rust/src/libstd/tuple.rs

463 lines
15 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Operations on tuples
#[allow(missing_doc)];
use kinds::Copy;
use vec;
pub use self::inner::*;
/// Method extensions to pairs where both types satisfy the `Copy` bound
pub trait CopyableTuple<T, U> {
/// Return the first element of self
fn first(&self) -> T;
/// Return the second element of self
fn second(&self) -> U;
/// Return the results of swapping the two elements of self
fn swap(&self) -> (U, T);
}
impl<T:Copy,U:Copy> CopyableTuple<T, U> for (T, U) {
/// Return the first element of self
#[inline]
fn first(&self) -> T {
match *self {
(ref t, _) => copy *t,
}
}
/// Return the second element of self
#[inline]
fn second(&self) -> U {
match *self {
(_, ref u) => copy *u,
}
}
/// Return the results of swapping the two elements of self
#[inline]
fn swap(&self) -> (U, T) {
match copy *self {
(t, u) => (u, t),
}
}
}
/// Method extensions for pairs where the types don't necessarily satisfy the
/// `Copy` bound
pub trait ImmutableTuple<T, U> {
/// Return a reference to the first element of self
fn first_ref<'a>(&'a self) -> &'a T;
/// Return a reference to the second element of self
fn second_ref<'a>(&'a self) -> &'a U;
}
impl<T, U> ImmutableTuple<T, U> for (T, U) {
#[inline]
fn first_ref<'a>(&'a self) -> &'a T {
match *self {
(ref t, _) => t,
}
}
#[inline]
fn second_ref<'a>(&'a self) -> &'a U {
match *self {
(_, ref u) => u,
}
}
}
pub trait ExtendedTupleOps<A,B> {
fn zip(&self) -> ~[(A, B)];
fn map<C>(&self, f: &fn(a: &A, b: &B) -> C) -> ~[C];
}
impl<'self,A:Copy,B:Copy> ExtendedTupleOps<A,B> for (&'self [A], &'self [B]) {
#[inline]
fn zip(&self) -> ~[(A, B)] {
match *self {
(ref a, ref b) => {
vec::zip_slice(*a, *b)
}
}
}
#[inline]
fn map<C>(&self, f: &fn(a: &A, b: &B) -> C) -> ~[C] {
match *self {
(ref a, ref b) => {
vec::map_zip(*a, *b, f)
}
}
}
}
impl<A:Copy,B:Copy> ExtendedTupleOps<A,B> for (~[A], ~[B]) {
#[inline]
fn zip(&self) -> ~[(A, B)] {
match *self {
(ref a, ref b) => {
vec::zip_slice(*a, *b)
}
}
}
#[inline]
fn map<C>(&self, f: &fn(a: &A, b: &B) -> C) -> ~[C] {
match *self {
(ref a, ref b) => {
vec::map_zip(*a, *b, f)
}
}
}
}
// macro for implementing n-ary tuple functions and operations
macro_rules! tuple_impls {
($(
($cloneable_trait:ident, $immutable_trait:ident) {
$(($get_fn:ident, $get_ref_fn:ident) -> $T:ident {
$get_pattern:pat => $ret:expr
})+
}
)+) => {
pub mod inner {
use clone::Clone;
#[cfg(not(test))] use cmp::*;
#[cfg(not(test))] use num::Zero;
$(
pub trait $cloneable_trait<$($T),+> {
$(fn $get_fn(&self) -> $T;)+
}
impl<$($T:Clone),+> $cloneable_trait<$($T),+> for ($($T),+) {
$(
#[inline]
fn $get_fn(&self) -> $T {
self.$get_ref_fn().clone()
}
)+
}
pub trait $immutable_trait<$($T),+> {
$(fn $get_ref_fn<'a>(&'a self) -> &'a $T;)+
}
impl<$($T),+> $immutable_trait<$($T),+> for ($($T),+) {
$(
#[inline]
fn $get_ref_fn<'a>(&'a self) -> &'a $T {
match *self { $get_pattern => $ret }
}
)+
}
impl<$($T:Clone),+> Clone for ($($T),+) {
fn clone(&self) -> ($($T),+) {
($(self.$get_ref_fn().clone()),+)
}
}
#[cfg(not(test))]
impl<$($T:Eq),+> Eq for ($($T),+) {
#[inline]
fn eq(&self, other: &($($T),+)) -> bool {
$(*self.$get_ref_fn() == *other.$get_ref_fn())&&+
}
#[inline]
fn ne(&self, other: &($($T),+)) -> bool {
!(*self == *other)
}
}
#[cfg(not(test))]
impl<$($T:TotalEq),+> TotalEq for ($($T),+) {
#[inline]
fn equals(&self, other: &($($T),+)) -> bool {
$(self.$get_ref_fn().equals(other.$get_ref_fn()))&&+
}
}
#[cfg(not(test))]
impl<$($T:Ord),+> Ord for ($($T),+) {
#[inline]
fn lt(&self, other: &($($T),+)) -> bool {
lexical_lt!($(self.$get_ref_fn(), other.$get_ref_fn()),+)
}
#[inline]
fn le(&self, other: &($($T),+)) -> bool { !(*other).lt(&(*self)) }
#[inline]
fn ge(&self, other: &($($T),+)) -> bool { !(*self).lt(other) }
#[inline]
fn gt(&self, other: &($($T),+)) -> bool { (*other).lt(&(*self)) }
}
#[cfg(not(test))]
impl<$($T:TotalOrd),+> TotalOrd for ($($T),+) {
#[inline]
fn cmp(&self, other: &($($T),+)) -> Ordering {
lexical_cmp!($(self.$get_ref_fn(), other.$get_ref_fn()),+)
}
}
#[cfg(not(test))]
impl<$($T:Zero),+> Zero for ($($T),+) {
#[inline]
fn zero() -> ($($T),+) {
($(Zero::zero::<$T>()),+)
}
#[inline]
fn is_zero(&self) -> bool {
$(self.$get_ref_fn().is_zero())&&+
}
}
)+
}
}
}
// Constructs an expression that performs a lexical less-than
// ordering. The values are interleaved, so the macro invocation for
// `(a1, a2, a3) < (b1, b2, b3)` would be `lexical_lt!(a1, b1, a2, b2,
// a3, b3)` (and similarly for `lexical_cmp`)
macro_rules! lexical_lt {
($a:expr, $b:expr, $($rest_a:expr, $rest_b:expr),+) => {
if *$a < *$b { true }
else if !(*$b < *$a) { lexical_lt!($($rest_a, $rest_b),+) }
else { false }
};
($a:expr, $b:expr) => { *$a < *$b };
}
macro_rules! lexical_cmp {
($a:expr, $b:expr, $($rest_a:expr, $rest_b:expr),+) => {
match ($a).cmp($b) {
Equal => lexical_cmp!($($rest_a, $rest_b),+),
ordering => ordering
}
};
($a:expr, $b:expr) => { ($a).cmp($b) };
}
tuple_impls! {
(CloneableTuple2, ImmutableTuple2) {
(n0, n0_ref) -> A { (ref a,_) => a }
(n1, n1_ref) -> B { (_,ref b) => b }
}
(CloneableTuple3, ImmutableTuple3) {
(n0, n0_ref) -> A { (ref a,_,_) => a }
(n1, n1_ref) -> B { (_,ref b,_) => b }
(n2, n2_ref) -> C { (_,_,ref c) => c }
}
(CloneableTuple4, ImmutableTuple4) {
(n0, n0_ref) -> A { (ref a,_,_,_) => a }
(n1, n1_ref) -> B { (_,ref b,_,_) => b }
(n2, n2_ref) -> C { (_,_,ref c,_) => c }
(n3, n3_ref) -> D { (_,_,_,ref d) => d }
}
(CloneableTuple5, ImmutableTuple5) {
(n0, n0_ref) -> A { (ref a,_,_,_,_) => a }
(n1, n1_ref) -> B { (_,ref b,_,_,_) => b }
(n2, n2_ref) -> C { (_,_,ref c,_,_) => c }
(n3, n3_ref) -> D { (_,_,_,ref d,_) => d }
(n4, n4_ref) -> E { (_,_,_,_,ref e) => e }
}
(CloneableTuple6, ImmutableTuple6) {
(n0, n0_ref) -> A { (ref a,_,_,_,_,_) => a }
(n1, n1_ref) -> B { (_,ref b,_,_,_,_) => b }
(n2, n2_ref) -> C { (_,_,ref c,_,_,_) => c }
(n3, n3_ref) -> D { (_,_,_,ref d,_,_) => d }
(n4, n4_ref) -> E { (_,_,_,_,ref e,_) => e }
(n5, n5_ref) -> F { (_,_,_,_,_,ref f) => f }
}
(CloneableTuple7, ImmutableTuple7) {
(n0, n0_ref) -> A { (ref a,_,_,_,_,_,_) => a }
(n1, n1_ref) -> B { (_,ref b,_,_,_,_,_) => b }
(n2, n2_ref) -> C { (_,_,ref c,_,_,_,_) => c }
(n3, n3_ref) -> D { (_,_,_,ref d,_,_,_) => d }
(n4, n4_ref) -> E { (_,_,_,_,ref e,_,_) => e }
(n5, n5_ref) -> F { (_,_,_,_,_,ref f,_) => f }
(n6, n6_ref) -> G { (_,_,_,_,_,_,ref g) => g }
}
(CloneableTuple8, ImmutableTuple8) {
(n0, n0_ref) -> A { (ref a,_,_,_,_,_,_,_) => a }
(n1, n1_ref) -> B { (_,ref b,_,_,_,_,_,_) => b }
(n2, n2_ref) -> C { (_,_,ref c,_,_,_,_,_) => c }
(n3, n3_ref) -> D { (_,_,_,ref d,_,_,_,_) => d }
(n4, n4_ref) -> E { (_,_,_,_,ref e,_,_,_) => e }
(n5, n5_ref) -> F { (_,_,_,_,_,ref f,_,_) => f }
(n6, n6_ref) -> G { (_,_,_,_,_,_,ref g,_) => g }
(n7, n7_ref) -> H { (_,_,_,_,_,_,_,ref h) => h }
}
(CloneableTuple9, ImmutableTuple9) {
(n0, n0_ref) -> A { (ref a,_,_,_,_,_,_,_,_) => a }
(n1, n1_ref) -> B { (_,ref b,_,_,_,_,_,_,_) => b }
(n2, n2_ref) -> C { (_,_,ref c,_,_,_,_,_,_) => c }
(n3, n3_ref) -> D { (_,_,_,ref d,_,_,_,_,_) => d }
(n4, n4_ref) -> E { (_,_,_,_,ref e,_,_,_,_) => e }
(n5, n5_ref) -> F { (_,_,_,_,_,ref f,_,_,_) => f }
(n6, n6_ref) -> G { (_,_,_,_,_,_,ref g,_,_) => g }
(n7, n7_ref) -> H { (_,_,_,_,_,_,_,ref h,_) => h }
(n8, n8_ref) -> I { (_,_,_,_,_,_,_,_,ref i) => i }
}
(CloneableTuple10, ImmutableTuple10) {
(n0, n0_ref) -> A { (ref a,_,_,_,_,_,_,_,_,_) => a }
(n1, n1_ref) -> B { (_,ref b,_,_,_,_,_,_,_,_) => b }
(n2, n2_ref) -> C { (_,_,ref c,_,_,_,_,_,_,_) => c }
(n3, n3_ref) -> D { (_,_,_,ref d,_,_,_,_,_,_) => d }
(n4, n4_ref) -> E { (_,_,_,_,ref e,_,_,_,_,_) => e }
(n5, n5_ref) -> F { (_,_,_,_,_,ref f,_,_,_,_) => f }
(n6, n6_ref) -> G { (_,_,_,_,_,_,ref g,_,_,_) => g }
(n7, n7_ref) -> H { (_,_,_,_,_,_,_,ref h,_,_) => h }
(n8, n8_ref) -> I { (_,_,_,_,_,_,_,_,ref i,_) => i }
(n9, n9_ref) -> J { (_,_,_,_,_,_,_,_,_,ref j) => j }
}
(CloneableTuple11, ImmutableTuple11) {
(n0, n0_ref) -> A { (ref a,_,_,_,_,_,_,_,_,_,_) => a }
(n1, n1_ref) -> B { (_,ref b,_,_,_,_,_,_,_,_,_) => b }
(n2, n2_ref) -> C { (_,_,ref c,_,_,_,_,_,_,_,_) => c }
(n3, n3_ref) -> D { (_,_,_,ref d,_,_,_,_,_,_,_) => d }
(n4, n4_ref) -> E { (_,_,_,_,ref e,_,_,_,_,_,_) => e }
(n5, n5_ref) -> F { (_,_,_,_,_,ref f,_,_,_,_,_) => f }
(n6, n6_ref) -> G { (_,_,_,_,_,_,ref g,_,_,_,_) => g }
(n7, n7_ref) -> H { (_,_,_,_,_,_,_,ref h,_,_,_) => h }
(n8, n8_ref) -> I { (_,_,_,_,_,_,_,_,ref i,_,_) => i }
(n9, n9_ref) -> J { (_,_,_,_,_,_,_,_,_,ref j,_) => j }
(n10, n10_ref) -> K { (_,_,_,_,_,_,_,_,_,_,ref k) => k }
}
(CloneableTuple12, ImmutableTuple12) {
(n0, n0_ref) -> A { (ref a,_,_,_,_,_,_,_,_,_,_,_) => a }
(n1, n1_ref) -> B { (_,ref b,_,_,_,_,_,_,_,_,_,_) => b }
(n2, n2_ref) -> C { (_,_,ref c,_,_,_,_,_,_,_,_,_) => c }
(n3, n3_ref) -> D { (_,_,_,ref d,_,_,_,_,_,_,_,_) => d }
(n4, n4_ref) -> E { (_,_,_,_,ref e,_,_,_,_,_,_,_) => e }
(n5, n5_ref) -> F { (_,_,_,_,_,ref f,_,_,_,_,_,_) => f }
(n6, n6_ref) -> G { (_,_,_,_,_,_,ref g,_,_,_,_,_) => g }
(n7, n7_ref) -> H { (_,_,_,_,_,_,_,ref h,_,_,_,_) => h }
(n8, n8_ref) -> I { (_,_,_,_,_,_,_,_,ref i,_,_,_) => i }
(n9, n9_ref) -> J { (_,_,_,_,_,_,_,_,_,ref j,_,_) => j }
(n10, n10_ref) -> K { (_,_,_,_,_,_,_,_,_,_,ref k,_) => k }
(n11, n11_ref) -> L { (_,_,_,_,_,_,_,_,_,_,_,ref l) => l }
}
}
#[cfg(test)]
mod tests {
use super::*;
use clone::Clone;
use cmp::*;
#[test]
fn test_tuple_ref() {
let x = (~"foo", ~"bar");
assert_eq!(x.first_ref(), &~"foo");
assert_eq!(x.second_ref(), &~"bar");
}
#[test]
#[allow(non_implicitly_copyable_typarams)]
fn test_tuple() {
assert_eq!((948, 4039.48).first(), 948);
assert_eq!((34.5, ~"foo").second(), ~"foo");
assert_eq!(('a', 2).swap(), (2, 'a'));
}
#[test]
fn test_clone() {
let a = (1, ~"2");
let b = a.clone();
assert_eq!(a.first(), b.first());
assert_eq!(a.second(), b.second());
}
#[test]
fn test_n_tuple() {
let t = (0u8, 1u16, 2u32, 3u64, 4u, 5i8, 6i16, 7i32, 8i64, 9i, 10f32, 11f64);
assert_eq!(t.n0(), 0u8);
assert_eq!(t.n1(), 1u16);
assert_eq!(t.n2(), 2u32);
assert_eq!(t.n3(), 3u64);
assert_eq!(t.n4(), 4u);
assert_eq!(t.n5(), 5i8);
assert_eq!(t.n6(), 6i16);
assert_eq!(t.n7(), 7i32);
assert_eq!(t.n8(), 8i64);
assert_eq!(t.n9(), 9i);
assert_eq!(t.n10(), 10f32);
assert_eq!(t.n11(), 11f64);
assert_eq!(t.n0_ref(), &0u8);
assert_eq!(t.n1_ref(), &1u16);
assert_eq!(t.n2_ref(), &2u32);
assert_eq!(t.n3_ref(), &3u64);
assert_eq!(t.n4_ref(), &4u);
assert_eq!(t.n5_ref(), &5i8);
assert_eq!(t.n6_ref(), &6i16);
assert_eq!(t.n7_ref(), &7i32);
assert_eq!(t.n8_ref(), &8i64);
assert_eq!(t.n9_ref(), &9i);
assert_eq!(t.n10_ref(), &10f32);
assert_eq!(t.n11_ref(), &11f64);
}
#[test]
fn test_tuple_cmp() {
let (small, big) = ((1u, 2u, 3u), (3u, 2u, 1u));
// Eq
assert_eq!(small, small);
assert_eq!(big, big);
assert!(small != big);
assert!(big != small);
// Ord
assert!(small < big);
assert!(!(small < small));
assert!(!(big < small));
assert!(!(big < big));
assert!(small <= small);
assert!(big <= big);
assert!(big > small);
assert!(small >= small);
assert!(big >= small);
assert!(big >= big);
// TotalEq
assert!(small.equals(&small));
assert!(big.equals(&big));
assert!(!small.equals(&big));
assert!(!big.equals(&small));
// TotalOrd
assert_eq!(small.cmp(&small), Equal);
assert_eq!(big.cmp(&big), Equal);
assert_eq!(small.cmp(&big), Less);
assert_eq!(big.cmp(&small), Greater);
}
}