rust/src/librustc/middle/check_match.rs

982 lines
34 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(non_camel_case_types)]
use middle::const_eval::{compare_const_vals, lookup_const_by_id};
use middle::const_eval::{eval_const_expr, const_val, const_bool, const_float};
use middle::pat_util::*;
use middle::ty::*;
use middle::ty;
use middle::typeck::MethodMap;
use util::nodemap::NodeSet;
use util::ppaux::ty_to_str;
use std::cmp;
use std::iter;
use syntax::ast::*;
use syntax::ast_util::{unguarded_pat, walk_pat};
use syntax::codemap::{DUMMY_SP, Span};
use syntax::parse::token;
use syntax::visit;
use syntax::visit::{Visitor, FnKind};
struct MatchCheckCtxt<'a> {
tcx: &'a ty::ctxt,
method_map: MethodMap,
moves_map: &'a NodeSet
}
impl<'a> Visitor<()> for MatchCheckCtxt<'a> {
fn visit_expr(&mut self, ex: &Expr, _: ()) {
check_expr(self, ex);
}
fn visit_local(&mut self, l: &Local, _: ()) {
check_local(self, l);
}
fn visit_fn(&mut self, fk: &FnKind, fd: &FnDecl, b: &Block, s: Span, n: NodeId, _: ()) {
check_fn(self, fk, fd, b, s, n);
}
}
pub fn check_crate(tcx: &ty::ctxt,
method_map: MethodMap,
moves_map: &NodeSet,
krate: &Crate) {
let mut cx = MatchCheckCtxt {
tcx: tcx,
method_map: method_map,
moves_map: moves_map
};
visit::walk_crate(&mut cx, krate, ());
tcx.sess.abort_if_errors();
}
fn check_expr(cx: &mut MatchCheckCtxt, ex: &Expr) {
visit::walk_expr(cx, ex, ());
match ex.node {
ExprMatch(scrut, ref arms) => {
// First, check legality of move bindings.
for arm in arms.iter() {
check_legality_of_move_bindings(cx,
arm.guard.is_some(),
arm.pats.as_slice());
}
check_arms(cx, arms.as_slice());
/* Check for exhaustiveness */
// Check for empty enum, because is_useful only works on inhabited
// types.
let pat_ty = node_id_to_type(cx.tcx, scrut.id);
if (*arms).is_empty() {
if !type_is_empty(cx.tcx, pat_ty) {
// We know the type is inhabited, so this must be wrong
cx.tcx.sess.span_err(ex.span, format!("non-exhaustive patterns: \
type {} is non-empty",
ty_to_str(cx.tcx, pat_ty)));
}
// If the type *is* empty, it's vacuously exhaustive
return;
}
match ty::get(pat_ty).sty {
ty_enum(did, _) => {
if (*enum_variants(cx.tcx, did)).is_empty() &&
(*arms).is_empty() {
return;
}
}
_ => { /* We assume only enum types can be uninhabited */ }
}
let pats: Vec<@Pat> = arms.iter()
.filter_map(unguarded_pat)
.flat_map(|pats| pats.move_iter())
.collect();
if pats.is_empty() {
cx.tcx.sess.span_err(ex.span, "non-exhaustive patterns");
} else {
check_exhaustive(cx, ex.span, pats);
}
}
_ => ()
}
}
// Check for unreachable patterns
fn check_arms(cx: &MatchCheckCtxt, arms: &[Arm]) {
let mut seen = Vec::new();
for arm in arms.iter() {
for pat in arm.pats.iter() {
// Check that we do not match against a static NaN (#6804)
let pat_matches_nan: |&Pat| -> bool = |p| {
let opt_def = cx.tcx.def_map.borrow().find_copy(&p.id);
match opt_def {
Some(DefStatic(did, false)) => {
let const_expr = lookup_const_by_id(cx.tcx, did).unwrap();
match eval_const_expr(cx.tcx, const_expr) {
const_float(f) if f.is_nan() => true,
_ => false
}
}
_ => false
}
};
walk_pat(*pat, |p| {
if pat_matches_nan(p) {
cx.tcx.sess.span_warn(p.span, "unmatchable NaN in pattern, \
use the is_nan method in a guard instead");
}
true
});
let v = vec!(*pat);
match is_useful(cx, &seen, v.as_slice()) {
not_useful => {
cx.tcx.sess.span_err(pat.span, "unreachable pattern");
}
_ => ()
}
if arm.guard.is_none() { seen.push(v); }
}
}
}
fn raw_pat(p: @Pat) -> @Pat {
match p.node {
PatIdent(_, _, Some(s)) => { raw_pat(s) }
_ => { p }
}
}
fn check_exhaustive(cx: &MatchCheckCtxt, sp: Span, pats: Vec<@Pat> ) {
assert!((!pats.is_empty()));
let ext = match is_useful(cx, &pats.iter().map(|p| vec!(*p)).collect(), [wild()]) {
not_useful => {
// This is good, wildcard pattern isn't reachable
return;
}
useful_ => None,
useful(ty, ref ctor) => {
match ty::get(ty).sty {
ty::ty_bool => {
match *ctor {
val(const_bool(true)) => Some(~"true"),
val(const_bool(false)) => Some(~"false"),
_ => None
}
}
ty::ty_enum(id, _) => {
let vid = match *ctor {
variant(id) => id,
_ => fail!("check_exhaustive: non-variant ctor"),
};
let variants = ty::enum_variants(cx.tcx, id);
match variants.iter().find(|v| v.id == vid) {
Some(v) => Some(token::get_ident(v.name).get().to_str()),
None => {
fail!("check_exhaustive: bad variant in ctor")
}
}
}
ty::ty_vec(..) => {
match *ctor {
vec(n) => Some(format!("vectors of length {}", n)),
_ => None
}
}
_ => None
}
}
};
let msg = ~"non-exhaustive patterns" + match ext {
Some(ref s) => format!(": {} not covered", *s),
None => ~""
};
cx.tcx.sess.span_err(sp, msg);
}
type matrix = Vec<Vec<@Pat> > ;
#[deriving(Clone)]
enum useful {
useful(ty::t, ctor),
useful_,
not_useful,
}
#[deriving(Clone, Eq)]
enum ctor {
single,
variant(DefId),
val(const_val),
range(const_val, const_val),
vec(uint)
}
// Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html
//
// Whether a vector `v` of patterns is 'useful' in relation to a set of such
// vectors `m` is defined as there being a set of inputs that will match `v`
// but not any of the sets in `m`.
//
// This is used both for reachability checking (if a pattern isn't useful in
// relation to preceding patterns, it is not reachable) and exhaustiveness
// checking (if a wildcard pattern is useful in relation to a matrix, the
// matrix isn't exhaustive).
// Note: is_useful doesn't work on empty types, as the paper notes.
// So it assumes that v is non-empty.
fn is_useful(cx: &MatchCheckCtxt, m: &matrix, v: &[@Pat]) -> useful {
if m.len() == 0u {
return useful_;
}
if m.get(0).len() == 0u {
return not_useful
}
let real_pat = match m.iter().find(|r| r.get(0).id != 0) {
Some(r) => *r.get(0), None => v[0]
};
let left_ty = if real_pat.id == 0 { ty::mk_nil() }
else { ty::node_id_to_type(cx.tcx, real_pat.id) };
match pat_ctor_id(cx, v[0]) {
None => {
match missing_ctor(cx, m, left_ty) {
None => {
match ty::get(left_ty).sty {
ty::ty_bool => {
match is_useful_specialized(cx, m, v,
val(const_bool(true)),
0u, left_ty){
not_useful => {
is_useful_specialized(cx, m, v,
val(const_bool(false)),
0u, left_ty)
}
ref u => (*u).clone(),
}
}
ty::ty_enum(eid, _) => {
for va in (*ty::enum_variants(cx.tcx, eid)).iter() {
match is_useful_specialized(cx, m, v, variant(va.id),
va.args.len(), left_ty) {
not_useful => (),
ref u => return (*u).clone(),
}
}
not_useful
}
ty::ty_vec(_, ty::VstoreFixed(n)) => {
is_useful_specialized(cx, m, v, vec(n), n, left_ty)
}
ty::ty_vec(..) => {
let max_len = m.iter().rev().fold(0, |max_len, r| {
match r.get(0).node {
PatVec(ref before, _, ref after) => {
cmp::max(before.len() + after.len(), max_len)
}
_ => max_len
}
});
for n in iter::range(0u, max_len + 1) {
match is_useful_specialized(cx, m, v, vec(n), n, left_ty) {
not_useful => (),
ref u => return (*u).clone(),
}
}
not_useful
}
_ => {
let arity = ctor_arity(cx, &single, left_ty);
is_useful_specialized(cx, m, v, single, arity, left_ty)
}
}
}
Some(ref ctor) => {
match is_useful(cx,
&m.iter().filter_map(|r| {
default(cx, r.as_slice())
}).collect::<matrix>(),
v.tail()) {
useful_ => useful(left_ty, (*ctor).clone()),
ref u => (*u).clone(),
}
}
}
}
Some(ref v0_ctor) => {
let arity = ctor_arity(cx, v0_ctor, left_ty);
is_useful_specialized(cx, m, v, (*v0_ctor).clone(), arity, left_ty)
}
}
}
fn is_useful_specialized(cx: &MatchCheckCtxt,
m: &matrix,
v: &[@Pat],
ctor: ctor,
arity: uint,
lty: ty::t)
-> useful {
let ms = m.iter().filter_map(|r| {
specialize(cx, r.as_slice(), &ctor, arity, lty)
}).collect::<matrix>();
let could_be_useful = is_useful(
cx, &ms, specialize(cx, v, &ctor, arity, lty).unwrap().as_slice());
match could_be_useful {
useful_ => useful(lty, ctor),
ref u => (*u).clone(),
}
}
fn pat_ctor_id(cx: &MatchCheckCtxt, p: @Pat) -> Option<ctor> {
let pat = raw_pat(p);
match pat.node {
PatWild | PatWildMulti => { None }
PatIdent(_, _, _) | PatEnum(_, _) => {
let opt_def = cx.tcx.def_map.borrow().find_copy(&pat.id);
match opt_def {
Some(DefVariant(_, id, _)) => Some(variant(id)),
Some(DefStatic(did, false)) => {
let const_expr = lookup_const_by_id(cx.tcx, did).unwrap();
Some(val(eval_const_expr(cx.tcx, const_expr)))
}
_ => None
}
}
PatLit(expr) => { Some(val(eval_const_expr(cx.tcx, expr))) }
PatRange(lo, hi) => {
Some(range(eval_const_expr(cx.tcx, lo), eval_const_expr(cx.tcx, hi)))
}
PatStruct(..) => {
match cx.tcx.def_map.borrow().find(&pat.id) {
Some(&DefVariant(_, id, _)) => Some(variant(id)),
_ => Some(single)
}
}
PatUniq(_) | PatTup(_) | PatRegion(..) => {
Some(single)
}
PatVec(ref before, slice, ref after) => {
match slice {
Some(_) => None,
None => Some(vec(before.len() + after.len()))
}
}
}
}
fn is_wild(cx: &MatchCheckCtxt, p: @Pat) -> bool {
let pat = raw_pat(p);
match pat.node {
PatWild | PatWildMulti => { true }
PatIdent(_, _, _) => {
match cx.tcx.def_map.borrow().find(&pat.id) {
Some(&DefVariant(_, _, _)) | Some(&DefStatic(..)) => { false }
_ => { true }
}
}
_ => { false }
}
}
fn missing_ctor(cx: &MatchCheckCtxt,
m: &matrix,
left_ty: ty::t)
-> Option<ctor> {
match ty::get(left_ty).sty {
ty::ty_box(_) | ty::ty_uniq(_) | ty::ty_rptr(..) | ty::ty_tup(_) |
ty::ty_struct(..) => {
for r in m.iter() {
if !is_wild(cx, *r.get(0)) { return None; }
}
return Some(single);
}
ty::ty_enum(eid, _) => {
let mut found = Vec::new();
for r in m.iter() {
let r = pat_ctor_id(cx, *r.get(0));
for id in r.iter() {
if !found.contains(id) {
found.push((*id).clone());
}
}
}
let variants = ty::enum_variants(cx.tcx, eid);
if found.len() != (*variants).len() {
for v in (*variants).iter() {
if !found.iter().any(|x| x == &(variant(v.id))) {
return Some(variant(v.id));
}
}
fail!();
} else { None }
}
ty::ty_nil => None,
ty::ty_bool => {
let mut true_found = false;
let mut false_found = false;
for r in m.iter() {
match pat_ctor_id(cx, *r.get(0)) {
None => (),
Some(val(const_bool(true))) => true_found = true,
Some(val(const_bool(false))) => false_found = true,
_ => fail!("impossible case")
}
}
if true_found && false_found { None }
else if true_found { Some(val(const_bool(false))) }
else { Some(val(const_bool(true))) }
}
ty::ty_vec(_, ty::VstoreFixed(n)) => {
let mut missing = true;
let mut wrong = false;
for r in m.iter() {
match r.get(0).node {
PatVec(ref before, ref slice, ref after) => {
let count = before.len() + after.len();
if (count < n && slice.is_none()) || count > n {
wrong = true;
}
if count == n || (count < n && slice.is_some()) {
missing = false;
}
}
_ => {}
}
}
match (wrong, missing) {
(true, _) => Some(vec(n)), // should be compile-time error
(_, true) => Some(vec(n)),
_ => None
}
}
ty::ty_vec(..) => {
// Find the lengths and slices of all vector patterns.
let mut vec_pat_lens = m.iter().filter_map(|r| {
match r.get(0).node {
PatVec(ref before, ref slice, ref after) => {
Some((before.len() + after.len(), slice.is_some()))
}
_ => None
}
}).collect::<Vec<(uint, bool)> >();
// Sort them by length such that for patterns of the same length,
// those with a destructured slice come first.
vec_pat_lens.sort_by(|&(len1, slice1), &(len2, slice2)| {
if len1 == len2 {
slice2.cmp(&slice1)
} else {
len1.cmp(&len2)
}
});
vec_pat_lens.dedup();
let mut found_slice = false;
let mut next = 0;
let mut missing = None;
for &(length, slice) in vec_pat_lens.iter() {
if length != next {
missing = Some(next);
break;
}
if slice {
found_slice = true;
break;
}
next += 1;
}
// We found patterns of all lengths within <0, next), yet there was no
// pattern with a slice - therefore, we report vec(next) as missing.
if !found_slice {
missing = Some(next);
}
match missing {
Some(k) => Some(vec(k)),
None => None
}
}
_ => Some(single)
}
}
fn ctor_arity(cx: &MatchCheckCtxt, ctor: &ctor, ty: ty::t) -> uint {
match ty::get(ty).sty {
ty::ty_tup(ref fs) => fs.len(),
ty::ty_box(_) | ty::ty_uniq(_) | ty::ty_rptr(..) => 1u,
ty::ty_enum(eid, _) => {
let id = match *ctor { variant(id) => id,
_ => fail!("impossible case") };
match ty::enum_variants(cx.tcx, eid).iter().find(|v| v.id == id ) {
Some(v) => v.args.len(),
None => fail!("impossible case")
}
}
ty::ty_struct(cid, _) => ty::lookup_struct_fields(cx.tcx, cid).len(),
ty::ty_vec(..) => {
match *ctor {
vec(n) => n,
_ => 0u
}
}
_ => 0u
}
}
fn wild() -> @Pat {
@Pat {id: 0, node: PatWild, span: DUMMY_SP}
}
fn wild_multi() -> @Pat {
@Pat {id: 0, node: PatWildMulti, span: DUMMY_SP}
}
fn specialize(cx: &MatchCheckCtxt,
r: &[@Pat],
ctor_id: &ctor,
arity: uint,
left_ty: ty::t)
-> Option<Vec<@Pat> > {
// Sad, but I can't get rid of this easily
let r0 = (*raw_pat(r[0])).clone();
match r0 {
Pat{id: pat_id, node: n, span: pat_span} =>
match n {
PatWild => {
Some(Vec::from_elem(arity, wild()).append(r.tail()))
}
PatWildMulti => {
Some(Vec::from_elem(arity, wild_multi()).append(r.tail()))
}
PatIdent(_, _, _) => {
let opt_def = cx.tcx.def_map.borrow().find_copy(&pat_id);
match opt_def {
Some(DefVariant(_, id, _)) => {
if variant(id) == *ctor_id {
Some(Vec::from_slice(r.tail()))
} else {
None
}
}
Some(DefStatic(did, _)) => {
let const_expr =
lookup_const_by_id(cx.tcx, did).unwrap();
let e_v = eval_const_expr(cx.tcx, const_expr);
let match_ = match *ctor_id {
val(ref v) => {
match compare_const_vals(&e_v, v) {
Some(val1) => (val1 == 0),
None => {
cx.tcx.sess.span_err(pat_span,
"mismatched types between arms");
false
}
}
},
range(ref c_lo, ref c_hi) => {
let m1 = compare_const_vals(c_lo, &e_v);
let m2 = compare_const_vals(c_hi, &e_v);
match (m1, m2) {
(Some(val1), Some(val2)) => {
(val1 >= 0 && val2 <= 0)
}
_ => {
cx.tcx.sess.span_err(pat_span,
"mismatched types between ranges");
false
}
}
}
single => true,
_ => fail!("type error")
};
if match_ {
Some(Vec::from_slice(r.tail()))
} else {
None
}
}
_ => {
Some(Vec::from_elem(arity, wild()).append(r.tail()))
}
}
}
PatEnum(_, args) => {
let def = cx.tcx.def_map.borrow().get_copy(&pat_id);
match def {
DefStatic(did, _) => {
let const_expr =
lookup_const_by_id(cx.tcx, did).unwrap();
let e_v = eval_const_expr(cx.tcx, const_expr);
let match_ = match *ctor_id {
val(ref v) =>
match compare_const_vals(&e_v, v) {
Some(val1) => (val1 == 0),
None => {
cx.tcx.sess.span_err(pat_span,
"mismatched types between arms");
false
}
},
range(ref c_lo, ref c_hi) => {
let m1 = compare_const_vals(c_lo, &e_v);
let m2 = compare_const_vals(c_hi, &e_v);
match (m1, m2) {
(Some(val1), Some(val2)) => (val1 >= 0 && val2 <= 0),
_ => {
cx.tcx.sess.span_err(pat_span,
"mismatched types between ranges");
false
}
}
}
single => true,
_ => fail!("type error")
};
if match_ {
Some(Vec::from_slice(r.tail()))
} else {
None
}
}
DefVariant(_, id, _) if variant(id) == *ctor_id => {
let args = match args {
Some(args) => args.iter().map(|x| *x).collect(),
None => Vec::from_elem(arity, wild())
};
Some(args.append(r.tail()))
}
DefVariant(_, _, _) => None,
DefFn(..) |
DefStruct(..) => {
let new_args;
match args {
Some(args) => {
new_args = args.iter().map(|x| *x).collect()
}
None => new_args = Vec::from_elem(arity, wild())
}
Some(new_args.append(r.tail()))
}
_ => None
}
}
PatStruct(_, ref pattern_fields, _) => {
// Is this a struct or an enum variant?
let def = cx.tcx.def_map.borrow().get_copy(&pat_id);
match def {
DefVariant(_, variant_id, _) => {
if variant(variant_id) == *ctor_id {
let struct_fields = ty::lookup_struct_fields(cx.tcx, variant_id);
let args = struct_fields.iter().map(|sf| {
match pattern_fields.iter().find(|f| f.ident.name == sf.name) {
Some(f) => f.pat,
_ => wild()
}
}).collect::<Vec<_>>();
Some(args.append(r.tail()))
} else {
None
}
}
_ => {
// Grab the class data that we care about.
let class_fields;
let class_id;
match ty::get(left_ty).sty {
ty::ty_struct(cid, _) => {
class_id = cid;
class_fields =
ty::lookup_struct_fields(cx.tcx,
class_id);
}
_ => {
cx.tcx.sess.span_bug(
pat_span,
format!("struct pattern resolved to {}, \
not a struct",
ty_to_str(cx.tcx, left_ty)));
}
}
let args = class_fields.iter().map(|class_field| {
match pattern_fields.iter().find(|f|
f.ident.name == class_field.name) {
Some(f) => f.pat,
_ => wild()
}
}).collect::<Vec<_>>();
Some(args.append(r.tail()))
}
}
}
PatTup(args) => {
Some(args.iter().map(|x| *x).collect::<Vec<_>>().append(r.tail()))
}
PatUniq(a) | PatRegion(a) => {
Some((vec!(a)).append(r.tail()))
}
PatLit(expr) => {
let e_v = eval_const_expr(cx.tcx, expr);
let match_ = match *ctor_id {
val(ref v) => {
match compare_const_vals(&e_v, v) {
Some(val1) => val1 == 0,
None => {
cx.tcx.sess.span_err(pat_span,
"mismatched types between arms");
false
}
}
},
range(ref c_lo, ref c_hi) => {
let m1 = compare_const_vals(c_lo, &e_v);
let m2 = compare_const_vals(c_hi, &e_v);
match (m1, m2) {
(Some(val1), Some(val2)) => (val1 >= 0 && val2 <= 0),
_ => {
cx.tcx.sess.span_err(pat_span,
"mismatched types between ranges");
false
}
}
}
single => true,
_ => fail!("type error")
};
if match_ {
Some(Vec::from_slice(r.tail()))
} else {
None
}
}
PatRange(lo, hi) => {
let (c_lo, c_hi) = match *ctor_id {
val(ref v) => ((*v).clone(), (*v).clone()),
range(ref lo, ref hi) => ((*lo).clone(), (*hi).clone()),
single => return Some(Vec::from_slice(r.tail())),
_ => fail!("type error")
};
let v_lo = eval_const_expr(cx.tcx, lo);
let v_hi = eval_const_expr(cx.tcx, hi);
let m1 = compare_const_vals(&c_lo, &v_lo);
let m2 = compare_const_vals(&c_hi, &v_hi);
match (m1, m2) {
(Some(val1), Some(val2)) if val1 >= 0 && val2 <= 0 => {
Some(Vec::from_slice(r.tail()))
},
(Some(_), Some(_)) => None,
_ => {
cx.tcx.sess.span_err(pat_span,
"mismatched types between ranges");
None
}
}
}
PatVec(before, slice, after) => {
match *ctor_id {
vec(_) => {
let num_elements = before.len() + after.len();
if num_elements < arity && slice.is_some() {
let mut result = Vec::new();
for pat in before.iter() {
result.push((*pat).clone());
}
for _ in iter::range(0, arity - num_elements) {
result.push(wild())
}
for pat in after.iter() {
result.push((*pat).clone());
}
for pat in r.tail().iter() {
result.push((*pat).clone());
}
Some(result)
} else if num_elements == arity {
let mut result = Vec::new();
for pat in before.iter() {
result.push((*pat).clone());
}
for pat in after.iter() {
result.push((*pat).clone());
}
for pat in r.tail().iter() {
result.push((*pat).clone());
}
Some(result)
} else {
None
}
}
_ => None
}
}
}
}
}
fn default(cx: &MatchCheckCtxt, r: &[@Pat]) -> Option<Vec<@Pat> > {
if is_wild(cx, r[0]) {
Some(Vec::from_slice(r.tail()))
} else {
None
}
}
fn check_local(cx: &mut MatchCheckCtxt, loc: &Local) {
visit::walk_local(cx, loc, ());
if is_refutable(cx, loc.pat) {
cx.tcx.sess.span_err(loc.pat.span,
"refutable pattern in local binding");
}
// Check legality of move bindings.
check_legality_of_move_bindings(cx, false, [ loc.pat ]);
}
fn check_fn(cx: &mut MatchCheckCtxt,
kind: &FnKind,
decl: &FnDecl,
body: &Block,
sp: Span,
id: NodeId) {
visit::walk_fn(cx, kind, decl, body, sp, id, ());
for input in decl.inputs.iter() {
if is_refutable(cx, input.pat) {
cx.tcx.sess.span_err(input.pat.span,
"refutable pattern in function argument");
}
}
}
fn is_refutable(cx: &MatchCheckCtxt, pat: &Pat) -> bool {
let opt_def = cx.tcx.def_map.borrow().find_copy(&pat.id);
match opt_def {
Some(DefVariant(enum_id, _, _)) => {
if ty::enum_variants(cx.tcx, enum_id).len() != 1u {
return true;
}
}
Some(DefStatic(..)) => return true,
_ => ()
}
match pat.node {
PatUniq(sub) | PatRegion(sub) | PatIdent(_, _, Some(sub)) => {
is_refutable(cx, sub)
}
PatWild | PatWildMulti | PatIdent(_, _, None) => { false }
PatLit(lit) => {
match lit.node {
ExprLit(lit) => {
match lit.node {
LitNil => false, // `()`
_ => true,
}
}
_ => true,
}
}
PatRange(_, _) => { true }
PatStruct(_, ref fields, _) => {
fields.iter().any(|f| is_refutable(cx, f.pat))
}
PatTup(ref elts) => {
elts.iter().any(|elt| is_refutable(cx, *elt))
}
PatEnum(_, Some(ref args)) => {
args.iter().any(|a| is_refutable(cx, *a))
}
PatEnum(_,_) => { false }
PatVec(..) => { true }
}
}
// Legality of move bindings checking
fn check_legality_of_move_bindings(cx: &MatchCheckCtxt,
has_guard: bool,
pats: &[@Pat]) {
let tcx = cx.tcx;
let def_map = tcx.def_map;
let mut by_ref_span = None;
let mut any_by_move = false;
for pat in pats.iter() {
pat_bindings(def_map, *pat, |bm, id, span, _path| {
match bm {
BindByRef(_) => {
by_ref_span = Some(span);
}
BindByValue(_) => {
if cx.moves_map.contains(&id) {
any_by_move = true;
}
}
}
})
}
let check_move: |&Pat, Option<@Pat>| = |p, sub| {
// check legality of moving out of the enum
// x @ Foo(..) is legal, but x @ Foo(y) isn't.
if sub.map_or(false, |p| pat_contains_bindings(def_map, p)) {
tcx.sess.span_err(
p.span,
"cannot bind by-move with sub-bindings");
} else if has_guard {
tcx.sess.span_err(
p.span,
"cannot bind by-move into a pattern guard");
} else if by_ref_span.is_some() {
tcx.sess.span_err(
p.span,
"cannot bind by-move and by-ref \
in the same pattern");
tcx.sess.span_note(
by_ref_span.unwrap(),
"by-ref binding occurs here");
}
};
if !any_by_move { return; } // pointless micro-optimization
for pat in pats.iter() {
walk_pat(*pat, |p| {
if pat_is_binding(def_map, p) {
match p.node {
PatIdent(_, _, sub) => {
if cx.moves_map.contains(&p.id) {
check_move(p, sub);
}
}
_ => {
cx.tcx.sess.span_bug(
p.span,
format!("binding pattern {} is \
not an identifier: {:?}",
p.id, p.node));
}
}
}
true
});
}
}