rust/crates/ide_assists/src/handlers/generate_function.rs
2021-08-09 21:06:24 +04:30

1529 lines
32 KiB
Rust

use hir::{HasSource, HirDisplay, InFile, Module, TypeInfo};
use ide_db::{base_db::FileId, helpers::SnippetCap};
use rustc_hash::{FxHashMap, FxHashSet};
use stdx::to_lower_snake_case;
use syntax::{
ast::{
self,
edit::{AstNodeEdit, IndentLevel},
make, ArgListOwner, AstNode, ModuleItemOwner,
},
SyntaxKind, SyntaxNode, TextSize,
};
use crate::{
utils::useless_type_special_case,
utils::{find_struct_impl, render_snippet, Cursor},
AssistContext, AssistId, AssistKind, Assists,
};
// Assist: generate_function
//
// Adds a stub function with a signature matching the function under the cursor.
//
// ```
// struct Baz;
// fn baz() -> Baz { Baz }
// fn foo() {
// bar$0("", baz());
// }
//
// ```
// ->
// ```
// struct Baz;
// fn baz() -> Baz { Baz }
// fn foo() {
// bar("", baz());
// }
//
// fn bar(arg: &str, baz: Baz) ${0:-> ()} {
// todo!()
// }
//
// ```
pub(crate) fn generate_function(acc: &mut Assists, ctx: &AssistContext) -> Option<()> {
gen_fn(acc, ctx).or_else(|| gen_method(acc, ctx))
}
enum FuncExpr {
Func(ast::CallExpr),
Method(ast::MethodCallExpr),
}
impl FuncExpr {
fn arg_list(&self) -> Option<ast::ArgList> {
match self {
FuncExpr::Func(fn_call) => fn_call.arg_list(),
FuncExpr::Method(m_call) => m_call.arg_list(),
}
}
fn syntax(&self) -> &SyntaxNode {
match self {
FuncExpr::Func(fn_call) => fn_call.syntax(),
FuncExpr::Method(m_call) => m_call.syntax(),
}
}
}
fn gen_fn(acc: &mut Assists, ctx: &AssistContext) -> Option<()> {
let path_expr: ast::PathExpr = ctx.find_node_at_offset()?;
let call = path_expr.syntax().parent().and_then(ast::CallExpr::cast)?;
let path = path_expr.path()?;
if ctx.sema.resolve_path(&path).is_some() {
// The function call already resolves, no need to add a function
return None;
}
let target_module = match path.qualifier() {
Some(qualifier) => match ctx.sema.resolve_path(&qualifier) {
Some(hir::PathResolution::Def(hir::ModuleDef::Module(module))) => Some(module),
_ => return None,
},
None => None,
};
let function_builder = FunctionBuilder::from_call(ctx, &call, &path, target_module)?;
let target = call.syntax().text_range();
acc.add(
AssistId("generate_function", AssistKind::Generate),
format!("Generate `{}` function", function_builder.fn_name),
target,
|builder| {
let function_template = function_builder.render();
builder.edit_file(function_template.file);
let new_fn = function_template.to_string(ctx.config.snippet_cap);
match ctx.config.snippet_cap {
Some(cap) => builder.insert_snippet(cap, function_template.insert_offset, new_fn),
None => builder.insert(function_template.insert_offset, new_fn),
}
},
)
}
fn gen_method(acc: &mut Assists, ctx: &AssistContext) -> Option<()> {
let call: ast::MethodCallExpr = ctx.find_node_at_offset()?;
let fn_name: ast::NameRef = ast::NameRef::cast(
call.syntax().children().find(|child| child.kind() == SyntaxKind::NAME_REF)?,
)?;
let ty = ctx.sema.type_of_expr(&call.receiver()?)?.original().strip_references().as_adt()?;
let current_module =
ctx.sema.scope(ctx.find_node_at_offset::<ast::MethodCallExpr>()?.syntax()).module()?;
let target_module = ty.module(ctx.sema.db);
if current_module.krate() != target_module.krate() {
return None;
}
let (impl_, file) = match ty {
hir::Adt::Struct(strukt) => get_impl(strukt.source(ctx.sema.db)?.syntax(), &fn_name, ctx),
hir::Adt::Enum(en) => get_impl(en.source(ctx.sema.db)?.syntax(), &fn_name, ctx),
hir::Adt::Union(union) => get_impl(union.source(ctx.sema.db)?.syntax(), &fn_name, ctx),
}?;
let function_builder = FunctionBuilder::from_method_call(
ctx,
&call,
&fn_name,
&impl_,
file,
target_module,
current_module,
)?;
let target = call.syntax().text_range();
acc.add(
AssistId("generate_function", AssistKind::Generate),
format!("Generate `{}` function", function_builder.fn_name),
target,
|builder| {
let function_template = function_builder.render();
builder.edit_file(function_template.file);
let mut new_fn = function_template.to_string(ctx.config.snippet_cap);
if impl_.is_none() {
new_fn = format!("\nimpl {} {{\n{}\n}}", ty.name(ctx.sema.db), new_fn,);
}
match ctx.config.snippet_cap {
Some(cap) => builder.insert_snippet(cap, function_template.insert_offset, new_fn),
None => builder.insert(function_template.insert_offset, new_fn),
}
},
)
}
fn get_impl(
adt: InFile<&SyntaxNode>,
fn_name: &ast::NameRef,
ctx: &AssistContext,
) -> Option<(Option<ast::Impl>, FileId)> {
let file = adt.file_id.original_file(ctx.sema.db);
let adt = adt.value;
let adt = ast::Adt::cast(adt.clone())?;
let r = find_struct_impl(ctx, &adt, fn_name.text().as_str())?;
Some((r, file))
}
struct FunctionTemplate {
insert_offset: TextSize,
leading_ws: String,
fn_def: ast::Fn,
ret_type: ast::RetType,
should_render_snippet: bool,
trailing_ws: String,
file: FileId,
}
impl FunctionTemplate {
fn to_string(&self, cap: Option<SnippetCap>) -> String {
let f = match (cap, self.should_render_snippet) {
(Some(cap), true) => {
render_snippet(cap, self.fn_def.syntax(), Cursor::Replace(self.ret_type.syntax()))
}
_ => self.fn_def.to_string(),
};
format!("{}{}{}", self.leading_ws, f, self.trailing_ws)
}
}
struct FunctionBuilder {
target: GeneratedFunctionTarget,
fn_name: ast::Name,
type_params: Option<ast::GenericParamList>,
params: ast::ParamList,
ret_type: ast::RetType,
should_render_snippet: bool,
file: FileId,
needs_pub: bool,
is_async: bool,
}
impl FunctionBuilder {
/// Prepares a generated function that matches `call`.
/// The function is generated in `target_module` or next to `call`
fn from_call(
ctx: &AssistContext,
call: &ast::CallExpr,
path: &ast::Path,
target_module: Option<hir::Module>,
) -> Option<Self> {
let mut file = ctx.frange.file_id;
let target = match &target_module {
Some(target_module) => {
let module_source = target_module.definition_source(ctx.db());
let (in_file, target) = next_space_for_fn_in_module(ctx.sema.db, &module_source)?;
file = in_file;
target
}
None => next_space_for_fn_after_call_site(FuncExpr::Func(call.clone()))?,
};
let needs_pub = target_module.is_some();
let target_module = target_module.or_else(|| ctx.sema.scope(target.syntax()).module())?;
let fn_name = fn_name(path)?;
let (type_params, params) = fn_args(ctx, target_module, FuncExpr::Func(call.clone()))?;
let await_expr = call.syntax().parent().and_then(ast::AwaitExpr::cast);
let is_async = await_expr.is_some();
// should_render_snippet intends to express a rough level of confidence about
// the correctness of the return type.
//
// If we are able to infer some return type, and that return type is not unit, we
// don't want to render the snippet. The assumption here is in this situation the
// return type is just as likely to be correct as any other part of the generated
// function.
//
// In the case where the return type is inferred as unit it is likely that the
// user does in fact intend for this generated function to return some non unit
// type, but that the current state of their code doesn't allow that return type
// to be accurately inferred.
let (ret_ty, should_render_snippet) = {
match ctx.sema.type_of_expr(&ast::Expr::CallExpr(call.clone())).map(TypeInfo::original)
{
Some(ty) if ty.is_unknown() || ty.is_unit() => (make::ty_unit(), true),
Some(ty) => {
let rendered = ty.display_source_code(ctx.db(), target_module.into());
match rendered {
Ok(rendered) => (make::ty(&rendered), false),
Err(_) => (make::ty_unit(), true),
}
}
None => (make::ty_unit(), true),
}
};
let ret_type = make::ret_type(ret_ty);
Some(Self {
target,
fn_name,
type_params,
params,
ret_type,
should_render_snippet,
file,
needs_pub,
is_async,
})
}
fn from_method_call(
ctx: &AssistContext,
call: &ast::MethodCallExpr,
name: &ast::NameRef,
impl_: &Option<ast::Impl>,
file: FileId,
target_module: Module,
current_module: Module,
) -> Option<Self> {
// let mut file = ctx.frange.file_id;
// let target_module = ctx.sema.scope(call.syntax()).module()?;
let target = match impl_ {
Some(impl_) => next_space_for_fn_in_impl(&impl_)?,
None => {
next_space_for_fn_in_module(
ctx.sema.db,
&target_module.definition_source(ctx.sema.db),
)?
.1
}
};
let needs_pub = !module_is_descendant(&current_module, &target_module, ctx);
let fn_name = make::name(&name.text());
let (type_params, params) = fn_args(ctx, target_module, FuncExpr::Method(call.clone()))?;
let await_expr = call.syntax().parent().and_then(ast::AwaitExpr::cast);
let is_async = await_expr.is_some();
// should_render_snippet intends to express a rough level of confidence about
// the correctness of the return type.
//
// If we are able to infer some return type, and that return type is not unit, we
// don't want to render the snippet. The assumption here is in this situation the
// return type is just as likely to be correct as any other part of the generated
// function.
//
// In the case where the return type is inferred as unit it is likely that the
// user does in fact intend for this generated function to return some non unit
// type, but that the current state of their code doesn't allow that return type
// to be accurately inferred.
let (ret_ty, should_render_snippet) = {
match ctx
.sema
.type_of_expr(&ast::Expr::MethodCallExpr(call.clone()))
.map(TypeInfo::original)
{
Some(ty) if ty.is_unknown() || ty.is_unit() => (make::ty_unit(), true),
Some(ty) => {
let rendered = ty.display_source_code(ctx.db(), target_module.into());
match rendered {
Ok(rendered) => (make::ty(&rendered), false),
Err(_) => (make::ty_unit(), true),
}
}
None => (make::ty_unit(), true),
}
};
let ret_type = make::ret_type(ret_ty);
Some(Self {
target,
fn_name,
type_params,
params,
ret_type,
should_render_snippet,
file,
needs_pub,
is_async,
})
}
fn render(self) -> FunctionTemplate {
let placeholder_expr = make::ext::expr_todo();
let fn_body = make::block_expr(vec![], Some(placeholder_expr));
let visibility = if self.needs_pub { Some(make::visibility_pub_crate()) } else { None };
let mut fn_def = make::fn_(
visibility,
self.fn_name,
self.type_params,
self.params,
fn_body,
Some(self.ret_type),
self.is_async,
);
let leading_ws;
let trailing_ws;
let insert_offset = match self.target {
GeneratedFunctionTarget::BehindItem(it) => {
let indent = IndentLevel::from_node(&it);
leading_ws = format!("\n\n{}", indent);
fn_def = fn_def.indent(indent);
trailing_ws = String::new();
it.text_range().end()
}
GeneratedFunctionTarget::InEmptyItemList(it) => {
let indent = IndentLevel::from_node(&it);
leading_ws = format!("\n{}", indent + 1);
fn_def = fn_def.indent(indent + 1);
trailing_ws = format!("\n{}", indent);
it.text_range().start() + TextSize::of('{')
}
};
FunctionTemplate {
insert_offset,
leading_ws,
ret_type: fn_def.ret_type().unwrap(),
should_render_snippet: self.should_render_snippet,
fn_def,
trailing_ws,
file: self.file,
}
}
}
enum GeneratedFunctionTarget {
BehindItem(SyntaxNode),
InEmptyItemList(SyntaxNode),
}
impl GeneratedFunctionTarget {
fn syntax(&self) -> &SyntaxNode {
match self {
GeneratedFunctionTarget::BehindItem(it) => it,
GeneratedFunctionTarget::InEmptyItemList(it) => it,
}
}
}
fn fn_name(call: &ast::Path) -> Option<ast::Name> {
let name = call.segment()?.syntax().to_string();
Some(make::name(&name))
}
/// Computes the type variables and arguments required for the generated function
fn fn_args(
ctx: &AssistContext,
target_module: hir::Module,
call: FuncExpr,
) -> Option<(Option<ast::GenericParamList>, ast::ParamList)> {
let mut arg_names = Vec::new();
let mut arg_types = Vec::new();
for arg in call.arg_list()?.args() {
arg_names.push(match fn_arg_name(&arg) {
Some(name) => name,
None => String::from("arg"),
});
arg_types.push(match fn_arg_type(ctx, target_module, &arg) {
Some(ty) => {
if ty.len() > 0 && ty.starts_with('&') {
if let Some((new_ty, _)) = useless_type_special_case("", &ty[1..].to_owned()) {
new_ty
} else {
ty
}
} else {
ty
}
}
None => String::from("()"),
});
}
deduplicate_arg_names(&mut arg_names);
let params = arg_names.into_iter().zip(arg_types).map(|(name, ty)| {
make::param(make::ext::simple_ident_pat(make::name(&name)).into(), make::ty(&ty))
});
Some((
None,
make::param_list(
match call {
FuncExpr::Func(_) => None,
FuncExpr::Method(_) => Some(make::self_param()),
},
params,
),
))
}
/// Makes duplicate argument names unique by appending incrementing numbers.
///
/// ```
/// let mut names: Vec<String> =
/// vec!["foo".into(), "foo".into(), "bar".into(), "baz".into(), "bar".into()];
/// deduplicate_arg_names(&mut names);
/// let expected: Vec<String> =
/// vec!["foo_1".into(), "foo_2".into(), "bar_1".into(), "baz".into(), "bar_2".into()];
/// assert_eq!(names, expected);
/// ```
fn deduplicate_arg_names(arg_names: &mut Vec<String>) {
let arg_name_counts = arg_names.iter().fold(FxHashMap::default(), |mut m, name| {
*m.entry(name).or_insert(0) += 1;
m
});
let duplicate_arg_names: FxHashSet<String> = arg_name_counts
.into_iter()
.filter(|(_, count)| *count >= 2)
.map(|(name, _)| name.clone())
.collect();
let mut counter_per_name = FxHashMap::default();
for arg_name in arg_names.iter_mut() {
if duplicate_arg_names.contains(arg_name) {
let counter = counter_per_name.entry(arg_name.clone()).or_insert(1);
arg_name.push('_');
arg_name.push_str(&counter.to_string());
*counter += 1;
}
}
}
fn fn_arg_name(fn_arg: &ast::Expr) -> Option<String> {
match fn_arg {
ast::Expr::CastExpr(cast_expr) => fn_arg_name(&cast_expr.expr()?),
_ => {
let s = fn_arg
.syntax()
.descendants()
.filter(|d| ast::NameRef::can_cast(d.kind()))
.last()?
.to_string();
Some(to_lower_snake_case(&s))
}
}
}
fn fn_arg_type(
ctx: &AssistContext,
target_module: hir::Module,
fn_arg: &ast::Expr,
) -> Option<String> {
let ty = ctx.sema.type_of_expr(fn_arg)?.adjusted();
if ty.is_unknown() {
return None;
}
if let Ok(rendered) = ty.display_source_code(ctx.db(), target_module.into()) {
Some(rendered)
} else {
None
}
}
/// Returns the position inside the current mod or file
/// directly after the current block
/// We want to write the generated function directly after
/// fns, impls or macro calls, but inside mods
fn next_space_for_fn_after_call_site(expr: FuncExpr) -> Option<GeneratedFunctionTarget> {
let mut ancestors = expr.syntax().ancestors().peekable();
let mut last_ancestor: Option<SyntaxNode> = None;
while let Some(next_ancestor) = ancestors.next() {
match next_ancestor.kind() {
SyntaxKind::SOURCE_FILE => {
break;
}
SyntaxKind::ITEM_LIST => {
if ancestors.peek().map(|a| a.kind()) == Some(SyntaxKind::MODULE) {
break;
}
}
_ => {}
}
last_ancestor = Some(next_ancestor);
}
last_ancestor.map(GeneratedFunctionTarget::BehindItem)
}
fn next_space_for_fn_in_module(
db: &dyn hir::db::AstDatabase,
module_source: &hir::InFile<hir::ModuleSource>,
) -> Option<(FileId, GeneratedFunctionTarget)> {
let file = module_source.file_id.original_file(db);
let assist_item = match &module_source.value {
hir::ModuleSource::SourceFile(it) => {
if let Some(last_item) = it.items().last() {
GeneratedFunctionTarget::BehindItem(last_item.syntax().clone())
} else {
GeneratedFunctionTarget::BehindItem(it.syntax().clone())
}
}
hir::ModuleSource::Module(it) => {
if let Some(last_item) = it.item_list().and_then(|it| it.items().last()) {
GeneratedFunctionTarget::BehindItem(last_item.syntax().clone())
} else {
GeneratedFunctionTarget::InEmptyItemList(it.item_list()?.syntax().clone())
}
}
hir::ModuleSource::BlockExpr(it) => {
if let Some(last_item) =
it.statements().take_while(|stmt| matches!(stmt, ast::Stmt::Item(_))).last()
{
GeneratedFunctionTarget::BehindItem(last_item.syntax().clone())
} else {
GeneratedFunctionTarget::InEmptyItemList(it.syntax().clone())
}
}
};
Some((file, assist_item))
}
fn next_space_for_fn_in_impl(impl_: &ast::Impl) -> Option<GeneratedFunctionTarget> {
if let Some(last_item) = impl_.assoc_item_list().and_then(|it| it.assoc_items().last()) {
Some(GeneratedFunctionTarget::BehindItem(last_item.syntax().clone()))
} else {
Some(GeneratedFunctionTarget::InEmptyItemList(impl_.assoc_item_list()?.syntax().clone()))
}
}
fn module_is_descendant(module: &hir::Module, ans: &hir::Module, ctx: &AssistContext) -> bool {
if module == ans {
return true;
}
for c in ans.children(ctx.sema.db) {
if module_is_descendant(module, &c, ctx) {
return true;
}
}
false
}
#[cfg(test)]
mod tests {
use crate::tests::{check_assist, check_assist_not_applicable};
use super::*;
#[test]
fn add_function_with_no_args() {
check_assist(
generate_function,
r"
fn foo() {
bar$0();
}
",
r"
fn foo() {
bar();
}
fn bar() ${0:-> ()} {
todo!()
}
",
)
}
#[test]
fn add_function_from_method() {
// This ensures that the function is correctly generated
// in the next outer mod or file
check_assist(
generate_function,
r"
impl Foo {
fn foo() {
bar$0();
}
}
",
r"
impl Foo {
fn foo() {
bar();
}
}
fn bar() ${0:-> ()} {
todo!()
}
",
)
}
#[test]
fn add_function_directly_after_current_block() {
// The new fn should not be created at the end of the file or module
check_assist(
generate_function,
r"
fn foo1() {
bar$0();
}
fn foo2() {}
",
r"
fn foo1() {
bar();
}
fn bar() ${0:-> ()} {
todo!()
}
fn foo2() {}
",
)
}
#[test]
fn add_function_with_no_args_in_same_module() {
check_assist(
generate_function,
r"
mod baz {
fn foo() {
bar$0();
}
}
",
r"
mod baz {
fn foo() {
bar();
}
fn bar() ${0:-> ()} {
todo!()
}
}
",
)
}
#[test]
fn add_function_with_upper_camel_case_arg() {
check_assist(
generate_function,
r"
struct BazBaz;
fn foo() {
bar$0(BazBaz);
}
",
r"
struct BazBaz;
fn foo() {
bar(BazBaz);
}
fn bar(baz_baz: BazBaz) ${0:-> ()} {
todo!()
}
",
);
}
#[test]
fn add_function_with_upper_camel_case_arg_as_cast() {
check_assist(
generate_function,
r"
struct BazBaz;
fn foo() {
bar$0(&BazBaz as *const BazBaz);
}
",
r"
struct BazBaz;
fn foo() {
bar(&BazBaz as *const BazBaz);
}
fn bar(baz_baz: *const BazBaz) ${0:-> ()} {
todo!()
}
",
);
}
#[test]
fn add_function_with_function_call_arg() {
check_assist(
generate_function,
r"
struct Baz;
fn baz() -> Baz { todo!() }
fn foo() {
bar$0(baz());
}
",
r"
struct Baz;
fn baz() -> Baz { todo!() }
fn foo() {
bar(baz());
}
fn bar(baz: Baz) ${0:-> ()} {
todo!()
}
",
);
}
#[test]
fn add_function_with_method_call_arg() {
check_assist(
generate_function,
r"
struct Baz;
impl Baz {
fn foo(&self) -> Baz {
ba$0r(self.baz())
}
fn baz(&self) -> Baz {
Baz
}
}
",
r"
struct Baz;
impl Baz {
fn foo(&self) -> Baz {
bar(self.baz())
}
fn baz(&self) -> Baz {
Baz
}
}
fn bar(baz: Baz) -> Baz {
todo!()
}
",
)
}
#[test]
fn add_function_with_string_literal_arg() {
check_assist(
generate_function,
r#"
fn foo() {
$0bar("bar")
}
"#,
r#"
fn foo() {
bar("bar")
}
fn bar(arg: &str) ${0:-> ()} {
todo!()
}
"#,
)
}
#[test]
fn add_function_with_char_literal_arg() {
check_assist(
generate_function,
r#"
fn foo() {
$0bar('x')
}
"#,
r#"
fn foo() {
bar('x')
}
fn bar(arg: char) ${0:-> ()} {
todo!()
}
"#,
)
}
#[test]
fn add_function_with_int_literal_arg() {
check_assist(
generate_function,
r"
fn foo() {
$0bar(42)
}
",
r"
fn foo() {
bar(42)
}
fn bar(arg: i32) ${0:-> ()} {
todo!()
}
",
)
}
#[test]
fn add_function_with_cast_int_literal_arg() {
check_assist(
generate_function,
r"
fn foo() {
$0bar(42 as u8)
}
",
r"
fn foo() {
bar(42 as u8)
}
fn bar(arg: u8) ${0:-> ()} {
todo!()
}
",
)
}
#[test]
fn name_of_cast_variable_is_used() {
// Ensures that the name of the cast type isn't used
// in the generated function signature.
check_assist(
generate_function,
r"
fn foo() {
let x = 42;
bar$0(x as u8)
}
",
r"
fn foo() {
let x = 42;
bar(x as u8)
}
fn bar(x: u8) ${0:-> ()} {
todo!()
}
",
)
}
#[test]
fn add_function_with_variable_arg() {
check_assist(
generate_function,
r"
fn foo() {
let worble = ();
$0bar(worble)
}
",
r"
fn foo() {
let worble = ();
bar(worble)
}
fn bar(worble: ()) ${0:-> ()} {
todo!()
}
",
)
}
#[test]
fn add_function_with_impl_trait_arg() {
check_assist(
generate_function,
r"
trait Foo {}
fn foo() -> impl Foo {
todo!()
}
fn baz() {
$0bar(foo())
}
",
r"
trait Foo {}
fn foo() -> impl Foo {
todo!()
}
fn baz() {
bar(foo())
}
fn bar(foo: impl Foo) ${0:-> ()} {
todo!()
}
",
)
}
#[test]
fn borrowed_arg() {
check_assist(
generate_function,
r"
struct Baz;
fn baz() -> Baz { todo!() }
fn foo() {
bar$0(&baz())
}
",
r"
struct Baz;
fn baz() -> Baz { todo!() }
fn foo() {
bar(&baz())
}
fn bar(baz: &Baz) ${0:-> ()} {
todo!()
}
",
)
}
#[test]
fn add_function_with_qualified_path_arg() {
check_assist(
generate_function,
r"
mod Baz {
pub struct Bof;
pub fn baz() -> Bof { Bof }
}
fn foo() {
$0bar(Baz::baz())
}
",
r"
mod Baz {
pub struct Bof;
pub fn baz() -> Bof { Bof }
}
fn foo() {
bar(Baz::baz())
}
fn bar(baz: Baz::Bof) ${0:-> ()} {
todo!()
}
",
)
}
#[test]
fn add_function_with_generic_arg() {
// FIXME: This is wrong, generated `bar` should include generic parameter.
check_assist(
generate_function,
r"
fn foo<T>(t: T) {
$0bar(t)
}
",
r"
fn foo<T>(t: T) {
bar(t)
}
fn bar(t: T) ${0:-> ()} {
todo!()
}
",
)
}
#[test]
fn add_function_with_fn_arg() {
// FIXME: The argument in `bar` is wrong.
check_assist(
generate_function,
r"
struct Baz;
impl Baz {
fn new() -> Self { Baz }
}
fn foo() {
$0bar(Baz::new);
}
",
r"
struct Baz;
impl Baz {
fn new() -> Self { Baz }
}
fn foo() {
bar(Baz::new);
}
fn bar(new: fn) ${0:-> ()} {
todo!()
}
",
)
}
#[test]
fn add_function_with_closure_arg() {
// FIXME: The argument in `bar` is wrong.
check_assist(
generate_function,
r"
fn foo() {
let closure = |x: i64| x - 1;
$0bar(closure)
}
",
r"
fn foo() {
let closure = |x: i64| x - 1;
bar(closure)
}
fn bar(closure: ()) ${0:-> ()} {
todo!()
}
",
)
}
#[test]
fn unresolveable_types_default_to_unit() {
check_assist(
generate_function,
r"
fn foo() {
$0bar(baz)
}
",
r"
fn foo() {
bar(baz)
}
fn bar(baz: ()) ${0:-> ()} {
todo!()
}
",
)
}
#[test]
fn arg_names_dont_overlap() {
check_assist(
generate_function,
r"
struct Baz;
fn baz() -> Baz { Baz }
fn foo() {
$0bar(baz(), baz())
}
",
r"
struct Baz;
fn baz() -> Baz { Baz }
fn foo() {
bar(baz(), baz())
}
fn bar(baz_1: Baz, baz_2: Baz) ${0:-> ()} {
todo!()
}
",
)
}
#[test]
fn arg_name_counters_start_at_1_per_name() {
check_assist(
generate_function,
r#"
struct Baz;
fn baz() -> Baz { Baz }
fn foo() {
$0bar(baz(), baz(), "foo", "bar")
}
"#,
r#"
struct Baz;
fn baz() -> Baz { Baz }
fn foo() {
bar(baz(), baz(), "foo", "bar")
}
fn bar(baz_1: Baz, baz_2: Baz, arg_1: &str, arg_2: &str) ${0:-> ()} {
todo!()
}
"#,
)
}
#[test]
fn add_function_in_module() {
check_assist(
generate_function,
r"
mod bar {}
fn foo() {
bar::my_fn$0()
}
",
r"
mod bar {
pub(crate) fn my_fn() ${0:-> ()} {
todo!()
}
}
fn foo() {
bar::my_fn()
}
",
)
}
#[test]
fn qualified_path_uses_correct_scope() {
check_assist(
generate_function,
r#"
mod foo {
pub struct Foo;
}
fn bar() {
use foo::Foo;
let foo = Foo;
baz$0(foo)
}
"#,
r#"
mod foo {
pub struct Foo;
}
fn bar() {
use foo::Foo;
let foo = Foo;
baz(foo)
}
fn baz(foo: foo::Foo) ${0:-> ()} {
todo!()
}
"#,
)
}
#[test]
fn add_function_in_module_containing_other_items() {
check_assist(
generate_function,
r"
mod bar {
fn something_else() {}
}
fn foo() {
bar::my_fn$0()
}
",
r"
mod bar {
fn something_else() {}
pub(crate) fn my_fn() ${0:-> ()} {
todo!()
}
}
fn foo() {
bar::my_fn()
}
",
)
}
#[test]
fn add_function_in_nested_module() {
check_assist(
generate_function,
r"
mod bar {
mod baz {}
}
fn foo() {
bar::baz::my_fn$0()
}
",
r"
mod bar {
mod baz {
pub(crate) fn my_fn() ${0:-> ()} {
todo!()
}
}
}
fn foo() {
bar::baz::my_fn()
}
",
)
}
#[test]
fn add_function_in_another_file() {
check_assist(
generate_function,
r"
//- /main.rs
mod foo;
fn main() {
foo::bar$0()
}
//- /foo.rs
",
r"
pub(crate) fn bar() ${0:-> ()} {
todo!()
}",
)
}
#[test]
fn add_function_with_return_type() {
check_assist(
generate_function,
r"
fn main() {
let x: u32 = foo$0();
}
",
r"
fn main() {
let x: u32 = foo();
}
fn foo() -> u32 {
todo!()
}
",
)
}
#[test]
fn add_function_not_applicable_if_function_already_exists() {
check_assist_not_applicable(
generate_function,
r"
fn foo() {
bar$0();
}
fn bar() {}
",
)
}
#[test]
fn add_function_not_applicable_if_unresolved_variable_in_call_is_selected() {
check_assist_not_applicable(
// bar is resolved, but baz isn't.
// The assist is only active if the cursor is on an unresolved path,
// but the assist should only be offered if the path is a function call.
generate_function,
r#"
fn foo() {
bar(b$0az);
}
fn bar(baz: ()) {}
"#,
)
}
#[test]
fn create_method_with_no_args() {
check_assist(
generate_function,
r#"
struct Foo;
impl Foo {
fn foo(&self) {
self.bar()$0;
}
}
"#,
r#"
struct Foo;
impl Foo {
fn foo(&self) {
self.bar();
}
fn bar(&self) ${0:-> ()} {
todo!()
}
}
"#,
)
}
#[test]
fn create_function_with_async() {
check_assist(
generate_function,
r"
fn foo() {
$0bar(42).await();
}
",
r"
fn foo() {
bar(42).await();
}
async fn bar(arg: i32) ${0:-> ()} {
todo!()
}
",
)
}
#[test]
fn create_method() {
check_assist(
generate_function,
r"
struct S;
fn foo() {S.bar$0();}
",
r"
struct S;
fn foo() {S.bar();}
impl S {
fn bar(&self) ${0:-> ()} {
todo!()
}
}
",
)
}
#[test]
fn create_method_within_an_impl() {
check_assist(
generate_function,
r"
struct S;
fn foo() {S.bar$0();}
impl S {}
",
r"
struct S;
fn foo() {S.bar();}
impl S {
fn bar(&self) ${0:-> ()} {
todo!()
}
}
",
)
}
#[test]
fn create_method_from_different_module() {
check_assist(
generate_function,
r"
mod s {
pub struct S;
}
fn foo() {s::S.bar$0();}
",
r"
mod s {
pub struct S;
impl S {
pub(crate) fn bar(&self) ${0:-> ()} {
todo!()
}
}
}
fn foo() {s::S.bar();}
",
)
}
#[test]
fn create_method_from_descendant_module() {
check_assist(
generate_function,
r"
struct S;
mod s {
fn foo() {
super::S.bar$0();
}
}
",
r"
struct S;
mod s {
fn foo() {
super::S.bar();
}
}
impl S {
fn bar(&self) ${0:-> ()} {
todo!()
}
}
",
)
}
#[test]
fn create_method_with_cursor_anywhere_on_call_expresion() {
check_assist(
generate_function,
r"
struct S;
fn foo() {$0S.bar();}
",
r"
struct S;
fn foo() {S.bar();}
impl S {
fn bar(&self) ${0:-> ()} {
todo!()
}
}
",
)
}
}