b78b749810
This commit changes the ToStr trait to: impl<T: fmt::Show> ToStr for T { fn to_str(&self) -> ~str { format!("{}", *self) } } The ToStr trait has been on the chopping block for quite awhile now, and this is the final nail in its coffin. The trait and the corresponding method are not being removed as part of this commit, but rather any implementations of the `ToStr` trait are being forbidden because of the generic impl. The new way to get the `to_str()` method to work is to implement `fmt::Show`. Formatting into a `&mut Writer` (as `format!` does) is much more efficient than `ToStr` when building up large strings. The `ToStr` trait forces many intermediate allocations to be made while the `fmt::Show` trait allows incremental buildup in the same heap allocated buffer. Additionally, the `fmt::Show` trait is much more extensible in terms of interoperation with other `Writer` instances and in more situations. By design the `ToStr` trait requires at least one allocation whereas the `fmt::Show` trait does not require any allocations. Closes #8242 Closes #9806
1752 lines
60 KiB
Rust
1752 lines
60 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
/*!
|
|
* A classic liveness analysis based on dataflow over the AST. Computes,
|
|
* for each local variable in a function, whether that variable is live
|
|
* at a given point. Program execution points are identified by their
|
|
* id.
|
|
*
|
|
* # Basic idea
|
|
*
|
|
* The basic model is that each local variable is assigned an index. We
|
|
* represent sets of local variables using a vector indexed by this
|
|
* index. The value in the vector is either 0, indicating the variable
|
|
* is dead, or the id of an expression that uses the variable.
|
|
*
|
|
* We conceptually walk over the AST in reverse execution order. If we
|
|
* find a use of a variable, we add it to the set of live variables. If
|
|
* we find an assignment to a variable, we remove it from the set of live
|
|
* variables. When we have to merge two flows, we take the union of
|
|
* those two flows---if the variable is live on both paths, we simply
|
|
* pick one id. In the event of loops, we continue doing this until a
|
|
* fixed point is reached.
|
|
*
|
|
* ## Checking initialization
|
|
*
|
|
* At the function entry point, all variables must be dead. If this is
|
|
* not the case, we can report an error using the id found in the set of
|
|
* live variables, which identifies a use of the variable which is not
|
|
* dominated by an assignment.
|
|
*
|
|
* ## Checking moves
|
|
*
|
|
* After each explicit move, the variable must be dead.
|
|
*
|
|
* ## Computing last uses
|
|
*
|
|
* Any use of the variable where the variable is dead afterwards is a
|
|
* last use.
|
|
*
|
|
* # Implementation details
|
|
*
|
|
* The actual implementation contains two (nested) walks over the AST.
|
|
* The outer walk has the job of building up the ir_maps instance for the
|
|
* enclosing function. On the way down the tree, it identifies those AST
|
|
* nodes and variable IDs that will be needed for the liveness analysis
|
|
* and assigns them contiguous IDs. The liveness id for an AST node is
|
|
* called a `live_node` (it's a newtype'd uint) and the id for a variable
|
|
* is called a `variable` (another newtype'd uint).
|
|
*
|
|
* On the way back up the tree, as we are about to exit from a function
|
|
* declaration we allocate a `liveness` instance. Now that we know
|
|
* precisely how many nodes and variables we need, we can allocate all
|
|
* the various arrays that we will need to precisely the right size. We then
|
|
* perform the actual propagation on the `liveness` instance.
|
|
*
|
|
* This propagation is encoded in the various `propagate_through_*()`
|
|
* methods. It effectively does a reverse walk of the AST; whenever we
|
|
* reach a loop node, we iterate until a fixed point is reached.
|
|
*
|
|
* ## The `Users` struct
|
|
*
|
|
* At each live node `N`, we track three pieces of information for each
|
|
* variable `V` (these are encapsulated in the `Users` struct):
|
|
*
|
|
* - `reader`: the `LiveNode` ID of some node which will read the value
|
|
* that `V` holds on entry to `N`. Formally: a node `M` such
|
|
* that there exists a path `P` from `N` to `M` where `P` does not
|
|
* write `V`. If the `reader` is `invalid_node()`, then the current
|
|
* value will never be read (the variable is dead, essentially).
|
|
*
|
|
* - `writer`: the `LiveNode` ID of some node which will write the
|
|
* variable `V` and which is reachable from `N`. Formally: a node `M`
|
|
* such that there exists a path `P` from `N` to `M` and `M` writes
|
|
* `V`. If the `writer` is `invalid_node()`, then there is no writer
|
|
* of `V` that follows `N`.
|
|
*
|
|
* - `used`: a boolean value indicating whether `V` is *used*. We
|
|
* distinguish a *read* from a *use* in that a *use* is some read that
|
|
* is not just used to generate a new value. For example, `x += 1` is
|
|
* a read but not a use. This is used to generate better warnings.
|
|
*
|
|
* ## Special Variables
|
|
*
|
|
* We generate various special variables for various, well, special purposes.
|
|
* These are described in the `specials` struct:
|
|
*
|
|
* - `exit_ln`: a live node that is generated to represent every 'exit' from
|
|
* the function, whether it be by explicit return, fail, or other means.
|
|
*
|
|
* - `fallthrough_ln`: a live node that represents a fallthrough
|
|
*
|
|
* - `no_ret_var`: a synthetic variable that is only 'read' from, the
|
|
* fallthrough node. This allows us to detect functions where we fail
|
|
* to return explicitly.
|
|
*/
|
|
|
|
|
|
use middle::lint::{UnusedVariable, DeadAssignment};
|
|
use middle::pat_util;
|
|
use middle::ty;
|
|
use middle::typeck;
|
|
use middle::moves;
|
|
|
|
use std::cast::transmute;
|
|
use std::cell::{Cell, RefCell};
|
|
use std::fmt;
|
|
use std::io;
|
|
use std::str;
|
|
use std::uint;
|
|
use std::vec;
|
|
use collections::HashMap;
|
|
use syntax::ast::*;
|
|
use syntax::codemap::Span;
|
|
use syntax::parse::token::special_idents;
|
|
use syntax::parse::token;
|
|
use syntax::print::pprust::{expr_to_str, block_to_str};
|
|
use syntax::{visit, ast_util};
|
|
use syntax::visit::{Visitor, FnKind};
|
|
|
|
#[deriving(Eq)]
|
|
struct Variable(uint);
|
|
#[deriving(Eq)]
|
|
struct LiveNode(uint);
|
|
|
|
impl Variable {
|
|
fn get(&self) -> uint { let Variable(v) = *self; v }
|
|
}
|
|
|
|
impl LiveNode {
|
|
fn get(&self) -> uint { let LiveNode(v) = *self; v }
|
|
}
|
|
|
|
impl Clone for LiveNode {
|
|
fn clone(&self) -> LiveNode {
|
|
LiveNode(self.get())
|
|
}
|
|
}
|
|
|
|
#[deriving(Eq)]
|
|
enum LiveNodeKind {
|
|
FreeVarNode(Span),
|
|
ExprNode(Span),
|
|
VarDefNode(Span),
|
|
ExitNode
|
|
}
|
|
|
|
fn live_node_kind_to_str(lnk: LiveNodeKind, cx: ty::ctxt) -> ~str {
|
|
let cm = cx.sess.codemap;
|
|
match lnk {
|
|
FreeVarNode(s) => format!("Free var node [{}]", cm.span_to_str(s)),
|
|
ExprNode(s) => format!("Expr node [{}]", cm.span_to_str(s)),
|
|
VarDefNode(s) => format!("Var def node [{}]", cm.span_to_str(s)),
|
|
ExitNode => ~"Exit node"
|
|
}
|
|
}
|
|
|
|
struct LivenessVisitor;
|
|
|
|
impl Visitor<@IrMaps> for LivenessVisitor {
|
|
fn visit_fn(&mut self, fk: &FnKind, fd: &FnDecl, b: &Block, s: Span, n: NodeId, e: @IrMaps) {
|
|
visit_fn(self, fk, fd, b, s, n, e);
|
|
}
|
|
fn visit_local(&mut self, l: &Local, e: @IrMaps) { visit_local(self, l, e); }
|
|
fn visit_expr(&mut self, ex: &Expr, e: @IrMaps) { visit_expr(self, ex, e); }
|
|
fn visit_arm(&mut self, a: &Arm, e: @IrMaps) { visit_arm(self, a, e); }
|
|
}
|
|
|
|
pub fn check_crate(tcx: ty::ctxt,
|
|
method_map: typeck::method_map,
|
|
capture_map: moves::CaptureMap,
|
|
krate: &Crate) {
|
|
let mut visitor = LivenessVisitor;
|
|
|
|
let initial_maps = @IrMaps(tcx, method_map, capture_map);
|
|
visit::walk_crate(&mut visitor, krate, initial_maps);
|
|
tcx.sess.abort_if_errors();
|
|
}
|
|
|
|
impl fmt::Show for LiveNode {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f.buf, "ln({})", self.get())
|
|
}
|
|
}
|
|
|
|
impl fmt::Show for Variable {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f.buf, "v({})", self.get())
|
|
}
|
|
}
|
|
|
|
// ______________________________________________________________________
|
|
// Creating ir_maps
|
|
//
|
|
// This is the first pass and the one that drives the main
|
|
// computation. It walks up and down the IR once. On the way down,
|
|
// we count for each function the number of variables as well as
|
|
// liveness nodes. A liveness node is basically an expression or
|
|
// capture clause that does something of interest: either it has
|
|
// interesting control flow or it uses/defines a local variable.
|
|
//
|
|
// On the way back up, at each function node we create liveness sets
|
|
// (we now know precisely how big to make our various vectors and so
|
|
// forth) and then do the data-flow propagation to compute the set
|
|
// of live variables at each program point.
|
|
//
|
|
// Finally, we run back over the IR one last time and, using the
|
|
// computed liveness, check various safety conditions. For example,
|
|
// there must be no live nodes at the definition site for a variable
|
|
// unless it has an initializer. Similarly, each non-mutable local
|
|
// variable must not be assigned if there is some successor
|
|
// assignment. And so forth.
|
|
|
|
impl LiveNode {
|
|
pub fn is_valid(&self) -> bool {
|
|
self.get() != uint::MAX
|
|
}
|
|
}
|
|
|
|
fn invalid_node() -> LiveNode { LiveNode(uint::MAX) }
|
|
|
|
struct CaptureInfo {
|
|
ln: LiveNode,
|
|
is_move: bool,
|
|
var_nid: NodeId
|
|
}
|
|
|
|
enum LocalKind {
|
|
FromMatch(BindingMode),
|
|
FromLetWithInitializer,
|
|
FromLetNoInitializer
|
|
}
|
|
|
|
struct LocalInfo {
|
|
id: NodeId,
|
|
ident: Ident,
|
|
is_mutbl: bool,
|
|
kind: LocalKind,
|
|
}
|
|
|
|
enum VarKind {
|
|
Arg(NodeId, Ident),
|
|
Local(LocalInfo),
|
|
ImplicitRet
|
|
}
|
|
|
|
struct IrMaps {
|
|
tcx: ty::ctxt,
|
|
method_map: typeck::method_map,
|
|
capture_map: moves::CaptureMap,
|
|
|
|
num_live_nodes: Cell<uint>,
|
|
num_vars: Cell<uint>,
|
|
live_node_map: RefCell<HashMap<NodeId, LiveNode>>,
|
|
variable_map: RefCell<HashMap<NodeId, Variable>>,
|
|
capture_info_map: RefCell<HashMap<NodeId, @~[CaptureInfo]>>,
|
|
var_kinds: RefCell<~[VarKind]>,
|
|
lnks: RefCell<~[LiveNodeKind]>,
|
|
}
|
|
|
|
fn IrMaps(tcx: ty::ctxt,
|
|
method_map: typeck::method_map,
|
|
capture_map: moves::CaptureMap)
|
|
-> IrMaps {
|
|
IrMaps {
|
|
tcx: tcx,
|
|
method_map: method_map,
|
|
capture_map: capture_map,
|
|
num_live_nodes: Cell::new(0),
|
|
num_vars: Cell::new(0),
|
|
live_node_map: RefCell::new(HashMap::new()),
|
|
variable_map: RefCell::new(HashMap::new()),
|
|
capture_info_map: RefCell::new(HashMap::new()),
|
|
var_kinds: RefCell::new(~[]),
|
|
lnks: RefCell::new(~[]),
|
|
}
|
|
}
|
|
|
|
impl IrMaps {
|
|
pub fn add_live_node(&self, lnk: LiveNodeKind) -> LiveNode {
|
|
let num_live_nodes = self.num_live_nodes.get();
|
|
let ln = LiveNode(num_live_nodes);
|
|
let mut lnks = self.lnks.borrow_mut();
|
|
lnks.get().push(lnk);
|
|
self.num_live_nodes.set(num_live_nodes + 1);
|
|
|
|
debug!("{} is of kind {}", ln.to_str(),
|
|
live_node_kind_to_str(lnk, self.tcx));
|
|
|
|
ln
|
|
}
|
|
|
|
pub fn add_live_node_for_node(&self, node_id: NodeId, lnk: LiveNodeKind) {
|
|
let ln = self.add_live_node(lnk);
|
|
let mut live_node_map = self.live_node_map.borrow_mut();
|
|
live_node_map.get().insert(node_id, ln);
|
|
|
|
debug!("{} is node {}", ln.to_str(), node_id);
|
|
}
|
|
|
|
pub fn add_variable(&self, vk: VarKind) -> Variable {
|
|
let v = Variable(self.num_vars.get());
|
|
{
|
|
let mut var_kinds = self.var_kinds.borrow_mut();
|
|
var_kinds.get().push(vk);
|
|
}
|
|
self.num_vars.set(self.num_vars.get() + 1);
|
|
|
|
match vk {
|
|
Local(LocalInfo { id: node_id, .. }) | Arg(node_id, _) => {
|
|
let mut variable_map = self.variable_map.borrow_mut();
|
|
variable_map.get().insert(node_id, v);
|
|
},
|
|
ImplicitRet => {}
|
|
}
|
|
|
|
debug!("{} is {:?}", v.to_str(), vk);
|
|
|
|
v
|
|
}
|
|
|
|
pub fn variable(&self, node_id: NodeId, span: Span) -> Variable {
|
|
let variable_map = self.variable_map.borrow();
|
|
match variable_map.get().find(&node_id) {
|
|
Some(&var) => var,
|
|
None => {
|
|
self.tcx.sess.span_bug(
|
|
span, format!("no variable registered for id {}", node_id));
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn variable_name(&self, var: Variable) -> ~str {
|
|
let var_kinds = self.var_kinds.borrow();
|
|
match var_kinds.get()[var.get()] {
|
|
Local(LocalInfo { ident: nm, .. }) | Arg(_, nm) => {
|
|
token::get_ident(nm).get().to_str()
|
|
},
|
|
ImplicitRet => ~"<implicit-ret>"
|
|
}
|
|
}
|
|
|
|
pub fn set_captures(&self, node_id: NodeId, cs: ~[CaptureInfo]) {
|
|
let mut capture_info_map = self.capture_info_map.borrow_mut();
|
|
capture_info_map.get().insert(node_id, @cs);
|
|
}
|
|
|
|
pub fn captures(&self, expr: &Expr) -> @~[CaptureInfo] {
|
|
let capture_info_map = self.capture_info_map.borrow();
|
|
match capture_info_map.get().find(&expr.id) {
|
|
Some(&caps) => caps,
|
|
None => {
|
|
self.tcx.sess.span_bug(expr.span, "no registered caps");
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn lnk(&self, ln: LiveNode) -> LiveNodeKind {
|
|
let lnks = self.lnks.borrow();
|
|
lnks.get()[ln.get()]
|
|
}
|
|
}
|
|
|
|
impl Visitor<()> for Liveness {
|
|
fn visit_fn(&mut self, fk: &FnKind, fd: &FnDecl, b: &Block, s: Span, n: NodeId, _: ()) {
|
|
check_fn(self, fk, fd, b, s, n);
|
|
}
|
|
fn visit_local(&mut self, l: &Local, _: ()) {
|
|
check_local(self, l);
|
|
}
|
|
fn visit_expr(&mut self, ex: &Expr, _: ()) {
|
|
check_expr(self, ex);
|
|
}
|
|
fn visit_arm(&mut self, a: &Arm, _: ()) {
|
|
check_arm(self, a);
|
|
}
|
|
}
|
|
|
|
fn visit_fn(v: &mut LivenessVisitor,
|
|
fk: &FnKind,
|
|
decl: &FnDecl,
|
|
body: &Block,
|
|
sp: Span,
|
|
id: NodeId,
|
|
this: @IrMaps) {
|
|
debug!("visit_fn: id={}", id);
|
|
let _i = ::util::common::indenter();
|
|
|
|
// swap in a new set of IR maps for this function body:
|
|
let fn_maps = @IrMaps(this.tcx, this.method_map, this.capture_map);
|
|
|
|
unsafe {
|
|
debug!("creating fn_maps: {}", transmute::<&IrMaps, *IrMaps>(fn_maps));
|
|
}
|
|
|
|
for arg in decl.inputs.iter() {
|
|
pat_util::pat_bindings(this.tcx.def_map,
|
|
arg.pat,
|
|
|_bm, arg_id, _x, path| {
|
|
debug!("adding argument {}", arg_id);
|
|
let ident = ast_util::path_to_ident(path);
|
|
fn_maps.add_variable(Arg(arg_id, ident));
|
|
})
|
|
};
|
|
|
|
// gather up the various local variables, significant expressions,
|
|
// and so forth:
|
|
visit::walk_fn(v, fk, decl, body, sp, id, fn_maps);
|
|
|
|
// Special nodes and variables:
|
|
// - exit_ln represents the end of the fn, either by return or fail
|
|
// - implicit_ret_var is a pseudo-variable that represents
|
|
// an implicit return
|
|
let specials = Specials {
|
|
exit_ln: fn_maps.add_live_node(ExitNode),
|
|
fallthrough_ln: fn_maps.add_live_node(ExitNode),
|
|
no_ret_var: fn_maps.add_variable(ImplicitRet)
|
|
};
|
|
|
|
// compute liveness
|
|
let mut lsets = Liveness(fn_maps, specials);
|
|
let entry_ln = lsets.compute(decl, body);
|
|
|
|
// check for various error conditions
|
|
lsets.visit_block(body, ());
|
|
lsets.check_ret(id, sp, fk, entry_ln, body);
|
|
lsets.warn_about_unused_args(decl, entry_ln);
|
|
}
|
|
|
|
fn visit_local(v: &mut LivenessVisitor, local: &Local, this: @IrMaps) {
|
|
let def_map = this.tcx.def_map;
|
|
pat_util::pat_bindings(def_map, local.pat, |bm, p_id, sp, path| {
|
|
debug!("adding local variable {}", p_id);
|
|
let name = ast_util::path_to_ident(path);
|
|
this.add_live_node_for_node(p_id, VarDefNode(sp));
|
|
let kind = match local.init {
|
|
Some(_) => FromLetWithInitializer,
|
|
None => FromLetNoInitializer
|
|
};
|
|
let mutbl = match bm {
|
|
BindByValue(MutMutable) => true,
|
|
_ => false
|
|
};
|
|
this.add_variable(Local(LocalInfo {
|
|
id: p_id,
|
|
ident: name,
|
|
is_mutbl: mutbl,
|
|
kind: kind
|
|
}));
|
|
});
|
|
visit::walk_local(v, local, this);
|
|
}
|
|
|
|
fn visit_arm(v: &mut LivenessVisitor, arm: &Arm, this: @IrMaps) {
|
|
let def_map = this.tcx.def_map;
|
|
for pat in arm.pats.iter() {
|
|
pat_util::pat_bindings(def_map, *pat, |bm, p_id, sp, path| {
|
|
debug!("adding local variable {} from match with bm {:?}",
|
|
p_id, bm);
|
|
let name = ast_util::path_to_ident(path);
|
|
let mutbl = match bm {
|
|
BindByValue(MutMutable) => true,
|
|
_ => false
|
|
};
|
|
this.add_live_node_for_node(p_id, VarDefNode(sp));
|
|
this.add_variable(Local(LocalInfo {
|
|
id: p_id,
|
|
ident: name,
|
|
is_mutbl: mutbl,
|
|
kind: FromMatch(bm)
|
|
}));
|
|
})
|
|
}
|
|
visit::walk_arm(v, arm, this);
|
|
}
|
|
|
|
fn visit_expr(v: &mut LivenessVisitor, expr: &Expr, this: @IrMaps) {
|
|
match expr.node {
|
|
// live nodes required for uses or definitions of variables:
|
|
ExprPath(_) => {
|
|
let def_map = this.tcx.def_map.borrow();
|
|
let def = def_map.get().get_copy(&expr.id);
|
|
debug!("expr {}: path that leads to {:?}", expr.id, def);
|
|
if moves::moved_variable_node_id_from_def(def).is_some() {
|
|
this.add_live_node_for_node(expr.id, ExprNode(expr.span));
|
|
}
|
|
visit::walk_expr(v, expr, this);
|
|
}
|
|
ExprFnBlock(..) | ExprProc(..) => {
|
|
// Interesting control flow (for loops can contain labeled
|
|
// breaks or continues)
|
|
this.add_live_node_for_node(expr.id, ExprNode(expr.span));
|
|
|
|
// Make a live_node for each captured variable, with the span
|
|
// being the location that the variable is used. This results
|
|
// in better error messages than just pointing at the closure
|
|
// construction site.
|
|
let capture_map = this.capture_map.borrow();
|
|
let cvs = capture_map.get().get(&expr.id);
|
|
let mut call_caps = ~[];
|
|
for cv in cvs.borrow().iter() {
|
|
match moves::moved_variable_node_id_from_def(cv.def) {
|
|
Some(rv) => {
|
|
let cv_ln = this.add_live_node(FreeVarNode(cv.span));
|
|
let is_move = match cv.mode {
|
|
// var must be dead afterwards
|
|
moves::CapMove => true,
|
|
|
|
// var can stil be used
|
|
moves::CapCopy | moves::CapRef => false
|
|
};
|
|
call_caps.push(CaptureInfo {ln: cv_ln,
|
|
is_move: is_move,
|
|
var_nid: rv});
|
|
}
|
|
None => {}
|
|
}
|
|
}
|
|
this.set_captures(expr.id, call_caps);
|
|
|
|
visit::walk_expr(v, expr, this);
|
|
}
|
|
|
|
// live nodes required for interesting control flow:
|
|
ExprIf(..) | ExprMatch(..) | ExprWhile(..) | ExprLoop(..) => {
|
|
this.add_live_node_for_node(expr.id, ExprNode(expr.span));
|
|
visit::walk_expr(v, expr, this);
|
|
}
|
|
ExprForLoop(..) => fail!("non-desugared expr_for_loop"),
|
|
ExprBinary(_, op, _, _) if ast_util::lazy_binop(op) => {
|
|
this.add_live_node_for_node(expr.id, ExprNode(expr.span));
|
|
visit::walk_expr(v, expr, this);
|
|
}
|
|
|
|
// otherwise, live nodes are not required:
|
|
ExprIndex(..) | ExprField(..) | ExprVstore(..) | ExprVec(..) |
|
|
ExprCall(..) | ExprMethodCall(..) | ExprTup(..) | ExprLogLevel |
|
|
ExprBinary(..) | ExprAddrOf(..) |
|
|
ExprCast(..) | ExprUnary(..) | ExprBreak(_) |
|
|
ExprAgain(_) | ExprLit(_) | ExprRet(..) | ExprBlock(..) |
|
|
ExprAssign(..) | ExprAssignOp(..) | ExprMac(..) |
|
|
ExprStruct(..) | ExprRepeat(..) | ExprParen(..) |
|
|
ExprInlineAsm(..) | ExprBox(..) => {
|
|
visit::walk_expr(v, expr, this);
|
|
}
|
|
}
|
|
}
|
|
|
|
// ______________________________________________________________________
|
|
// Computing liveness sets
|
|
//
|
|
// Actually we compute just a bit more than just liveness, but we use
|
|
// the same basic propagation framework in all cases.
|
|
|
|
#[deriving(Clone)]
|
|
struct Users {
|
|
reader: LiveNode,
|
|
writer: LiveNode,
|
|
used: bool
|
|
}
|
|
|
|
fn invalid_users() -> Users {
|
|
Users {
|
|
reader: invalid_node(),
|
|
writer: invalid_node(),
|
|
used: false
|
|
}
|
|
}
|
|
|
|
struct Specials {
|
|
exit_ln: LiveNode,
|
|
fallthrough_ln: LiveNode,
|
|
no_ret_var: Variable
|
|
}
|
|
|
|
static ACC_READ: uint = 1u;
|
|
static ACC_WRITE: uint = 2u;
|
|
static ACC_USE: uint = 4u;
|
|
|
|
type LiveNodeMap = @RefCell<HashMap<NodeId, LiveNode>>;
|
|
|
|
pub struct Liveness {
|
|
tcx: ty::ctxt,
|
|
ir: @IrMaps,
|
|
s: Specials,
|
|
successors: @RefCell<~[LiveNode]>,
|
|
users: @RefCell<~[Users]>,
|
|
// The list of node IDs for the nested loop scopes
|
|
// we're in.
|
|
loop_scope: @RefCell<~[NodeId]>,
|
|
// mappings from loop node ID to LiveNode
|
|
// ("break" label should map to loop node ID,
|
|
// it probably doesn't now)
|
|
break_ln: LiveNodeMap,
|
|
cont_ln: LiveNodeMap
|
|
}
|
|
|
|
fn Liveness(ir: @IrMaps, specials: Specials) -> Liveness {
|
|
Liveness {
|
|
ir: ir,
|
|
tcx: ir.tcx,
|
|
s: specials,
|
|
successors: @RefCell::new(vec::from_elem(ir.num_live_nodes.get(),
|
|
invalid_node())),
|
|
users: @RefCell::new(vec::from_elem(ir.num_live_nodes.get() *
|
|
ir.num_vars.get(),
|
|
invalid_users())),
|
|
loop_scope: @RefCell::new(~[]),
|
|
break_ln: @RefCell::new(HashMap::new()),
|
|
cont_ln: @RefCell::new(HashMap::new()),
|
|
}
|
|
}
|
|
|
|
impl Liveness {
|
|
pub fn live_node(&self, node_id: NodeId, span: Span) -> LiveNode {
|
|
let ir: &IrMaps = self.ir;
|
|
let live_node_map = ir.live_node_map.borrow();
|
|
match live_node_map.get().find(&node_id) {
|
|
Some(&ln) => ln,
|
|
None => {
|
|
// This must be a mismatch between the ir_map construction
|
|
// above and the propagation code below; the two sets of
|
|
// code have to agree about which AST nodes are worth
|
|
// creating liveness nodes for.
|
|
self.tcx.sess.span_bug(
|
|
span, format!("no live node registered for node {}",
|
|
node_id));
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn variable(&self, node_id: NodeId, span: Span) -> Variable {
|
|
self.ir.variable(node_id, span)
|
|
}
|
|
|
|
pub fn pat_bindings(&self,
|
|
pat: @Pat,
|
|
f: |LiveNode, Variable, Span, NodeId|) {
|
|
let def_map = self.tcx.def_map;
|
|
pat_util::pat_bindings(def_map, pat, |_bm, p_id, sp, _n| {
|
|
let ln = self.live_node(p_id, sp);
|
|
let var = self.variable(p_id, sp);
|
|
f(ln, var, sp, p_id);
|
|
})
|
|
}
|
|
|
|
pub fn arm_pats_bindings(&self,
|
|
pats: &[@Pat],
|
|
f: |LiveNode, Variable, Span, NodeId|) {
|
|
// only consider the first pattern; any later patterns must have
|
|
// the same bindings, and we also consider the first pattern to be
|
|
// the "authoratative" set of ids
|
|
if !pats.is_empty() {
|
|
self.pat_bindings(pats[0], f)
|
|
}
|
|
}
|
|
|
|
pub fn define_bindings_in_pat(&self, pat: @Pat, succ: LiveNode)
|
|
-> LiveNode {
|
|
self.define_bindings_in_arm_pats([pat], succ)
|
|
}
|
|
|
|
pub fn define_bindings_in_arm_pats(&self, pats: &[@Pat], succ: LiveNode)
|
|
-> LiveNode {
|
|
let mut succ = succ;
|
|
self.arm_pats_bindings(pats, |ln, var, _sp, _id| {
|
|
self.init_from_succ(ln, succ);
|
|
self.define(ln, var);
|
|
succ = ln;
|
|
});
|
|
succ
|
|
}
|
|
|
|
pub fn idx(&self, ln: LiveNode, var: Variable) -> uint {
|
|
ln.get() * self.ir.num_vars.get() + var.get()
|
|
}
|
|
|
|
pub fn live_on_entry(&self, ln: LiveNode, var: Variable)
|
|
-> Option<LiveNodeKind> {
|
|
assert!(ln.is_valid());
|
|
let users = self.users.borrow();
|
|
let reader = users.get()[self.idx(ln, var)].reader;
|
|
if reader.is_valid() {Some(self.ir.lnk(reader))} else {None}
|
|
}
|
|
|
|
/*
|
|
Is this variable live on entry to any of its successor nodes?
|
|
*/
|
|
pub fn live_on_exit(&self, ln: LiveNode, var: Variable)
|
|
-> Option<LiveNodeKind> {
|
|
let successor = {
|
|
let successors = self.successors.borrow();
|
|
successors.get()[ln.get()]
|
|
};
|
|
self.live_on_entry(successor, var)
|
|
}
|
|
|
|
pub fn used_on_entry(&self, ln: LiveNode, var: Variable) -> bool {
|
|
assert!(ln.is_valid());
|
|
let users = self.users.borrow();
|
|
users.get()[self.idx(ln, var)].used
|
|
}
|
|
|
|
pub fn assigned_on_entry(&self, ln: LiveNode, var: Variable)
|
|
-> Option<LiveNodeKind> {
|
|
assert!(ln.is_valid());
|
|
let users = self.users.borrow();
|
|
let writer = users.get()[self.idx(ln, var)].writer;
|
|
if writer.is_valid() {Some(self.ir.lnk(writer))} else {None}
|
|
}
|
|
|
|
pub fn assigned_on_exit(&self, ln: LiveNode, var: Variable)
|
|
-> Option<LiveNodeKind> {
|
|
let successor = {
|
|
let successors = self.successors.borrow();
|
|
successors.get()[ln.get()]
|
|
};
|
|
self.assigned_on_entry(successor, var)
|
|
}
|
|
|
|
pub fn indices2(&self,
|
|
ln: LiveNode,
|
|
succ_ln: LiveNode,
|
|
op: |uint, uint|) {
|
|
let node_base_idx = self.idx(ln, Variable(0u));
|
|
let succ_base_idx = self.idx(succ_ln, Variable(0u));
|
|
for var_idx in range(0u, self.ir.num_vars.get()) {
|
|
op(node_base_idx + var_idx, succ_base_idx + var_idx);
|
|
}
|
|
}
|
|
|
|
pub fn write_vars(&self,
|
|
wr: &mut io::Writer,
|
|
ln: LiveNode,
|
|
test: |uint| -> LiveNode) -> io::IoResult<()> {
|
|
let node_base_idx = self.idx(ln, Variable(0));
|
|
for var_idx in range(0u, self.ir.num_vars.get()) {
|
|
let idx = node_base_idx + var_idx;
|
|
if test(idx).is_valid() {
|
|
try!(write!(wr, " {}", Variable(var_idx).to_str()));
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
pub fn find_loop_scope(&self,
|
|
opt_label: Option<Ident>,
|
|
id: NodeId,
|
|
sp: Span)
|
|
-> NodeId {
|
|
match opt_label {
|
|
Some(_) => {
|
|
// Refers to a labeled loop. Use the results of resolve
|
|
// to find with one
|
|
let def_map = self.tcx.def_map.borrow();
|
|
match def_map.get().find(&id) {
|
|
Some(&DefLabel(loop_id)) => loop_id,
|
|
_ => self.tcx.sess.span_bug(sp, "label on break/loop \
|
|
doesn't refer to a loop")
|
|
}
|
|
}
|
|
None => {
|
|
// Vanilla 'break' or 'loop', so use the enclosing
|
|
// loop scope
|
|
let loop_scope = self.loop_scope.borrow();
|
|
if loop_scope.get().len() == 0 {
|
|
self.tcx.sess.span_bug(sp, "break outside loop");
|
|
} else {
|
|
// FIXME(#5275): this shouldn't have to be a method...
|
|
self.last_loop_scope()
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn last_loop_scope(&self) -> NodeId {
|
|
let loop_scope = self.loop_scope.borrow();
|
|
*loop_scope.get().last().unwrap()
|
|
}
|
|
|
|
#[allow(unused_must_use)]
|
|
pub fn ln_str(&self, ln: LiveNode) -> ~str {
|
|
let mut wr = io::MemWriter::new();
|
|
{
|
|
let wr = &mut wr as &mut io::Writer;
|
|
{
|
|
let lnks = self.ir.lnks.try_borrow();
|
|
write!(wr,
|
|
"[ln({}) of kind {:?} reads",
|
|
ln.get(),
|
|
lnks.and_then(|lnks| Some(lnks.get()[ln.get()])));
|
|
}
|
|
let users = self.users.try_borrow();
|
|
match users {
|
|
Some(users) => {
|
|
self.write_vars(wr, ln, |idx| users.get()[idx].reader);
|
|
write!(wr, " writes");
|
|
self.write_vars(wr, ln, |idx| users.get()[idx].writer);
|
|
}
|
|
None => {
|
|
write!(wr, " (users borrowed)");
|
|
}
|
|
}
|
|
let successors = self.successors.try_borrow();
|
|
match successors {
|
|
Some(successors) => {
|
|
write!(wr, " precedes {}]", successors.get()[ln.get()].to_str());
|
|
}
|
|
None => {
|
|
write!(wr, " precedes (successors borrowed)]");
|
|
}
|
|
}
|
|
}
|
|
str::from_utf8_owned(wr.unwrap()).unwrap()
|
|
}
|
|
|
|
pub fn init_empty(&self, ln: LiveNode, succ_ln: LiveNode) {
|
|
{
|
|
let mut successors = self.successors.borrow_mut();
|
|
successors.get()[ln.get()] = succ_ln;
|
|
}
|
|
|
|
// It is not necessary to initialize the
|
|
// values to empty because this is the value
|
|
// they have when they are created, and the sets
|
|
// only grow during iterations.
|
|
//
|
|
// self.indices(ln) { |idx|
|
|
// self.users[idx] = invalid_users();
|
|
// }
|
|
}
|
|
|
|
pub fn init_from_succ(&self, ln: LiveNode, succ_ln: LiveNode) {
|
|
// more efficient version of init_empty() / merge_from_succ()
|
|
{
|
|
let mut successors = self.successors.borrow_mut();
|
|
successors.get()[ln.get()] = succ_ln;
|
|
}
|
|
|
|
self.indices2(ln, succ_ln, |idx, succ_idx| {
|
|
let mut users = self.users.borrow_mut();
|
|
users.get()[idx] = users.get()[succ_idx]
|
|
});
|
|
debug!("init_from_succ(ln={}, succ={})",
|
|
self.ln_str(ln), self.ln_str(succ_ln));
|
|
}
|
|
|
|
pub fn merge_from_succ(&self,
|
|
ln: LiveNode,
|
|
succ_ln: LiveNode,
|
|
first_merge: bool)
|
|
-> bool {
|
|
if ln == succ_ln { return false; }
|
|
|
|
let mut changed = false;
|
|
self.indices2(ln, succ_ln, |idx, succ_idx| {
|
|
let mut users = self.users.borrow_mut();
|
|
changed |= copy_if_invalid(users.get()[succ_idx].reader,
|
|
&mut users.get()[idx].reader);
|
|
changed |= copy_if_invalid(users.get()[succ_idx].writer,
|
|
&mut users.get()[idx].writer);
|
|
if users.get()[succ_idx].used && !users.get()[idx].used {
|
|
users.get()[idx].used = true;
|
|
changed = true;
|
|
}
|
|
});
|
|
|
|
debug!("merge_from_succ(ln={}, succ={}, first_merge={}, changed={})",
|
|
ln.to_str(), self.ln_str(succ_ln), first_merge, changed);
|
|
return changed;
|
|
|
|
fn copy_if_invalid(src: LiveNode, dst: &mut LiveNode) -> bool {
|
|
if src.is_valid() {
|
|
if !dst.is_valid() {
|
|
*dst = src;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Indicates that a local variable was *defined*; we know that no
|
|
// uses of the variable can precede the definition (resolve checks
|
|
// this) so we just clear out all the data.
|
|
pub fn define(&self, writer: LiveNode, var: Variable) {
|
|
let idx = self.idx(writer, var);
|
|
let mut users = self.users.borrow_mut();
|
|
users.get()[idx].reader = invalid_node();
|
|
users.get()[idx].writer = invalid_node();
|
|
|
|
debug!("{} defines {} (idx={}): {}", writer.to_str(), var.to_str(),
|
|
idx, self.ln_str(writer));
|
|
}
|
|
|
|
// Either read, write, or both depending on the acc bitset
|
|
pub fn acc(&self, ln: LiveNode, var: Variable, acc: uint) {
|
|
let idx = self.idx(ln, var);
|
|
let mut users = self.users.borrow_mut();
|
|
let user = &mut users.get()[idx];
|
|
|
|
if (acc & ACC_WRITE) != 0 {
|
|
user.reader = invalid_node();
|
|
user.writer = ln;
|
|
}
|
|
|
|
// Important: if we both read/write, must do read second
|
|
// or else the write will override.
|
|
if (acc & ACC_READ) != 0 {
|
|
user.reader = ln;
|
|
}
|
|
|
|
if (acc & ACC_USE) != 0 {
|
|
user.used = true;
|
|
}
|
|
|
|
debug!("{} accesses[{:x}] {}: {}",
|
|
ln.to_str(), acc, var.to_str(), self.ln_str(ln));
|
|
}
|
|
|
|
// _______________________________________________________________________
|
|
|
|
pub fn compute(&self, decl: &FnDecl, body: &Block) -> LiveNode {
|
|
// if there is a `break` or `again` at the top level, then it's
|
|
// effectively a return---this only occurs in `for` loops,
|
|
// where the body is really a closure.
|
|
|
|
debug!("compute: using id for block, {}", block_to_str(body));
|
|
|
|
let entry_ln: LiveNode =
|
|
self.with_loop_nodes(body.id, self.s.exit_ln, self.s.exit_ln,
|
|
|| { self.propagate_through_fn_block(decl, body) });
|
|
|
|
// hack to skip the loop unless debug! is enabled:
|
|
debug!("^^ liveness computation results for body {} (entry={})",
|
|
{
|
|
for ln_idx in range(0u, self.ir.num_live_nodes.get()) {
|
|
debug!("{}", self.ln_str(LiveNode(ln_idx)));
|
|
}
|
|
body.id
|
|
},
|
|
entry_ln.to_str());
|
|
|
|
entry_ln
|
|
}
|
|
|
|
pub fn propagate_through_fn_block(&self, _: &FnDecl, blk: &Block)
|
|
-> LiveNode {
|
|
// the fallthrough exit is only for those cases where we do not
|
|
// explicitly return:
|
|
self.init_from_succ(self.s.fallthrough_ln, self.s.exit_ln);
|
|
if blk.expr.is_none() {
|
|
self.acc(self.s.fallthrough_ln, self.s.no_ret_var, ACC_READ)
|
|
}
|
|
|
|
self.propagate_through_block(blk, self.s.fallthrough_ln)
|
|
}
|
|
|
|
pub fn propagate_through_block(&self, blk: &Block, succ: LiveNode)
|
|
-> LiveNode {
|
|
let succ = self.propagate_through_opt_expr(blk.expr, succ);
|
|
blk.stmts.rev_iter().fold(succ, |succ, stmt| {
|
|
self.propagate_through_stmt(*stmt, succ)
|
|
})
|
|
}
|
|
|
|
pub fn propagate_through_stmt(&self, stmt: &Stmt, succ: LiveNode)
|
|
-> LiveNode {
|
|
match stmt.node {
|
|
StmtDecl(decl, _) => {
|
|
return self.propagate_through_decl(decl, succ);
|
|
}
|
|
|
|
StmtExpr(expr, _) | StmtSemi(expr, _) => {
|
|
return self.propagate_through_expr(expr, succ);
|
|
}
|
|
|
|
StmtMac(..) => {
|
|
self.tcx.sess.span_bug(stmt.span, "unexpanded macro");
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn propagate_through_decl(&self, decl: &Decl, succ: LiveNode)
|
|
-> LiveNode {
|
|
match decl.node {
|
|
DeclLocal(ref local) => {
|
|
self.propagate_through_local(*local, succ)
|
|
}
|
|
DeclItem(_) => succ,
|
|
}
|
|
}
|
|
|
|
pub fn propagate_through_local(&self, local: &Local, succ: LiveNode)
|
|
-> LiveNode {
|
|
// Note: we mark the variable as defined regardless of whether
|
|
// there is an initializer. Initially I had thought to only mark
|
|
// the live variable as defined if it was initialized, and then we
|
|
// could check for uninit variables just by scanning what is live
|
|
// at the start of the function. But that doesn't work so well for
|
|
// immutable variables defined in a loop:
|
|
// loop { let x; x = 5; }
|
|
// because the "assignment" loops back around and generates an error.
|
|
//
|
|
// So now we just check that variables defined w/o an
|
|
// initializer are not live at the point of their
|
|
// initialization, which is mildly more complex than checking
|
|
// once at the func header but otherwise equivalent.
|
|
|
|
let succ = self.propagate_through_opt_expr(local.init, succ);
|
|
self.define_bindings_in_pat(local.pat, succ)
|
|
}
|
|
|
|
pub fn propagate_through_exprs(&self, exprs: &[@Expr], succ: LiveNode)
|
|
-> LiveNode {
|
|
exprs.rev_iter().fold(succ, |succ, expr| {
|
|
self.propagate_through_expr(*expr, succ)
|
|
})
|
|
}
|
|
|
|
pub fn propagate_through_opt_expr(&self,
|
|
opt_expr: Option<@Expr>,
|
|
succ: LiveNode)
|
|
-> LiveNode {
|
|
opt_expr.iter().fold(succ, |succ, expr| {
|
|
self.propagate_through_expr(*expr, succ)
|
|
})
|
|
}
|
|
|
|
pub fn propagate_through_expr(&self, expr: @Expr, succ: LiveNode)
|
|
-> LiveNode {
|
|
debug!("propagate_through_expr: {}", expr_to_str(expr));
|
|
|
|
match expr.node {
|
|
// Interesting cases with control flow or which gen/kill
|
|
|
|
ExprPath(_) => {
|
|
self.access_path(expr, succ, ACC_READ | ACC_USE)
|
|
}
|
|
|
|
ExprField(e, _, _) => {
|
|
self.propagate_through_expr(e, succ)
|
|
}
|
|
|
|
ExprFnBlock(_, blk) | ExprProc(_, blk) => {
|
|
debug!("{} is an ExprFnBlock or ExprProc", expr_to_str(expr));
|
|
|
|
/*
|
|
The next-node for a break is the successor of the entire
|
|
loop. The next-node for a continue is the top of this loop.
|
|
*/
|
|
self.with_loop_nodes(blk.id, succ,
|
|
self.live_node(expr.id, expr.span), || {
|
|
|
|
// the construction of a closure itself is not important,
|
|
// but we have to consider the closed over variables.
|
|
let caps = self.ir.captures(expr);
|
|
caps.rev_iter().fold(succ, |succ, cap| {
|
|
self.init_from_succ(cap.ln, succ);
|
|
let var = self.variable(cap.var_nid, expr.span);
|
|
self.acc(cap.ln, var, ACC_READ | ACC_USE);
|
|
cap.ln
|
|
})
|
|
})
|
|
}
|
|
|
|
ExprIf(cond, then, els) => {
|
|
//
|
|
// (cond)
|
|
// |
|
|
// v
|
|
// (expr)
|
|
// / \
|
|
// | |
|
|
// v v
|
|
// (then)(els)
|
|
// | |
|
|
// v v
|
|
// ( succ )
|
|
//
|
|
let else_ln = self.propagate_through_opt_expr(els, succ);
|
|
let then_ln = self.propagate_through_block(then, succ);
|
|
let ln = self.live_node(expr.id, expr.span);
|
|
self.init_from_succ(ln, else_ln);
|
|
self.merge_from_succ(ln, then_ln, false);
|
|
self.propagate_through_expr(cond, ln)
|
|
}
|
|
|
|
ExprWhile(cond, blk) => {
|
|
self.propagate_through_loop(expr, Some(cond), blk, succ)
|
|
}
|
|
|
|
ExprForLoop(..) => fail!("non-desugared expr_for_loop"),
|
|
|
|
// Note that labels have been resolved, so we don't need to look
|
|
// at the label ident
|
|
ExprLoop(blk, _) => {
|
|
self.propagate_through_loop(expr, None, blk, succ)
|
|
}
|
|
|
|
ExprMatch(e, ref arms) => {
|
|
//
|
|
// (e)
|
|
// |
|
|
// v
|
|
// (expr)
|
|
// / | \
|
|
// | | |
|
|
// v v v
|
|
// (..arms..)
|
|
// | | |
|
|
// v v v
|
|
// ( succ )
|
|
//
|
|
//
|
|
let ln = self.live_node(expr.id, expr.span);
|
|
self.init_empty(ln, succ);
|
|
let mut first_merge = true;
|
|
for arm in arms.iter() {
|
|
let body_succ =
|
|
self.propagate_through_block(arm.body, succ);
|
|
let guard_succ =
|
|
self.propagate_through_opt_expr(arm.guard, body_succ);
|
|
let arm_succ =
|
|
self.define_bindings_in_arm_pats(arm.pats, guard_succ);
|
|
self.merge_from_succ(ln, arm_succ, first_merge);
|
|
first_merge = false;
|
|
};
|
|
self.propagate_through_expr(e, ln)
|
|
}
|
|
|
|
ExprRet(o_e) => {
|
|
// ignore succ and subst exit_ln:
|
|
self.propagate_through_opt_expr(o_e, self.s.exit_ln)
|
|
}
|
|
|
|
ExprBreak(opt_label) => {
|
|
// Find which label this break jumps to
|
|
let sc = self.find_loop_scope(opt_label, expr.id, expr.span);
|
|
|
|
// Now that we know the label we're going to,
|
|
// look it up in the break loop nodes table
|
|
|
|
let break_ln = self.break_ln.borrow();
|
|
match break_ln.get().find(&sc) {
|
|
Some(&b) => b,
|
|
None => self.tcx.sess.span_bug(expr.span,
|
|
"break to unknown label")
|
|
}
|
|
}
|
|
|
|
ExprAgain(opt_label) => {
|
|
// Find which label this expr continues to
|
|
let sc = self.find_loop_scope(opt_label, expr.id, expr.span);
|
|
|
|
// Now that we know the label we're going to,
|
|
// look it up in the continue loop nodes table
|
|
|
|
let cont_ln = self.cont_ln.borrow();
|
|
match cont_ln.get().find(&sc) {
|
|
Some(&b) => b,
|
|
None => self.tcx.sess.span_bug(expr.span,
|
|
"loop to unknown label")
|
|
}
|
|
}
|
|
|
|
ExprAssign(l, r) => {
|
|
// see comment on lvalues in
|
|
// propagate_through_lvalue_components()
|
|
let succ = self.write_lvalue(l, succ, ACC_WRITE);
|
|
let succ = self.propagate_through_lvalue_components(l, succ);
|
|
self.propagate_through_expr(r, succ)
|
|
}
|
|
|
|
ExprAssignOp(_, _, l, r) => {
|
|
// see comment on lvalues in
|
|
// propagate_through_lvalue_components()
|
|
let succ = self.write_lvalue(l, succ, ACC_WRITE|ACC_READ);
|
|
let succ = self.propagate_through_expr(r, succ);
|
|
self.propagate_through_lvalue_components(l, succ)
|
|
}
|
|
|
|
// Uninteresting cases: just propagate in rev exec order
|
|
|
|
ExprVstore(expr, _) => {
|
|
self.propagate_through_expr(expr, succ)
|
|
}
|
|
|
|
ExprVec(ref exprs, _) => {
|
|
self.propagate_through_exprs(*exprs, succ)
|
|
}
|
|
|
|
ExprRepeat(element, count, _) => {
|
|
let succ = self.propagate_through_expr(count, succ);
|
|
self.propagate_through_expr(element, succ)
|
|
}
|
|
|
|
ExprStruct(_, ref fields, with_expr) => {
|
|
let succ = self.propagate_through_opt_expr(with_expr, succ);
|
|
fields.rev_iter().fold(succ, |succ, field| {
|
|
self.propagate_through_expr(field.expr, succ)
|
|
})
|
|
}
|
|
|
|
ExprCall(f, ref args) => {
|
|
// calling a fn with bot return type means that the fn
|
|
// will fail, and hence the successors can be ignored
|
|
let t_ret = ty::ty_fn_ret(ty::expr_ty(self.tcx, f));
|
|
let succ = if ty::type_is_bot(t_ret) {self.s.exit_ln}
|
|
else {succ};
|
|
let succ = self.propagate_through_exprs(*args, succ);
|
|
self.propagate_through_expr(f, succ)
|
|
}
|
|
|
|
ExprMethodCall(callee_id, _, _, ref args) => {
|
|
// calling a method with bot return type means that the method
|
|
// will fail, and hence the successors can be ignored
|
|
let t_ret = ty::ty_fn_ret(ty::node_id_to_type(self.tcx, callee_id));
|
|
let succ = if ty::type_is_bot(t_ret) {self.s.exit_ln}
|
|
else {succ};
|
|
self.propagate_through_exprs(*args, succ)
|
|
}
|
|
|
|
ExprTup(ref exprs) => {
|
|
self.propagate_through_exprs(*exprs, succ)
|
|
}
|
|
|
|
ExprBinary(_, op, l, r) if ast_util::lazy_binop(op) => {
|
|
let r_succ = self.propagate_through_expr(r, succ);
|
|
|
|
let ln = self.live_node(expr.id, expr.span);
|
|
self.init_from_succ(ln, succ);
|
|
self.merge_from_succ(ln, r_succ, false);
|
|
|
|
self.propagate_through_expr(l, ln)
|
|
}
|
|
|
|
ExprIndex(_, l, r) |
|
|
ExprBinary(_, _, l, r) |
|
|
ExprBox(l, r) => {
|
|
self.propagate_through_exprs([l, r], succ)
|
|
}
|
|
|
|
ExprAddrOf(_, e) |
|
|
ExprCast(e, _) |
|
|
ExprUnary(_, _, e) |
|
|
ExprParen(e) => {
|
|
self.propagate_through_expr(e, succ)
|
|
}
|
|
|
|
ExprInlineAsm(ref ia) => {
|
|
let succ = ia.inputs.rev_iter().fold(succ, |succ, &(_, expr)| {
|
|
self.propagate_through_expr(expr, succ)
|
|
});
|
|
ia.outputs.rev_iter().fold(succ, |succ, &(_, expr)| {
|
|
// see comment on lvalues in
|
|
// propagate_through_lvalue_components()
|
|
let succ = self.write_lvalue(expr, succ, ACC_WRITE);
|
|
self.propagate_through_lvalue_components(expr, succ)
|
|
})
|
|
}
|
|
|
|
ExprLogLevel |
|
|
ExprLit(..) => {
|
|
succ
|
|
}
|
|
|
|
ExprBlock(blk) => {
|
|
self.propagate_through_block(blk, succ)
|
|
}
|
|
|
|
ExprMac(..) => {
|
|
self.tcx.sess.span_bug(expr.span, "unexpanded macro");
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn propagate_through_lvalue_components(&self,
|
|
expr: @Expr,
|
|
succ: LiveNode)
|
|
-> LiveNode {
|
|
// # Lvalues
|
|
//
|
|
// In general, the full flow graph structure for an
|
|
// assignment/move/etc can be handled in one of two ways,
|
|
// depending on whether what is being assigned is a "tracked
|
|
// value" or not. A tracked value is basically a local
|
|
// variable or argument.
|
|
//
|
|
// The two kinds of graphs are:
|
|
//
|
|
// Tracked lvalue Untracked lvalue
|
|
// ----------------------++-----------------------
|
|
// ||
|
|
// | || |
|
|
// v || v
|
|
// (rvalue) || (rvalue)
|
|
// | || |
|
|
// v || v
|
|
// (write of lvalue) || (lvalue components)
|
|
// | || |
|
|
// v || v
|
|
// (succ) || (succ)
|
|
// ||
|
|
// ----------------------++-----------------------
|
|
//
|
|
// I will cover the two cases in turn:
|
|
//
|
|
// # Tracked lvalues
|
|
//
|
|
// A tracked lvalue is a local variable/argument `x`. In
|
|
// these cases, the link_node where the write occurs is linked
|
|
// to node id of `x`. The `write_lvalue()` routine generates
|
|
// the contents of this node. There are no subcomponents to
|
|
// consider.
|
|
//
|
|
// # Non-tracked lvalues
|
|
//
|
|
// These are lvalues like `x[5]` or `x.f`. In that case, we
|
|
// basically ignore the value which is written to but generate
|
|
// reads for the components---`x` in these two examples. The
|
|
// components reads are generated by
|
|
// `propagate_through_lvalue_components()` (this fn).
|
|
//
|
|
// # Illegal lvalues
|
|
//
|
|
// It is still possible to observe assignments to non-lvalues;
|
|
// these errors are detected in the later pass borrowck. We
|
|
// just ignore such cases and treat them as reads.
|
|
|
|
match expr.node {
|
|
ExprPath(_) => succ,
|
|
ExprField(e, _, _) => self.propagate_through_expr(e, succ),
|
|
_ => self.propagate_through_expr(expr, succ)
|
|
}
|
|
}
|
|
|
|
// see comment on propagate_through_lvalue()
|
|
pub fn write_lvalue(&self, expr: &Expr, succ: LiveNode, acc: uint)
|
|
-> LiveNode {
|
|
match expr.node {
|
|
ExprPath(_) => self.access_path(expr, succ, acc),
|
|
|
|
// We do not track other lvalues, so just propagate through
|
|
// to their subcomponents. Also, it may happen that
|
|
// non-lvalues occur here, because those are detected in the
|
|
// later pass borrowck.
|
|
_ => succ
|
|
}
|
|
}
|
|
|
|
pub fn access_path(&self, expr: &Expr, succ: LiveNode, acc: uint)
|
|
-> LiveNode {
|
|
let def_map = self.tcx.def_map.borrow();
|
|
let def = def_map.get().get_copy(&expr.id);
|
|
match moves::moved_variable_node_id_from_def(def) {
|
|
Some(nid) => {
|
|
let ln = self.live_node(expr.id, expr.span);
|
|
if acc != 0u {
|
|
self.init_from_succ(ln, succ);
|
|
let var = self.variable(nid, expr.span);
|
|
self.acc(ln, var, acc);
|
|
}
|
|
ln
|
|
}
|
|
None => succ
|
|
}
|
|
}
|
|
|
|
pub fn propagate_through_loop(&self,
|
|
expr: &Expr,
|
|
cond: Option<@Expr>,
|
|
body: &Block,
|
|
succ: LiveNode)
|
|
-> LiveNode {
|
|
|
|
/*
|
|
|
|
We model control flow like this:
|
|
|
|
(cond) <--+
|
|
| |
|
|
v |
|
|
+-- (expr) |
|
|
| | |
|
|
| v |
|
|
| (body) ---+
|
|
|
|
|
|
|
|
v
|
|
(succ)
|
|
|
|
*/
|
|
|
|
|
|
// first iteration:
|
|
let mut first_merge = true;
|
|
let ln = self.live_node(expr.id, expr.span);
|
|
self.init_empty(ln, succ);
|
|
if cond.is_some() {
|
|
// if there is a condition, then it's possible we bypass
|
|
// the body altogether. otherwise, the only way is via a
|
|
// break in the loop body.
|
|
self.merge_from_succ(ln, succ, first_merge);
|
|
first_merge = false;
|
|
}
|
|
debug!("propagate_through_loop: using id for loop body {} {}",
|
|
expr.id, block_to_str(body));
|
|
|
|
let cond_ln = self.propagate_through_opt_expr(cond, ln);
|
|
let body_ln = self.with_loop_nodes(expr.id, succ, ln, || {
|
|
self.propagate_through_block(body, cond_ln)
|
|
});
|
|
|
|
// repeat until fixed point is reached:
|
|
while self.merge_from_succ(ln, body_ln, first_merge) {
|
|
first_merge = false;
|
|
assert!(cond_ln == self.propagate_through_opt_expr(cond,
|
|
ln));
|
|
assert!(body_ln == self.with_loop_nodes(expr.id, succ, ln,
|
|
|| {
|
|
self.propagate_through_block(body, cond_ln)
|
|
}));
|
|
}
|
|
|
|
cond_ln
|
|
}
|
|
|
|
pub fn with_loop_nodes<R>(
|
|
&self,
|
|
loop_node_id: NodeId,
|
|
break_ln: LiveNode,
|
|
cont_ln: LiveNode,
|
|
f: || -> R)
|
|
-> R {
|
|
debug!("with_loop_nodes: {} {}", loop_node_id, break_ln.get());
|
|
{
|
|
let mut loop_scope = self.loop_scope.borrow_mut();
|
|
loop_scope.get().push(loop_node_id);
|
|
}
|
|
{
|
|
let mut this_break_ln = self.break_ln.borrow_mut();
|
|
let mut this_cont_ln = self.cont_ln.borrow_mut();
|
|
this_break_ln.get().insert(loop_node_id, break_ln);
|
|
this_cont_ln.get().insert(loop_node_id, cont_ln);
|
|
}
|
|
let r = f();
|
|
{
|
|
let mut loop_scope = self.loop_scope.borrow_mut();
|
|
loop_scope.get().pop();
|
|
}
|
|
r
|
|
}
|
|
}
|
|
|
|
// _______________________________________________________________________
|
|
// Checking for error conditions
|
|
|
|
fn check_local(this: &mut Liveness, local: &Local) {
|
|
match local.init {
|
|
Some(_) => {
|
|
this.warn_about_unused_or_dead_vars_in_pat(local.pat);
|
|
}
|
|
None => {
|
|
|
|
// No initializer: the variable might be unused; if not, it
|
|
// should not be live at this point.
|
|
|
|
debug!("check_local() with no initializer");
|
|
this.pat_bindings(local.pat, |ln, var, sp, id| {
|
|
if !this.warn_about_unused(sp, id, ln, var) {
|
|
match this.live_on_exit(ln, var) {
|
|
None => { /* not live: good */ }
|
|
Some(lnk) => {
|
|
this.report_illegal_read(
|
|
local.span, lnk, var,
|
|
PossiblyUninitializedVariable);
|
|
}
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
visit::walk_local(this, local, ());
|
|
}
|
|
|
|
fn check_arm(this: &mut Liveness, arm: &Arm) {
|
|
this.arm_pats_bindings(arm.pats, |ln, var, sp, id| {
|
|
this.warn_about_unused(sp, id, ln, var);
|
|
});
|
|
visit::walk_arm(this, arm, ());
|
|
}
|
|
|
|
fn check_expr(this: &mut Liveness, expr: &Expr) {
|
|
match expr.node {
|
|
ExprAssign(l, r) => {
|
|
this.check_lvalue(l);
|
|
this.visit_expr(r, ());
|
|
|
|
visit::walk_expr(this, expr, ());
|
|
}
|
|
|
|
ExprAssignOp(_, _, l, _) => {
|
|
this.check_lvalue(l);
|
|
|
|
visit::walk_expr(this, expr, ());
|
|
}
|
|
|
|
ExprInlineAsm(ref ia) => {
|
|
for &(_, input) in ia.inputs.iter() {
|
|
this.visit_expr(input, ());
|
|
}
|
|
|
|
// Output operands must be lvalues
|
|
for &(_, out) in ia.outputs.iter() {
|
|
this.check_lvalue(out);
|
|
this.visit_expr(out, ());
|
|
}
|
|
|
|
visit::walk_expr(this, expr, ());
|
|
}
|
|
|
|
// no correctness conditions related to liveness
|
|
ExprCall(..) | ExprMethodCall(..) | ExprIf(..) | ExprMatch(..) |
|
|
ExprWhile(..) | ExprLoop(..) | ExprIndex(..) | ExprField(..) |
|
|
ExprVstore(..) | ExprVec(..) | ExprTup(..) | ExprLogLevel |
|
|
ExprBinary(..) |
|
|
ExprCast(..) | ExprUnary(..) | ExprRet(..) | ExprBreak(..) |
|
|
ExprAgain(..) | ExprLit(_) | ExprBlock(..) |
|
|
ExprMac(..) | ExprAddrOf(..) | ExprStruct(..) | ExprRepeat(..) |
|
|
ExprParen(..) | ExprFnBlock(..) | ExprProc(..) | ExprPath(..) |
|
|
ExprBox(..) => {
|
|
visit::walk_expr(this, expr, ());
|
|
}
|
|
ExprForLoop(..) => fail!("non-desugared expr_for_loop")
|
|
}
|
|
}
|
|
|
|
fn check_fn(_v: &Liveness,
|
|
_fk: &FnKind,
|
|
_decl: &FnDecl,
|
|
_body: &Block,
|
|
_sp: Span,
|
|
_id: NodeId) {
|
|
// do not check contents of nested fns
|
|
}
|
|
|
|
enum ReadKind {
|
|
PossiblyUninitializedVariable,
|
|
PossiblyUninitializedField,
|
|
MovedValue,
|
|
PartiallyMovedValue
|
|
}
|
|
|
|
impl Liveness {
|
|
pub fn check_ret(&self,
|
|
id: NodeId,
|
|
sp: Span,
|
|
_fk: &FnKind,
|
|
entry_ln: LiveNode,
|
|
body: &Block) {
|
|
if self.live_on_entry(entry_ln, self.s.no_ret_var).is_some() {
|
|
// if no_ret_var is live, then we fall off the end of the
|
|
// function without any kind of return expression:
|
|
|
|
let t_ret = ty::ty_fn_ret(ty::node_id_to_type(self.tcx, id));
|
|
if ty::type_is_nil(t_ret) {
|
|
// for nil return types, it is ok to not return a value expl.
|
|
} else if ty::type_is_bot(t_ret) {
|
|
// for bot return types, not ok. Function should fail.
|
|
self.tcx.sess.span_err(
|
|
sp, "some control paths may return");
|
|
} else {
|
|
let ends_with_stmt = match body.expr {
|
|
None if body.stmts.len() > 0 =>
|
|
match body.stmts.last().unwrap().node {
|
|
StmtSemi(e, _) => {
|
|
let t_stmt = ty::expr_ty(self.tcx, e);
|
|
ty::get(t_stmt).sty == ty::get(t_ret).sty
|
|
},
|
|
_ => false
|
|
},
|
|
_ => false
|
|
};
|
|
if ends_with_stmt {
|
|
let last_stmt = body.stmts.last().unwrap();
|
|
let span_semicolon = Span {
|
|
lo: last_stmt.span.hi,
|
|
hi: last_stmt.span.hi,
|
|
expn_info: last_stmt.span.expn_info
|
|
};
|
|
self.tcx.sess.span_note(
|
|
span_semicolon, "consider removing this semicolon:");
|
|
}
|
|
self.tcx.sess.span_err(
|
|
sp, "not all control paths return a value");
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn check_lvalue(&mut self, expr: @Expr) {
|
|
match expr.node {
|
|
ExprPath(_) => {
|
|
let def_map = self.tcx.def_map.borrow();
|
|
match def_map.get().get_copy(&expr.id) {
|
|
DefLocal(nid, _) => {
|
|
// Assignment to an immutable variable or argument: only legal
|
|
// if there is no later assignment. If this local is actually
|
|
// mutable, then check for a reassignment to flag the mutability
|
|
// as being used.
|
|
let ln = self.live_node(expr.id, expr.span);
|
|
let var = self.variable(nid, expr.span);
|
|
self.warn_about_dead_assign(expr.span, expr.id, ln, var);
|
|
}
|
|
def => {
|
|
match moves::moved_variable_node_id_from_def(def) {
|
|
Some(nid) => {
|
|
let ln = self.live_node(expr.id, expr.span);
|
|
let var = self.variable(nid, expr.span);
|
|
self.warn_about_dead_assign(expr.span, expr.id, ln, var);
|
|
}
|
|
None => {}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
_ => {
|
|
// For other kinds of lvalues, no checks are required,
|
|
// and any embedded expressions are actually rvalues
|
|
visit::walk_expr(self, expr, ());
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn report_illegal_read(&self,
|
|
chk_span: Span,
|
|
lnk: LiveNodeKind,
|
|
var: Variable,
|
|
rk: ReadKind) {
|
|
let msg = match rk {
|
|
PossiblyUninitializedVariable => "possibly uninitialized \
|
|
variable",
|
|
PossiblyUninitializedField => "possibly uninitialized field",
|
|
MovedValue => "moved value",
|
|
PartiallyMovedValue => "partially moved value"
|
|
};
|
|
let name = self.ir.variable_name(var);
|
|
match lnk {
|
|
FreeVarNode(span) => {
|
|
self.tcx.sess.span_err(
|
|
span,
|
|
format!("capture of {}: `{}`", msg, name));
|
|
}
|
|
ExprNode(span) => {
|
|
self.tcx.sess.span_err(
|
|
span,
|
|
format!("use of {}: `{}`", msg, name));
|
|
}
|
|
ExitNode | VarDefNode(_) => {
|
|
self.tcx.sess.span_bug(
|
|
chk_span,
|
|
format!("illegal reader: {:?}", lnk));
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn should_warn(&self, var: Variable) -> Option<~str> {
|
|
let name = self.ir.variable_name(var);
|
|
if name.len() == 0 || name[0] == ('_' as u8) { None } else { Some(name) }
|
|
}
|
|
|
|
pub fn warn_about_unused_args(&self, decl: &FnDecl, entry_ln: LiveNode) {
|
|
for arg in decl.inputs.iter() {
|
|
pat_util::pat_bindings(self.tcx.def_map,
|
|
arg.pat,
|
|
|_bm, p_id, sp, path| {
|
|
let var = self.variable(p_id, sp);
|
|
// Ignore unused self.
|
|
let ident = ast_util::path_to_ident(path);
|
|
if ident.name != special_idents::self_.name {
|
|
self.warn_about_unused(sp, p_id, entry_ln, var);
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
pub fn warn_about_unused_or_dead_vars_in_pat(&self, pat: @Pat) {
|
|
self.pat_bindings(pat, |ln, var, sp, id| {
|
|
if !self.warn_about_unused(sp, id, ln, var) {
|
|
self.warn_about_dead_assign(sp, id, ln, var);
|
|
}
|
|
})
|
|
}
|
|
|
|
pub fn warn_about_unused(&self,
|
|
sp: Span,
|
|
id: NodeId,
|
|
ln: LiveNode,
|
|
var: Variable)
|
|
-> bool {
|
|
if !self.used_on_entry(ln, var) {
|
|
let r = self.should_warn(var);
|
|
for name in r.iter() {
|
|
|
|
// annoying: for parameters in funcs like `fn(x: int)
|
|
// {ret}`, there is only one node, so asking about
|
|
// assigned_on_exit() is not meaningful.
|
|
let is_assigned = if ln == self.s.exit_ln {
|
|
false
|
|
} else {
|
|
self.assigned_on_exit(ln, var).is_some()
|
|
};
|
|
|
|
if is_assigned {
|
|
self.tcx.sess.add_lint(UnusedVariable, id, sp,
|
|
format!("variable `{}` is assigned to, \
|
|
but never used", *name));
|
|
} else {
|
|
self.tcx.sess.add_lint(UnusedVariable, id, sp,
|
|
format!("unused variable: `{}`", *name));
|
|
}
|
|
}
|
|
true
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
|
|
pub fn warn_about_dead_assign(&self,
|
|
sp: Span,
|
|
id: NodeId,
|
|
ln: LiveNode,
|
|
var: Variable) {
|
|
if self.live_on_exit(ln, var).is_none() {
|
|
let r = self.should_warn(var);
|
|
for name in r.iter() {
|
|
self.tcx.sess.add_lint(DeadAssignment, id, sp,
|
|
format!("value assigned to `{}` is never read", *name));
|
|
}
|
|
}
|
|
}
|
|
}
|