rust/src/rustc/middle/trans/machine.rs

149 lines
6.1 KiB
Rust

// Information concerning the machine representation of various types.
use middle::trans::common::*;
// Creates a simpler, size-equivalent type. The resulting type is guaranteed
// to have (a) the same size as the type that was passed in; (b) to be non-
// recursive. This is done by replacing all boxes in a type with boxed unit
// types.
// This should reduce all pointers to some simple pointer type, to
// ensure that we don't recurse endlessly when computing the size of a
// nominal type that has pointers to itself in it.
pub fn simplify_type(tcx: ty::ctxt, typ: ty::t) -> ty::t {
fn nilptr(tcx: ty::ctxt) -> ty::t {
ty::mk_ptr(tcx, {ty: ty::mk_nil(tcx), mutbl: ast::m_imm})
}
fn simplifier(tcx: ty::ctxt, typ: ty::t) -> ty::t {
match ty::get(typ).sty {
ty::ty_box(_) | ty::ty_opaque_box | ty::ty_uniq(_) |
ty::ty_evec(_, ty::vstore_uniq) | ty::ty_evec(_, ty::vstore_box) |
ty::ty_estr(ty::vstore_uniq) | ty::ty_estr(ty::vstore_box) |
ty::ty_ptr(_) | ty::ty_rptr(_,_) => nilptr(tcx),
ty::ty_fn(_) => ty::mk_tup(tcx, ~[nilptr(tcx), nilptr(tcx)]),
ty::ty_evec(_, ty::vstore_slice(_)) |
ty::ty_estr(ty::vstore_slice(_)) => {
ty::mk_tup(tcx, ~[nilptr(tcx), ty::mk_int(tcx)])
}
// Reduce a class type to a record type in which all the fields are
// simplified
ty::ty_class(did, ref substs) => {
let simpl_fields = (if ty::ty_dtor(tcx, did).is_some() {
// remember the drop flag
~[{ident: syntax::parse::token::special_idents::dtor,
mt: {ty: ty::mk_u8(tcx),
mutbl: ast::m_mutbl}}] }
else { ~[] }) +
do ty::lookup_class_fields(tcx, did).map |f| {
let t = ty::lookup_field_type(tcx, did, f.id, substs);
{ident: f.ident,
mt: {ty: simplify_type(tcx, t), mutbl: ast::m_const}}
};
ty::mk_rec(tcx, simpl_fields)
}
_ => typ
}
}
ty::fold_ty(tcx, typ, |t| simplifier(tcx, t))
}
// ______________________________________________________________________
// compute sizeof / alignof
pub type metrics = {
bcx: block,
sz: ValueRef,
align: ValueRef
};
pub type tag_metrics = {
bcx: block,
sz: ValueRef,
align: ValueRef,
payload_align: ValueRef
};
// Returns the number of bytes clobbered by a Store to this type.
pub fn llsize_of_store(cx: @crate_ctxt, t: TypeRef) -> uint {
return llvm::LLVMStoreSizeOfType(cx.td.lltd, t) as uint;
}
// Returns the number of bytes between successive elements of type T in an
// array of T. This is the "ABI" size. It includes any ABI-mandated padding.
pub fn llsize_of_alloc(cx: @crate_ctxt, t: TypeRef) -> uint {
return llvm::LLVMABISizeOfType(cx.td.lltd, t) as uint;
}
// Returns, as near as we can figure, the "real" size of a type. As in, the
// bits in this number of bytes actually carry data related to the datum
// with the type. Not junk, padding, accidentally-damaged words, or
// whatever. Rounds up to the nearest byte though, so if you have a 1-bit
// value, we return 1 here, not 0. Most of rustc works in bytes.
pub fn llsize_of_real(cx: @crate_ctxt, t: TypeRef) -> uint {
let nbits = llvm::LLVMSizeOfTypeInBits(cx.td.lltd, t) as uint;
if nbits & 7u != 0u {
// Not an even number of bytes, spills into "next" byte.
1u + (nbits >> 3)
} else {
nbits >> 3
}
}
// Returns the "default" size of t, which is calculated by casting null to a
// *T and then doing gep(1) on it and measuring the result. Really, look in
// the LLVM sources. It does that. So this is likely similar to the ABI size
// (i.e. including alignment-padding), but goodness knows which alignment it
// winds up using. Probably the ABI one? Not recommended.
pub fn llsize_of(cx: @crate_ctxt, t: TypeRef) -> ValueRef {
return llvm::LLVMConstIntCast(lib::llvm::llvm::LLVMSizeOf(t), cx.int_type,
False);
}
// Returns the preferred alignment of the given type for the current target.
// The preffered alignment may be larger than the alignment used when
// packing the type into structs. This will be used for things like
// allocations inside a stack frame, which LLVM has a free hand in.
pub fn llalign_of_pref(cx: @crate_ctxt, t: TypeRef) -> uint {
return llvm::LLVMPreferredAlignmentOfType(cx.td.lltd, t) as uint;
}
// Returns the minimum alignment of a type required by the plattform.
// This is the alignment that will be used for struct fields, arrays,
// and similar ABI-mandated things.
pub fn llalign_of_min(cx: @crate_ctxt, t: TypeRef) -> uint {
return llvm::LLVMABIAlignmentOfType(cx.td.lltd, t) as uint;
}
// Returns the "default" alignment of t, which is calculated by casting
// null to a record containing a single-bit followed by a t value, then
// doing gep(0,1) to get at the trailing (and presumably padded) t cell.
pub fn llalign_of(cx: @crate_ctxt, t: TypeRef) -> ValueRef {
return llvm::LLVMConstIntCast(
lib::llvm::llvm::LLVMAlignOf(t), cx.int_type, False);
}
// Computes the size of the data part of an enum.
pub fn static_size_of_enum(cx: @crate_ctxt, t: ty::t) -> uint {
if cx.enum_sizes.contains_key(t) { return cx.enum_sizes.get(t); }
match ty::get(t).sty {
ty::ty_enum(tid, ref substs) => {
// Compute max(variant sizes).
let mut max_size = 0u;
let variants = ty::enum_variants(cx.tcx, tid);
for vec::each(*variants) |variant| {
let tup_ty = simplify_type(cx.tcx,
ty::mk_tup(cx.tcx, variant.args));
// Perform any type parameter substitutions.
let tup_ty = ty::subst(cx.tcx, substs, tup_ty);
// Here we possibly do a recursive call.
let this_size =
llsize_of_real(cx, type_of::type_of(cx, tup_ty));
if max_size < this_size { max_size = this_size; }
}
cx.enum_sizes.insert(t, max_size);
return max_size;
}
_ => cx.sess.bug(~"static_size_of_enum called on non-enum")
}
}