T;
unsafe {
mem.copy_from_nonoverlapping(slice.as_ptr(), slice.len());
slice::from_raw_parts_mut(mem, slice.len())
}
}
/// # Safety
///
/// The caller must ensure that `mem` is valid for writes up to
/// `size_of::<T>() * len`.
#[inline]
unsafe fn write_from_iter<T, I: Iterator<Item = T>>(
&self,
mut iter: I,
len: usize,
mem: *mut T,
) -> &mut [T] {
let mut i = 0;
// Use a manual loop since LLVM manages to optimize it better for
// slice iterators
loop {
// SAFETY: The caller must ensure that `mem` is valid for writes up to
// `size_of::<T>() * len`.
unsafe {
match iter.next() {
Some(value) if i < len => mem.add(i).write(value),
Some(_) | None => {
// We only return as many items as the iterator gave us, even
// though it was supposed to give us `len`
return slice::from_raw_parts_mut(mem, i);
}
}
}
i += 1;
}
}
#[inline]
pub fn alloc_from_iter<T, I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
let iter = iter.into_iter();
assert!(mem::size_of::<T>() != 0);
assert!(!mem::needs_drop::<T>());
let size_hint = iter.size_hint();
match size_hint {
(min, Some(max)) if min == max => {
// We know the exact number of elements the iterator will produce here
let len = min;
if len == 0 {
return &mut [];
}
let mem = self.alloc_raw(Layout::array::<T>(len).unwrap()) as *mut T;
unsafe { self.write_from_iter(iter, len, mem) }
}
(_, _) => {
cold_path(move || -> &mut [T] {
let mut vec: SmallVec<[_; 8]> = iter.collect();
if vec.is_empty() {
return &mut [];
}
// Move the content to the arena by copying it and then forgetting
// the content of the SmallVec
unsafe {
let len = vec.len();
let start_ptr =
self.alloc_raw(Layout::for_value::<[T]>(vec.as_slice())) as *mut T;
vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
vec.set_len(0);
slice::from_raw_parts_mut(start_ptr, len)
}
})
}
}
}
}
/// Declare an `Arena` containing one dropless arena and many typed arenas (the
/// types of the typed arenas are specified by the arguments).
///
/// There are three cases of interest.
/// - Types that are `Copy`: these need not be specified in the arguments. They
/// will use the `DroplessArena`.
/// - Types that are `!Copy` and `!Drop`: these must be specified in the
/// arguments. An empty `TypedArena` will be created for each one, but the
/// `DroplessArena` will always be used and the `TypedArena` will stay empty.
/// This is odd but harmless, because an empty arena allocates no memory.
/// - Types that are `!Copy` and `Drop`: these must be specified in the
/// arguments. The `TypedArena` will be used for them.
///
#[rustc_macro_transparency = "semitransparent"]
pub macro declare_arena([$($a:tt $name:ident: $ty:ty,)*]) {
#[derive(Default)]
pub struct Arena<'tcx> {
pub dropless: $crate::DroplessArena,
$($name: $crate::TypedArena<$ty>,)*
}
pub trait ArenaAllocatable<'tcx, C = rustc_arena::IsNotCopy>: Sized {
#[allow(clippy::mut_from_ref)]
fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self;
#[allow(clippy::mut_from_ref)]
fn allocate_from_iter<'a>(
arena: &'a Arena<'tcx>,
iter: impl ::std::iter::IntoIterator<Item = Self>,
) -> &'a mut [Self];
}
// Any type that impls `Copy` can be arena-allocated in the `DroplessArena`.
impl<'tcx, T: Copy> ArenaAllocatable<'tcx, rustc_arena::IsCopy> for T {
#[inline]
#[allow(clippy::mut_from_ref)]
fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self {
arena.dropless.alloc(self)
}
#[inline]
#[allow(clippy::mut_from_ref)]
fn allocate_from_iter<'a>(
arena: &'a Arena<'tcx>,
iter: impl ::std::iter::IntoIterator<Item = Self>,
) -> &'a mut [Self] {
arena.dropless.alloc_from_iter(iter)
}
}
$(
impl<'tcx> ArenaAllocatable<'tcx, rustc_arena::IsNotCopy> for $ty {
#[inline]
fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self {
if !::std::mem::needs_drop::<Self>() {
arena.dropless.alloc(self)
} else {
arena.$name.alloc(self)
}
}
#[inline]
#[allow(clippy::mut_from_ref)]
fn allocate_from_iter<'a>(
arena: &'a Arena<'tcx>,
iter: impl ::std::iter::IntoIterator<Item = Self>,
) -> &'a mut [Self] {
if !::std::mem::needs_drop::<Self>() {
arena.dropless.alloc_from_iter(iter)
} else {
arena.$name.alloc_from_iter(iter)
}
}
}
)*
impl<'tcx> Arena<'tcx> {
#[inline]
#[allow(clippy::mut_from_ref)]
pub fn alloc<T: ArenaAllocatable<'tcx, C>, C>(&self, value: T) -> &mut T {
value.allocate_on(self)
}
// Any type that impls `Copy` can have slices be arena-allocated in the `DroplessArena`.
#[inline]
#[allow(clippy::mut_from_ref)]
pub fn alloc_slice<T: ::std::marker::Copy>(&self, value: &[T]) -> &mut [T] {
if value.is_empty() {
return &mut [];
}
self.dropless.alloc_slice(value)
}
#[allow(clippy::mut_from_ref)]
pub fn alloc_from_iter<'a, T: ArenaAllocatable<'tcx, C>, C>(
&'a self,
iter: impl ::std::iter::IntoIterator<Item = T>,
) -> &'a mut [T] {
T::allocate_from_iter(self, iter)
}
}
}
// Marker types that let us give different behaviour for arenas allocating
// `Copy` types vs `!Copy` types.
pub struct IsCopy;
pub struct IsNotCopy;
#[cfg(test)]
mod tests;