rust/src/operator.rs
2017-06-21 21:02:11 -07:00

310 lines
12 KiB
Rust

use rustc::mir;
use rustc::ty::{self, Ty};
use error::{EvalError, EvalResult};
use eval_context::EvalContext;
use lvalue::Lvalue;
use value::{
PrimVal,
PrimValKind,
Value,
bytes_to_f32,
bytes_to_f64,
f32_to_bytes,
f64_to_bytes,
bytes_to_bool,
};
impl<'a, 'tcx> EvalContext<'a, 'tcx> {
fn binop_with_overflow(
&mut self,
op: mir::BinOp,
left: &mir::Operand<'tcx>,
right: &mir::Operand<'tcx>,
) -> EvalResult<'tcx, (PrimVal, bool)> {
let left_ty = self.operand_ty(left);
let right_ty = self.operand_ty(right);
let left_val = self.eval_operand_to_primval(left)?;
let right_val = self.eval_operand_to_primval(right)?;
self.binary_op(op, left_val, left_ty, right_val, right_ty)
}
/// Applies the binary operation `op` to the two operands and writes a tuple of the result
/// and a boolean signifying the potential overflow to the destination.
pub(super) fn intrinsic_with_overflow(
&mut self,
op: mir::BinOp,
left: &mir::Operand<'tcx>,
right: &mir::Operand<'tcx>,
dest: Lvalue<'tcx>,
dest_ty: Ty<'tcx>,
) -> EvalResult<'tcx> {
let (val, overflowed) = self.binop_with_overflow(op, left, right)?;
let val = Value::ByValPair(val, PrimVal::from_bool(overflowed));
self.write_value(val, dest, dest_ty)
}
/// Applies the binary operation `op` to the arguments and writes the result to the
/// destination. Returns `true` if the operation overflowed.
pub(super) fn intrinsic_overflowing(
&mut self,
op: mir::BinOp,
left: &mir::Operand<'tcx>,
right: &mir::Operand<'tcx>,
dest: Lvalue<'tcx>,
dest_ty: Ty<'tcx>,
) -> EvalResult<'tcx, bool> {
let (val, overflowed) = self.binop_with_overflow(op, left, right)?;
self.write_primval(dest, val, dest_ty)?;
Ok(overflowed)
}
}
macro_rules! overflow {
($op:ident, $l:expr, $r:expr) => ({
let (val, overflowed) = $l.$op($r);
let primval = PrimVal::Bytes(val as u128);
Ok((primval, overflowed))
})
}
macro_rules! int_arithmetic {
($kind:expr, $int_op:ident, $l:expr, $r:expr) => ({
let l = $l;
let r = $r;
use value::PrimValKind::*;
match $kind {
I8 => overflow!($int_op, l as i8, r as i8),
I16 => overflow!($int_op, l as i16, r as i16),
I32 => overflow!($int_op, l as i32, r as i32),
I64 => overflow!($int_op, l as i64, r as i64),
I128 => overflow!($int_op, l as i128, r as i128),
U8 => overflow!($int_op, l as u8, r as u8),
U16 => overflow!($int_op, l as u16, r as u16),
U32 => overflow!($int_op, l as u32, r as u32),
U64 => overflow!($int_op, l as u64, r as u64),
U128 => overflow!($int_op, l as u128, r as u128),
_ => bug!("int_arithmetic should only be called on int primvals"),
}
})
}
macro_rules! int_shift {
($kind:expr, $int_op:ident, $l:expr, $r:expr) => ({
let l = $l;
let r = $r;
match $kind {
I8 => overflow!($int_op, l as i8, r),
I16 => overflow!($int_op, l as i16, r),
I32 => overflow!($int_op, l as i32, r),
I64 => overflow!($int_op, l as i64, r),
I128 => overflow!($int_op, l as i128, r),
U8 => overflow!($int_op, l as u8, r),
U16 => overflow!($int_op, l as u16, r),
U32 => overflow!($int_op, l as u32, r),
U64 => overflow!($int_op, l as u64, r),
U128 => overflow!($int_op, l as u128, r),
_ => bug!("int_shift should only be called on int primvals"),
}
})
}
macro_rules! float_arithmetic {
($from_bytes:ident, $to_bytes:ident, $float_op:tt, $l:expr, $r:expr) => ({
let l = $from_bytes($l);
let r = $from_bytes($r);
let bytes = $to_bytes(l $float_op r);
PrimVal::Bytes(bytes)
})
}
macro_rules! f32_arithmetic {
($float_op:tt, $l:expr, $r:expr) => (
float_arithmetic!(bytes_to_f32, f32_to_bytes, $float_op, $l, $r)
)
}
macro_rules! f64_arithmetic {
($float_op:tt, $l:expr, $r:expr) => (
float_arithmetic!(bytes_to_f64, f64_to_bytes, $float_op, $l, $r)
)
}
impl<'a, 'tcx> EvalContext<'a, 'tcx> {
/// Returns the result of the specified operation and whether it overflowed.
pub fn binary_op(
&self,
bin_op: mir::BinOp,
left: PrimVal,
left_ty: Ty<'tcx>,
right: PrimVal,
right_ty: Ty<'tcx>,
) -> EvalResult<'tcx, (PrimVal, bool)> {
use rustc::mir::BinOp::*;
use value::PrimValKind::*;
let left_kind = self.ty_to_primval_kind(left_ty)?;
let right_kind = self.ty_to_primval_kind(right_ty)?;
// I: Handle operations that support pointers
let usize = PrimValKind::from_uint_size(self.memory.pointer_size());
let isize = PrimValKind::from_int_size(self.memory.pointer_size());
if !left_kind.is_float() && !right_kind.is_float() {
match bin_op {
Offset if left_kind == Ptr && right_kind == usize => {
let pointee_ty = left_ty.builtin_deref(true, ty::LvaluePreference::NoPreference).expect("Offset called on non-ptr type").ty;
let ptr = self.pointer_offset(left, pointee_ty, right.to_bytes()? as i64)?;
return Ok((ptr, false));
},
// These work on anything
Eq if left_kind == right_kind => {
return Ok((PrimVal::from_bool(left == right), false));
}
Ne if left_kind == right_kind => {
return Ok((PrimVal::from_bool(left != right), false));
}
// These need both pointers to be in the same allocation
Lt | Le | Gt | Ge | Sub
if left_kind == right_kind
&& (left_kind == Ptr || left_kind == usize || left_kind == isize)
&& left.is_ptr() && right.is_ptr() => {
let left = left.to_ptr()?;
let right = right.to_ptr()?;
if left.alloc_id == right.alloc_id {
let res = match bin_op {
Lt => left.offset < right.offset,
Le => left.offset <= right.offset,
Gt => left.offset > right.offset,
Ge => left.offset >= right.offset,
Sub => {
return int_arithmetic!(left_kind, overflowing_sub, left.offset, right.offset);
}
_ => bug!("We already established it has to be one of these operators."),
};
return Ok((PrimVal::from_bool(res), false));
} else {
// Both are pointers, but from different allocations.
return Err(EvalError::InvalidPointerMath);
}
}
_ => {}
}
}
// II: From now on, everything must be bytes, no pointers
let l = left.to_bytes()?;
let r = right.to_bytes()?;
// These ops can have an RHS with a different numeric type.
if right_kind.is_int() && (bin_op == Shl || bin_op == Shr) {
return match bin_op {
Shl => int_shift!(left_kind, overflowing_shl, l, r as u32),
Shr => int_shift!(left_kind, overflowing_shr, l, r as u32),
_ => bug!("it has already been checked that this is a shift op"),
};
}
if left_kind != right_kind {
let msg = format!("unimplemented binary op {:?}: {:?} ({:?}), {:?} ({:?})", bin_op, left, left_kind, right, right_kind);
return Err(EvalError::Unimplemented(msg));
}
let val = match (bin_op, left_kind) {
(Eq, F32) => PrimVal::from_bool(bytes_to_f32(l) == bytes_to_f32(r)),
(Ne, F32) => PrimVal::from_bool(bytes_to_f32(l) != bytes_to_f32(r)),
(Lt, F32) => PrimVal::from_bool(bytes_to_f32(l) < bytes_to_f32(r)),
(Le, F32) => PrimVal::from_bool(bytes_to_f32(l) <= bytes_to_f32(r)),
(Gt, F32) => PrimVal::from_bool(bytes_to_f32(l) > bytes_to_f32(r)),
(Ge, F32) => PrimVal::from_bool(bytes_to_f32(l) >= bytes_to_f32(r)),
(Eq, F64) => PrimVal::from_bool(bytes_to_f64(l) == bytes_to_f64(r)),
(Ne, F64) => PrimVal::from_bool(bytes_to_f64(l) != bytes_to_f64(r)),
(Lt, F64) => PrimVal::from_bool(bytes_to_f64(l) < bytes_to_f64(r)),
(Le, F64) => PrimVal::from_bool(bytes_to_f64(l) <= bytes_to_f64(r)),
(Gt, F64) => PrimVal::from_bool(bytes_to_f64(l) > bytes_to_f64(r)),
(Ge, F64) => PrimVal::from_bool(bytes_to_f64(l) >= bytes_to_f64(r)),
(Add, F32) => f32_arithmetic!(+, l, r),
(Sub, F32) => f32_arithmetic!(-, l, r),
(Mul, F32) => f32_arithmetic!(*, l, r),
(Div, F32) => f32_arithmetic!(/, l, r),
(Rem, F32) => f32_arithmetic!(%, l, r),
(Add, F64) => f64_arithmetic!(+, l, r),
(Sub, F64) => f64_arithmetic!(-, l, r),
(Mul, F64) => f64_arithmetic!(*, l, r),
(Div, F64) => f64_arithmetic!(/, l, r),
(Rem, F64) => f64_arithmetic!(%, l, r),
(Lt, k) if k.is_signed_int() => PrimVal::from_bool((l as i128) < (r as i128)),
(Lt, _) => PrimVal::from_bool(l < r),
(Le, k) if k.is_signed_int() => PrimVal::from_bool((l as i128) <= (r as i128)),
(Le, _) => PrimVal::from_bool(l <= r),
(Gt, k) if k.is_signed_int() => PrimVal::from_bool((l as i128) > (r as i128)),
(Gt, _) => PrimVal::from_bool(l > r),
(Ge, k) if k.is_signed_int() => PrimVal::from_bool((l as i128) >= (r as i128)),
(Ge, _) => PrimVal::from_bool(l >= r),
(BitOr, _) => PrimVal::Bytes(l | r),
(BitAnd, _) => PrimVal::Bytes(l & r),
(BitXor, _) => PrimVal::Bytes(l ^ r),
(Add, k) if k.is_int() => return int_arithmetic!(k, overflowing_add, l, r),
(Sub, k) if k.is_int() => return int_arithmetic!(k, overflowing_sub, l, r),
(Mul, k) if k.is_int() => return int_arithmetic!(k, overflowing_mul, l, r),
(Div, k) if k.is_int() => return int_arithmetic!(k, overflowing_div, l, r),
(Rem, k) if k.is_int() => return int_arithmetic!(k, overflowing_rem, l, r),
_ => {
let msg = format!("unimplemented binary op {:?}: {:?} ({:?}), {:?} ({:?})", bin_op, left, left_kind, right, right_kind);
return Err(EvalError::Unimplemented(msg));
}
};
Ok((val, false))
}
}
pub fn unary_op<'tcx>(
un_op: mir::UnOp,
val: PrimVal,
val_kind: PrimValKind,
) -> EvalResult<'tcx, PrimVal> {
use rustc::mir::UnOp::*;
use value::PrimValKind::*;
let bytes = val.to_bytes()?;
let result_bytes = match (un_op, val_kind) {
(Not, Bool) => !bytes_to_bool(bytes) as u128,
(Not, U8) => !(bytes as u8) as u128,
(Not, U16) => !(bytes as u16) as u128,
(Not, U32) => !(bytes as u32) as u128,
(Not, U64) => !(bytes as u64) as u128,
(Not, U128) => !bytes,
(Not, I8) => !(bytes as i8) as u128,
(Not, I16) => !(bytes as i16) as u128,
(Not, I32) => !(bytes as i32) as u128,
(Not, I64) => !(bytes as i64) as u128,
(Not, I128) => !(bytes as i128) as u128,
(Neg, I8) => -(bytes as i8) as u128,
(Neg, I16) => -(bytes as i16) as u128,
(Neg, I32) => -(bytes as i32) as u128,
(Neg, I64) => -(bytes as i64) as u128,
(Neg, I128) => -(bytes as i128) as u128,
(Neg, F32) => f32_to_bytes(-bytes_to_f32(bytes)),
(Neg, F64) => f64_to_bytes(-bytes_to_f64(bytes)),
_ => {
let msg = format!("unimplemented unary op: {:?}, {:?}", un_op, val);
return Err(EvalError::Unimplemented(msg));
}
};
Ok(PrimVal::Bytes(result_bytes))
}