731 lines
29 KiB
Rust
731 lines
29 KiB
Rust
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
use self::ArgumentType::*;
|
|
use self::Position::*;
|
|
|
|
use ast;
|
|
use codemap::{Span, respan};
|
|
use ext::base::*;
|
|
use ext::base;
|
|
use ext::build::AstBuilder;
|
|
use fmt_macros as parse;
|
|
use parse::token::{InternedString, special_idents};
|
|
use parse::token;
|
|
use ptr::P;
|
|
|
|
use std::collections::HashMap;
|
|
use std::iter::repeat;
|
|
|
|
#[derive(PartialEq)]
|
|
enum ArgumentType {
|
|
Known(String),
|
|
Unsigned
|
|
}
|
|
|
|
enum Position {
|
|
Exact(uint),
|
|
Named(String),
|
|
}
|
|
|
|
struct Context<'a, 'b:'a> {
|
|
ecx: &'a mut ExtCtxt<'b>,
|
|
fmtsp: Span,
|
|
|
|
/// Parsed argument expressions and the types that we've found so far for
|
|
/// them.
|
|
args: Vec<P<ast::Expr>>,
|
|
arg_types: Vec<Option<ArgumentType>>,
|
|
/// Parsed named expressions and the types that we've found for them so far.
|
|
/// Note that we keep a side-array of the ordering of the named arguments
|
|
/// found to be sure that we can translate them in the same order that they
|
|
/// were declared in.
|
|
names: HashMap<String, P<ast::Expr>>,
|
|
name_types: HashMap<String, ArgumentType>,
|
|
name_ordering: Vec<String>,
|
|
|
|
/// The latest consecutive literal strings, or empty if there weren't any.
|
|
literal: String,
|
|
|
|
/// Collection of the compiled `rt::Argument` structures
|
|
pieces: Vec<P<ast::Expr>>,
|
|
/// Collection of string literals
|
|
str_pieces: Vec<P<ast::Expr>>,
|
|
/// Stays `true` if all formatting parameters are default (as in "{}{}").
|
|
all_pieces_simple: bool,
|
|
|
|
name_positions: HashMap<String, uint>,
|
|
|
|
/// Updated as arguments are consumed or methods are entered
|
|
nest_level: uint,
|
|
next_arg: uint,
|
|
}
|
|
|
|
/// Parses the arguments from the given list of tokens, returning None
|
|
/// if there's a parse error so we can continue parsing other format!
|
|
/// expressions.
|
|
///
|
|
/// If parsing succeeds, the return value is:
|
|
///
|
|
/// Some((fmtstr, unnamed arguments, ordering of named arguments,
|
|
/// named arguments))
|
|
fn parse_args(ecx: &mut ExtCtxt, sp: Span, tts: &[ast::TokenTree])
|
|
-> Option<(P<ast::Expr>, Vec<P<ast::Expr>>, Vec<String>,
|
|
HashMap<String, P<ast::Expr>>)> {
|
|
let mut args = Vec::new();
|
|
let mut names = HashMap::<String, P<ast::Expr>>::new();
|
|
let mut order = Vec::new();
|
|
|
|
let mut p = ecx.new_parser_from_tts(tts);
|
|
|
|
if p.token == token::Eof {
|
|
ecx.span_err(sp, "requires at least a format string argument");
|
|
return None;
|
|
}
|
|
let fmtstr = p.parse_expr();
|
|
let mut named = false;
|
|
while p.token != token::Eof {
|
|
if !p.eat(&token::Comma) {
|
|
ecx.span_err(sp, "expected token: `,`");
|
|
return None;
|
|
}
|
|
if p.token == token::Eof { break } // accept trailing commas
|
|
if named || (p.token.is_ident() && p.look_ahead(1, |t| *t == token::Eq)) {
|
|
named = true;
|
|
let ident = match p.token {
|
|
token::Ident(i, _) => {
|
|
p.bump();
|
|
i
|
|
}
|
|
_ if named => {
|
|
ecx.span_err(p.span,
|
|
"expected ident, positional arguments \
|
|
cannot follow named arguments");
|
|
return None;
|
|
}
|
|
_ => {
|
|
ecx.span_err(p.span,
|
|
&format!("expected ident for named argument, found `{}`",
|
|
p.this_token_to_string())[]);
|
|
return None;
|
|
}
|
|
};
|
|
let interned_name = token::get_ident(ident);
|
|
let name = interned_name.get();
|
|
p.expect(&token::Eq);
|
|
let e = p.parse_expr();
|
|
match names.get(name) {
|
|
None => {}
|
|
Some(prev) => {
|
|
ecx.span_err(e.span,
|
|
&format!("duplicate argument named `{}`",
|
|
name)[]);
|
|
ecx.parse_sess.span_diagnostic.span_note(prev.span, "previously here");
|
|
continue
|
|
}
|
|
}
|
|
order.push(name.to_string());
|
|
names.insert(name.to_string(), e);
|
|
} else {
|
|
args.push(p.parse_expr());
|
|
}
|
|
}
|
|
Some((fmtstr, args, order, names))
|
|
}
|
|
|
|
impl<'a, 'b> Context<'a, 'b> {
|
|
/// Verifies one piece of a parse string. All errors are not emitted as
|
|
/// fatal so we can continue giving errors about this and possibly other
|
|
/// format strings.
|
|
fn verify_piece(&mut self, p: &parse::Piece) {
|
|
match *p {
|
|
parse::String(..) => {}
|
|
parse::NextArgument(ref arg) => {
|
|
// width/precision first, if they have implicit positional
|
|
// parameters it makes more sense to consume them first.
|
|
self.verify_count(arg.format.width);
|
|
self.verify_count(arg.format.precision);
|
|
|
|
// argument second, if it's an implicit positional parameter
|
|
// it's written second, so it should come after width/precision.
|
|
let pos = match arg.position {
|
|
parse::ArgumentNext => {
|
|
let i = self.next_arg;
|
|
if self.check_positional_ok() {
|
|
self.next_arg += 1;
|
|
}
|
|
Exact(i)
|
|
}
|
|
parse::ArgumentIs(i) => Exact(i),
|
|
parse::ArgumentNamed(s) => Named(s.to_string()),
|
|
};
|
|
|
|
let ty = Known(arg.format.ty.to_string());
|
|
self.verify_arg_type(pos, ty);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn verify_count(&mut self, c: parse::Count) {
|
|
match c {
|
|
parse::CountImplied | parse::CountIs(..) => {}
|
|
parse::CountIsParam(i) => {
|
|
self.verify_arg_type(Exact(i), Unsigned);
|
|
}
|
|
parse::CountIsName(s) => {
|
|
self.verify_arg_type(Named(s.to_string()), Unsigned);
|
|
}
|
|
parse::CountIsNextParam => {
|
|
if self.check_positional_ok() {
|
|
let next_arg = self.next_arg;
|
|
self.verify_arg_type(Exact(next_arg), Unsigned);
|
|
self.next_arg += 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn check_positional_ok(&mut self) -> bool {
|
|
if self.nest_level != 0 {
|
|
self.ecx.span_err(self.fmtsp, "cannot use implicit positional \
|
|
arguments nested inside methods");
|
|
false
|
|
} else {
|
|
true
|
|
}
|
|
}
|
|
|
|
fn describe_num_args(&self) -> String {
|
|
match self.args.len() {
|
|
0 => "no arguments given".to_string(),
|
|
1 => "there is 1 argument".to_string(),
|
|
x => format!("there are {} arguments", x),
|
|
}
|
|
}
|
|
|
|
fn verify_arg_type(&mut self, arg: Position, ty: ArgumentType) {
|
|
match arg {
|
|
Exact(arg) => {
|
|
if self.args.len() <= arg {
|
|
let msg = format!("invalid reference to argument `{}` ({})",
|
|
arg, self.describe_num_args());
|
|
|
|
self.ecx.span_err(self.fmtsp, &msg[]);
|
|
return;
|
|
}
|
|
{
|
|
let arg_type = match self.arg_types[arg] {
|
|
None => None,
|
|
Some(ref x) => Some(x)
|
|
};
|
|
self.verify_same(self.args[arg].span, &ty, arg_type);
|
|
}
|
|
if self.arg_types[arg].is_none() {
|
|
self.arg_types[arg] = Some(ty);
|
|
}
|
|
}
|
|
|
|
Named(name) => {
|
|
let span = match self.names.get(&name) {
|
|
Some(e) => e.span,
|
|
None => {
|
|
let msg = format!("there is no argument named `{}`", name);
|
|
self.ecx.span_err(self.fmtsp, &msg[]);
|
|
return;
|
|
}
|
|
};
|
|
self.verify_same(span, &ty, self.name_types.get(&name));
|
|
if !self.name_types.contains_key(&name) {
|
|
self.name_types.insert(name.clone(), ty);
|
|
}
|
|
// Assign this named argument a slot in the arguments array if
|
|
// it hasn't already been assigned a slot.
|
|
if !self.name_positions.contains_key(&name) {
|
|
let slot = self.name_positions.len();
|
|
self.name_positions.insert(name, slot);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// When we're keeping track of the types that are declared for certain
|
|
/// arguments, we assume that `None` means we haven't seen this argument
|
|
/// yet, `Some(None)` means that we've seen the argument, but no format was
|
|
/// specified, and `Some(Some(x))` means that the argument was declared to
|
|
/// have type `x`.
|
|
///
|
|
/// Obviously `Some(Some(x)) != Some(Some(y))`, but we consider it true
|
|
/// that: `Some(None) == Some(Some(x))`
|
|
fn verify_same(&self,
|
|
sp: Span,
|
|
ty: &ArgumentType,
|
|
before: Option<&ArgumentType>) {
|
|
let cur = match before {
|
|
None => return,
|
|
Some(t) => t,
|
|
};
|
|
if *ty == *cur {
|
|
return
|
|
}
|
|
match (cur, ty) {
|
|
(&Known(ref cur), &Known(ref ty)) => {
|
|
self.ecx.span_err(sp,
|
|
&format!("argument redeclared with type `{}` when \
|
|
it was previously `{}`",
|
|
*ty,
|
|
*cur)[]);
|
|
}
|
|
(&Known(ref cur), _) => {
|
|
self.ecx.span_err(sp,
|
|
&format!("argument used to format with `{}` was \
|
|
attempted to not be used for formatting",
|
|
*cur)[]);
|
|
}
|
|
(_, &Known(ref ty)) => {
|
|
self.ecx.span_err(sp,
|
|
&format!("argument previously used as a format \
|
|
argument attempted to be used as `{}`",
|
|
*ty)[]);
|
|
}
|
|
(_, _) => {
|
|
self.ecx.span_err(sp, "argument declared with multiple formats");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// These attributes are applied to all statics that this syntax extension
|
|
/// will generate.
|
|
fn static_attrs(ecx: &ExtCtxt, fmtsp: Span) -> Vec<ast::Attribute> {
|
|
// Flag statics as `inline` so LLVM can merge duplicate globals as much
|
|
// as possible (which we're generating a whole lot of).
|
|
let unnamed = ecx.meta_word(fmtsp, InternedString::new("inline"));
|
|
let unnamed = ecx.attribute(fmtsp, unnamed);
|
|
|
|
// Do not warn format string as dead code
|
|
let dead_code = ecx.meta_word(fmtsp, InternedString::new("dead_code"));
|
|
let allow_dead_code = ecx.meta_list(fmtsp,
|
|
InternedString::new("allow"),
|
|
vec![dead_code]);
|
|
let allow_dead_code = ecx.attribute(fmtsp, allow_dead_code);
|
|
vec![unnamed, allow_dead_code]
|
|
}
|
|
|
|
fn rtpath(ecx: &ExtCtxt, s: &str) -> Vec<ast::Ident> {
|
|
vec![ecx.ident_of("std"), ecx.ident_of("fmt"), ecx.ident_of("rt"), ecx.ident_of(s)]
|
|
}
|
|
|
|
fn trans_count(&self, c: parse::Count) -> P<ast::Expr> {
|
|
let sp = self.fmtsp;
|
|
match c {
|
|
parse::CountIs(i) => {
|
|
self.ecx.expr_call_global(sp, Context::rtpath(self.ecx, "CountIs"),
|
|
vec!(self.ecx.expr_uint(sp, i)))
|
|
}
|
|
parse::CountIsParam(i) => {
|
|
self.ecx.expr_call_global(sp, Context::rtpath(self.ecx, "CountIsParam"),
|
|
vec!(self.ecx.expr_uint(sp, i)))
|
|
}
|
|
parse::CountImplied => {
|
|
let path = self.ecx.path_global(sp, Context::rtpath(self.ecx,
|
|
"CountImplied"));
|
|
self.ecx.expr_path(path)
|
|
}
|
|
parse::CountIsNextParam => {
|
|
let path = self.ecx.path_global(sp, Context::rtpath(self.ecx,
|
|
"CountIsNextParam"));
|
|
self.ecx.expr_path(path)
|
|
}
|
|
parse::CountIsName(n) => {
|
|
let i = match self.name_positions.get(n) {
|
|
Some(&i) => i,
|
|
None => 0, // error already emitted elsewhere
|
|
};
|
|
let i = i + self.args.len();
|
|
self.ecx.expr_call_global(sp, Context::rtpath(self.ecx, "CountIsParam"),
|
|
vec!(self.ecx.expr_uint(sp, i)))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Translate the accumulated string literals to a literal expression
|
|
fn trans_literal_string(&mut self) -> P<ast::Expr> {
|
|
let sp = self.fmtsp;
|
|
let s = token::intern_and_get_ident(&self.literal[]);
|
|
self.literal.clear();
|
|
self.ecx.expr_str(sp, s)
|
|
}
|
|
|
|
/// Translate a `parse::Piece` to a static `rt::Argument` or append
|
|
/// to the `literal` string.
|
|
fn trans_piece(&mut self, piece: &parse::Piece) -> Option<P<ast::Expr>> {
|
|
let sp = self.fmtsp;
|
|
match *piece {
|
|
parse::String(s) => {
|
|
self.literal.push_str(s);
|
|
None
|
|
}
|
|
parse::NextArgument(ref arg) => {
|
|
// Translate the position
|
|
let pos = match arg.position {
|
|
// These two have a direct mapping
|
|
parse::ArgumentNext => {
|
|
let path = self.ecx.path_global(sp, Context::rtpath(self.ecx,
|
|
"ArgumentNext"));
|
|
self.ecx.expr_path(path)
|
|
}
|
|
parse::ArgumentIs(i) => {
|
|
self.ecx.expr_call_global(sp, Context::rtpath(self.ecx, "ArgumentIs"),
|
|
vec!(self.ecx.expr_uint(sp, i)))
|
|
}
|
|
// Named arguments are converted to positional arguments at
|
|
// the end of the list of arguments
|
|
parse::ArgumentNamed(n) => {
|
|
let i = match self.name_positions.get(n) {
|
|
Some(&i) => i,
|
|
None => 0, // error already emitted elsewhere
|
|
};
|
|
let i = i + self.args.len();
|
|
self.ecx.expr_call_global(sp, Context::rtpath(self.ecx, "ArgumentIs"),
|
|
vec!(self.ecx.expr_uint(sp, i)))
|
|
}
|
|
};
|
|
|
|
let simple_arg = parse::Argument {
|
|
position: parse::ArgumentNext,
|
|
format: parse::FormatSpec {
|
|
fill: arg.format.fill,
|
|
align: parse::AlignUnknown,
|
|
flags: 0,
|
|
precision: parse::CountImplied,
|
|
width: parse::CountImplied,
|
|
ty: arg.format.ty
|
|
}
|
|
};
|
|
|
|
let fill = match arg.format.fill { Some(c) => c, None => ' ' };
|
|
|
|
if *arg != simple_arg || fill != ' ' {
|
|
self.all_pieces_simple = false;
|
|
}
|
|
|
|
// Translate the format
|
|
let fill = self.ecx.expr_lit(sp, ast::LitChar(fill));
|
|
let align = match arg.format.align {
|
|
parse::AlignLeft => {
|
|
self.ecx.path_global(sp, Context::rtpath(self.ecx, "AlignLeft"))
|
|
}
|
|
parse::AlignRight => {
|
|
self.ecx.path_global(sp, Context::rtpath(self.ecx, "AlignRight"))
|
|
}
|
|
parse::AlignCenter => {
|
|
self.ecx.path_global(sp, Context::rtpath(self.ecx, "AlignCenter"))
|
|
}
|
|
parse::AlignUnknown => {
|
|
self.ecx.path_global(sp, Context::rtpath(self.ecx, "AlignUnknown"))
|
|
}
|
|
};
|
|
let align = self.ecx.expr_path(align);
|
|
let flags = self.ecx.expr_uint(sp, arg.format.flags);
|
|
let prec = self.trans_count(arg.format.precision);
|
|
let width = self.trans_count(arg.format.width);
|
|
let path = self.ecx.path_global(sp, Context::rtpath(self.ecx, "FormatSpec"));
|
|
let fmt = self.ecx.expr_struct(sp, path, vec!(
|
|
self.ecx.field_imm(sp, self.ecx.ident_of("fill"), fill),
|
|
self.ecx.field_imm(sp, self.ecx.ident_of("align"), align),
|
|
self.ecx.field_imm(sp, self.ecx.ident_of("flags"), flags),
|
|
self.ecx.field_imm(sp, self.ecx.ident_of("precision"), prec),
|
|
self.ecx.field_imm(sp, self.ecx.ident_of("width"), width)));
|
|
|
|
let path = self.ecx.path_global(sp, Context::rtpath(self.ecx, "Argument"));
|
|
Some(self.ecx.expr_struct(sp, path, vec!(
|
|
self.ecx.field_imm(sp, self.ecx.ident_of("position"), pos),
|
|
self.ecx.field_imm(sp, self.ecx.ident_of("format"), fmt))))
|
|
}
|
|
}
|
|
}
|
|
|
|
fn static_array(ecx: &mut ExtCtxt,
|
|
name: &str,
|
|
piece_ty: P<ast::Ty>,
|
|
pieces: Vec<P<ast::Expr>>)
|
|
-> P<ast::Expr> {
|
|
let fmtsp = piece_ty.span;
|
|
let ty = ecx.ty_rptr(fmtsp,
|
|
ecx.ty(fmtsp, ast::TyVec(piece_ty)),
|
|
Some(ecx.lifetime(fmtsp, special_idents::static_lifetime.name)),
|
|
ast::MutImmutable);
|
|
let slice = ecx.expr_vec_slice(fmtsp, pieces);
|
|
let st = ast::ItemStatic(ty, ast::MutImmutable, slice);
|
|
|
|
let name = ecx.ident_of(name);
|
|
let item = ecx.item(fmtsp, name, Context::static_attrs(ecx, fmtsp), st);
|
|
let decl = respan(fmtsp, ast::DeclItem(item));
|
|
|
|
// Wrap the declaration in a block so that it forms a single expression.
|
|
ecx.expr_block(ecx.block(fmtsp,
|
|
vec![P(respan(fmtsp, ast::StmtDecl(P(decl), ast::DUMMY_NODE_ID)))],
|
|
Some(ecx.expr_ident(fmtsp, name))))
|
|
}
|
|
|
|
/// Actually builds the expression which the iformat! block will be expanded
|
|
/// to
|
|
fn into_expr(mut self) -> P<ast::Expr> {
|
|
let mut locals = Vec::new();
|
|
let mut names: Vec<_> = repeat(None).take(self.name_positions.len()).collect();
|
|
let mut pats = Vec::new();
|
|
let mut heads = Vec::new();
|
|
|
|
// First, build up the static array which will become our precompiled
|
|
// format "string"
|
|
let static_lifetime = self.ecx.lifetime(self.fmtsp, special_idents::static_lifetime.name);
|
|
let piece_ty = self.ecx.ty_rptr(
|
|
self.fmtsp,
|
|
self.ecx.ty_ident(self.fmtsp, self.ecx.ident_of("str")),
|
|
Some(static_lifetime),
|
|
ast::MutImmutable);
|
|
let pieces = Context::static_array(self.ecx,
|
|
"__STATIC_FMTSTR",
|
|
piece_ty,
|
|
self.str_pieces);
|
|
|
|
|
|
// Right now there is a bug such that for the expression:
|
|
// foo(bar(&1))
|
|
// the lifetime of `1` doesn't outlast the call to `bar`, so it's not
|
|
// valid for the call to `foo`. To work around this all arguments to the
|
|
// format! string are shoved into locals. Furthermore, we shove the address
|
|
// of each variable because we don't want to move out of the arguments
|
|
// passed to this function.
|
|
for (i, e) in self.args.into_iter().enumerate() {
|
|
let arg_ty = match self.arg_types[i].as_ref() {
|
|
Some(ty) => ty,
|
|
None => continue // error already generated
|
|
};
|
|
|
|
let name = self.ecx.ident_of(&format!("__arg{}", i)[]);
|
|
pats.push(self.ecx.pat_ident(e.span, name));
|
|
locals.push(Context::format_arg(self.ecx, e.span, arg_ty,
|
|
self.ecx.expr_ident(e.span, name)));
|
|
heads.push(self.ecx.expr_addr_of(e.span, e));
|
|
}
|
|
for name in self.name_ordering.iter() {
|
|
let e = match self.names.remove(name) {
|
|
Some(e) => e,
|
|
None => continue
|
|
};
|
|
let arg_ty = match self.name_types.get(name) {
|
|
Some(ty) => ty,
|
|
None => continue
|
|
};
|
|
|
|
let lname = self.ecx.ident_of(&format!("__arg{}",
|
|
*name)[]);
|
|
pats.push(self.ecx.pat_ident(e.span, lname));
|
|
names[self.name_positions[*name]] =
|
|
Some(Context::format_arg(self.ecx, e.span, arg_ty,
|
|
self.ecx.expr_ident(e.span, lname)));
|
|
heads.push(self.ecx.expr_addr_of(e.span, e));
|
|
}
|
|
|
|
// Now create a vector containing all the arguments
|
|
let args = locals.into_iter().chain(names.into_iter().map(|a| a.unwrap()));
|
|
|
|
let args_array = self.ecx.expr_vec(self.fmtsp, args.collect());
|
|
|
|
// Constructs an AST equivalent to:
|
|
//
|
|
// match (&arg0, &arg1) {
|
|
// (tmp0, tmp1) => args_array
|
|
// }
|
|
//
|
|
// It was:
|
|
//
|
|
// let tmp0 = &arg0;
|
|
// let tmp1 = &arg1;
|
|
// args_array
|
|
//
|
|
// Because of #11585 the new temporary lifetime rule, the enclosing
|
|
// statements for these temporaries become the let's themselves.
|
|
// If one or more of them are RefCell's, RefCell borrow() will also
|
|
// end there; they don't last long enough for args_array to use them.
|
|
// The match expression solves the scope problem.
|
|
//
|
|
// Note, it may also very well be transformed to:
|
|
//
|
|
// match arg0 {
|
|
// ref tmp0 => {
|
|
// match arg1 => {
|
|
// ref tmp1 => args_array } } }
|
|
//
|
|
// But the nested match expression is proved to perform not as well
|
|
// as series of let's; the first approach does.
|
|
let pat = self.ecx.pat_tuple(self.fmtsp, pats);
|
|
let arm = self.ecx.arm(self.fmtsp, vec!(pat), args_array);
|
|
let head = self.ecx.expr(self.fmtsp, ast::ExprTup(heads));
|
|
let result = self.ecx.expr_match(self.fmtsp, head, vec!(arm));
|
|
|
|
let args_slice = self.ecx.expr_addr_of(self.fmtsp, result);
|
|
|
|
// Now create the fmt::Arguments struct with all our locals we created.
|
|
let (fn_name, fn_args) = if self.all_pieces_simple {
|
|
("new", vec![pieces, args_slice])
|
|
} else {
|
|
// Build up the static array which will store our precompiled
|
|
// nonstandard placeholders, if there are any.
|
|
let piece_ty = self.ecx.ty_path(self.ecx.path_global(
|
|
self.fmtsp,
|
|
Context::rtpath(self.ecx, "Argument")));
|
|
let fmt = Context::static_array(self.ecx,
|
|
"__STATIC_FMTARGS",
|
|
piece_ty,
|
|
self.pieces);
|
|
|
|
("with_placeholders", vec![pieces, fmt, args_slice])
|
|
};
|
|
|
|
self.ecx.expr_call_global(self.fmtsp, vec!(
|
|
self.ecx.ident_of("std"),
|
|
self.ecx.ident_of("fmt"),
|
|
self.ecx.ident_of("Arguments"),
|
|
self.ecx.ident_of(fn_name)), fn_args)
|
|
}
|
|
|
|
fn format_arg(ecx: &ExtCtxt, sp: Span,
|
|
ty: &ArgumentType, arg: P<ast::Expr>)
|
|
-> P<ast::Expr> {
|
|
let trait_ = match *ty {
|
|
Known(ref tyname) => {
|
|
match &tyname[] {
|
|
"" => "String",
|
|
"?" => "Show",
|
|
"e" => "LowerExp",
|
|
"E" => "UpperExp",
|
|
"o" => "Octal",
|
|
"p" => "Pointer",
|
|
"b" => "Binary",
|
|
"x" => "LowerHex",
|
|
"X" => "UpperHex",
|
|
_ => {
|
|
ecx.span_err(sp,
|
|
&format!("unknown format trait `{}`",
|
|
*tyname)[]);
|
|
"Dummy"
|
|
}
|
|
}
|
|
}
|
|
Unsigned => {
|
|
return ecx.expr_call_global(sp, vec![
|
|
ecx.ident_of("std"),
|
|
ecx.ident_of("fmt"),
|
|
ecx.ident_of("argumentuint")], vec![arg])
|
|
}
|
|
};
|
|
|
|
let format_fn = ecx.path_global(sp, vec![
|
|
ecx.ident_of("std"),
|
|
ecx.ident_of("fmt"),
|
|
ecx.ident_of(trait_),
|
|
ecx.ident_of("fmt")]);
|
|
ecx.expr_call_global(sp, vec![
|
|
ecx.ident_of("std"),
|
|
ecx.ident_of("fmt"),
|
|
ecx.ident_of("argument")], vec![ecx.expr_path(format_fn), arg])
|
|
}
|
|
}
|
|
|
|
pub fn expand_format_args<'cx>(ecx: &'cx mut ExtCtxt, sp: Span,
|
|
tts: &[ast::TokenTree])
|
|
-> Box<base::MacResult+'cx> {
|
|
|
|
match parse_args(ecx, sp, tts) {
|
|
Some((efmt, args, order, names)) => {
|
|
MacExpr::new(expand_preparsed_format_args(ecx, sp, efmt,
|
|
args, order, names))
|
|
}
|
|
None => DummyResult::expr(sp)
|
|
}
|
|
}
|
|
|
|
/// Take the various parts of `format_args!(efmt, args..., name=names...)`
|
|
/// and construct the appropriate formatting expression.
|
|
pub fn expand_preparsed_format_args(ecx: &mut ExtCtxt, sp: Span,
|
|
efmt: P<ast::Expr>,
|
|
args: Vec<P<ast::Expr>>,
|
|
name_ordering: Vec<String>,
|
|
names: HashMap<String, P<ast::Expr>>)
|
|
-> P<ast::Expr> {
|
|
let arg_types: Vec<_> = range(0, args.len()).map(|_| None).collect();
|
|
let mut cx = Context {
|
|
ecx: ecx,
|
|
args: args,
|
|
arg_types: arg_types,
|
|
names: names,
|
|
name_positions: HashMap::new(),
|
|
name_types: HashMap::new(),
|
|
name_ordering: name_ordering,
|
|
nest_level: 0,
|
|
next_arg: 0,
|
|
literal: String::new(),
|
|
pieces: Vec::new(),
|
|
str_pieces: Vec::new(),
|
|
all_pieces_simple: true,
|
|
fmtsp: sp,
|
|
};
|
|
cx.fmtsp = efmt.span;
|
|
let fmt = match expr_to_string(cx.ecx,
|
|
efmt,
|
|
"format argument must be a string literal.") {
|
|
Some((fmt, _)) => fmt,
|
|
None => return DummyResult::raw_expr(sp)
|
|
};
|
|
|
|
let mut parser = parse::Parser::new(fmt.get());
|
|
loop {
|
|
match parser.next() {
|
|
Some(piece) => {
|
|
if parser.errors.len() > 0 { break }
|
|
cx.verify_piece(&piece);
|
|
match cx.trans_piece(&piece) {
|
|
Some(piece) => {
|
|
let s = cx.trans_literal_string();
|
|
cx.str_pieces.push(s);
|
|
cx.pieces.push(piece);
|
|
}
|
|
None => {}
|
|
}
|
|
}
|
|
None => break
|
|
}
|
|
}
|
|
if !parser.errors.is_empty() {
|
|
cx.ecx.span_err(cx.fmtsp, &format!("invalid format string: {}",
|
|
parser.errors.remove(0))[]);
|
|
return DummyResult::raw_expr(sp);
|
|
}
|
|
if !cx.literal.is_empty() {
|
|
let s = cx.trans_literal_string();
|
|
cx.str_pieces.push(s);
|
|
}
|
|
|
|
// Make sure that all arguments were used and all arguments have types.
|
|
for (i, ty) in cx.arg_types.iter().enumerate() {
|
|
if ty.is_none() {
|
|
cx.ecx.span_err(cx.args[i].span, "argument never used");
|
|
}
|
|
}
|
|
for (name, e) in cx.names.iter() {
|
|
if !cx.name_types.contains_key(name) {
|
|
cx.ecx.span_err(e.span, "named argument never used");
|
|
}
|
|
}
|
|
|
|
cx.into_expr()
|
|
}
|