rust/src/libregex/vm.rs
2014-12-19 10:43:24 -05:00

581 lines
20 KiB
Rust

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// FIXME: Currently, the VM simulates an NFA. It would be nice to have another
// VM that simulates a DFA.
//
// According to Russ Cox[1], a DFA performs better than an NFA, principally
// because it reuses states previously computed by the machine *and* doesn't
// keep track of capture groups. The drawback of a DFA (aside from its
// complexity) is that it can't accurately return the locations of submatches.
// The NFA *can* do that. (This is my understanding anyway.)
//
// Cox suggests that a DFA ought to be used to answer "does this match" and
// "where does it match" questions. (In the latter, the starting position of
// the match is computed by executing the regex backwards.) Cox also suggests
// that a DFA should be run when asking "where are the submatches", which can
// 1) quickly answer "no" is there's no match and 2) discover the substring
// that matches, which means running the NFA on smaller input.
//
// Currently, the NFA simulation implemented below does some dirty tricks to
// avoid tracking capture groups when they aren't needed (which only works
// for 'is_match', not 'find'). This is a half-measure, but does provide some
// perf improvement.
//
// AFAIK, the DFA/NFA approach is implemented in RE2/C++ but *not* in RE2/Go.
//
// [1] - http://swtch.com/~rsc/regex/regex3.html
pub use self::MatchKind::*;
pub use self::StepState::*;
use std::cmp;
use std::mem;
use std::slice::SliceExt;
use compile::{
Program,
Match, OneChar, CharClass, Any, EmptyBegin, EmptyEnd, EmptyWordBoundary,
Save, Jump, Split,
};
use parse::{FLAG_NOCASE, FLAG_MULTI, FLAG_DOTNL, FLAG_NEGATED};
use unicode::regex::PERLW;
pub type CaptureLocs = Vec<Option<uint>>;
/// Indicates the type of match to be performed by the VM.
#[deriving(Copy)]
pub enum MatchKind {
/// Only checks if a match exists or not. Does not return location.
Exists,
/// Returns the start and end indices of the entire match in the input
/// given.
Location,
/// Returns the start and end indices of each submatch in the input given.
Submatches,
}
/// Runs an NFA simulation on the compiled expression given on the search text
/// `input`. The search begins at byte index `start` and ends at byte index
/// `end`. (The range is specified here so that zero-width assertions will work
/// correctly when searching for successive non-overlapping matches.)
///
/// The `which` parameter indicates what kind of capture information the caller
/// wants. There are three choices: match existence only, the location of the
/// entire match or the locations of the entire match in addition to the
/// locations of each submatch.
pub fn run<'r, 't>(which: MatchKind, prog: &'r Program, input: &'t str,
start: uint, end: uint) -> CaptureLocs {
Nfa {
which: which,
prog: prog,
input: input,
start: start,
end: end,
ic: 0,
chars: CharReader::new(input),
}.run()
}
struct Nfa<'r, 't> {
which: MatchKind,
prog: &'r Program,
input: &'t str,
start: uint,
end: uint,
ic: uint,
chars: CharReader<'t>,
}
/// Indicates the next action to take after a single non-empty instruction
/// is processed.
#[deriving(Copy)]
pub enum StepState {
/// This is returned if and only if a Match instruction is reached and
/// we only care about the existence of a match. It instructs the VM to
/// quit early.
StepMatchEarlyReturn,
/// Indicates that a match was found. Thus, the rest of the states in the
/// *current* queue should be dropped (i.e., leftmost-first semantics).
/// States in the "next" queue can still be processed.
StepMatch,
/// No match was found. Continue with the next state in the queue.
StepContinue,
}
impl<'r, 't> Nfa<'r, 't> {
fn run(&mut self) -> CaptureLocs {
let ncaps = match self.which {
Exists => 0,
Location => 1,
Submatches => self.prog.num_captures(),
};
let mut matched = false;
let ninsts = self.prog.insts.len();
let mut clist = &mut Threads::new(self.which, ninsts, ncaps);
let mut nlist = &mut Threads::new(self.which, ninsts, ncaps);
let mut groups = Vec::from_elem(ncaps * 2, None);
// Determine if the expression starts with a '^' so we can avoid
// simulating .*?
// Make sure multi-line mode isn't enabled for it, otherwise we can't
// drop the initial .*?
let prefix_anchor =
match self.prog.insts[1] {
EmptyBegin(flags) if flags & FLAG_MULTI == 0 => true,
_ => false,
};
self.ic = self.start;
let mut next_ic = self.chars.set(self.start);
while self.ic <= self.end {
if clist.size == 0 {
// We have a match and we're done exploring alternatives.
// Time to quit.
if matched {
break
}
// If there are no threads to try, then we'll have to start
// over at the beginning of the regex.
// BUT, if there's a literal prefix for the program, try to
// jump ahead quickly. If it can't be found, then we can bail
// out early.
if self.prog.prefix.len() > 0 && clist.size == 0 {
let needle = self.prog.prefix.as_bytes();
let haystack = self.input.as_bytes()[self.ic..];
match find_prefix(needle, haystack) {
None => break,
Some(i) => {
self.ic += i;
next_ic = self.chars.set(self.ic);
}
}
}
}
// This simulates a preceding '.*?' for every regex by adding
// a state starting at the current position in the input for the
// beginning of the program only if we don't already have a match.
if clist.size == 0 || (!prefix_anchor && !matched) {
self.add(clist, 0, groups.as_mut_slice())
}
// Now we try to read the next character.
// As a result, the 'step' method will look at the previous
// character.
self.ic = next_ic;
next_ic = self.chars.advance();
for i in range(0, clist.size) {
let pc = clist.pc(i);
let step_state = self.step(groups.as_mut_slice(), nlist,
clist.groups(i), pc);
match step_state {
StepMatchEarlyReturn => return vec![Some(0), Some(0)],
StepMatch => { matched = true; break },
StepContinue => {},
}
}
mem::swap(&mut clist, &mut nlist);
nlist.empty();
}
match self.which {
Exists if matched => vec![Some(0), Some(0)],
Exists => vec![None, None],
Location | Submatches => groups,
}
}
fn step(&self, groups: &mut [Option<uint>], nlist: &mut Threads,
caps: &mut [Option<uint>], pc: uint)
-> StepState {
match self.prog.insts[pc] {
Match => {
match self.which {
Exists => {
return StepMatchEarlyReturn
}
Location => {
groups[0] = caps[0];
groups[1] = caps[1];
return StepMatch
}
Submatches => {
for (slot, val) in groups.iter_mut().zip(caps.iter()) {
*slot = *val;
}
return StepMatch
}
}
}
OneChar(c, flags) => {
if self.char_eq(flags & FLAG_NOCASE > 0, self.chars.prev, c) {
self.add(nlist, pc+1, caps);
}
}
CharClass(ref ranges, flags) => {
if self.chars.prev.is_some() {
let c = self.chars.prev.unwrap();
let negate = flags & FLAG_NEGATED > 0;
let casei = flags & FLAG_NOCASE > 0;
let found = ranges.as_slice();
let found = found.binary_search(|&rc| class_cmp(casei, c, rc))
.found().is_some();
if found ^ negate {
self.add(nlist, pc+1, caps);
}
}
}
Any(flags) => {
if flags & FLAG_DOTNL > 0
|| !self.char_eq(false, self.chars.prev, '\n') {
self.add(nlist, pc+1, caps)
}
}
EmptyBegin(_) | EmptyEnd(_) | EmptyWordBoundary(_)
| Save(_) | Jump(_) | Split(_, _) => {},
}
StepContinue
}
fn add(&self, nlist: &mut Threads, pc: uint, groups: &mut [Option<uint>]) {
if nlist.contains(pc) {
return
}
// We have to add states to the threads list even if their empty.
// TL;DR - It prevents cycles.
// If we didn't care about cycles, we'd *only* add threads that
// correspond to non-jumping instructions (OneChar, Any, Match, etc.).
// But, it's possible for valid regexs (like '(a*)*') to result in
// a cycle in the instruction list. e.g., We'll keep chasing the Split
// instructions forever.
// So we add these instructions to our thread queue, but in the main
// VM loop, we look for them but simply ignore them.
// Adding them to the queue prevents them from being revisited so we
// can avoid cycles (and the inevitable stack overflow).
//
// We make a minor optimization by indicating that the state is "empty"
// so that its capture groups are not filled in.
match self.prog.insts[pc] {
EmptyBegin(flags) => {
let multi = flags & FLAG_MULTI > 0;
nlist.add(pc, groups, true);
if self.chars.is_begin()
|| (multi && self.char_is(self.chars.prev, '\n')) {
self.add(nlist, pc + 1, groups)
}
}
EmptyEnd(flags) => {
let multi = flags & FLAG_MULTI > 0;
nlist.add(pc, groups, true);
if self.chars.is_end()
|| (multi && self.char_is(self.chars.cur, '\n')) {
self.add(nlist, pc + 1, groups)
}
}
EmptyWordBoundary(flags) => {
nlist.add(pc, groups, true);
if self.chars.is_word_boundary() == !(flags & FLAG_NEGATED > 0) {
self.add(nlist, pc + 1, groups)
}
}
Save(slot) => {
nlist.add(pc, groups, true);
match self.which {
Location if slot <= 1 => {
let old = groups[slot];
groups[slot] = Some(self.ic);
self.add(nlist, pc + 1, groups);
groups[slot] = old;
}
Submatches => {
let old = groups[slot];
groups[slot] = Some(self.ic);
self.add(nlist, pc + 1, groups);
groups[slot] = old;
}
Exists | Location => self.add(nlist, pc + 1, groups),
}
}
Jump(to) => {
nlist.add(pc, groups, true);
self.add(nlist, to, groups)
}
Split(x, y) => {
nlist.add(pc, groups, true);
self.add(nlist, x, groups);
self.add(nlist, y, groups);
}
Match | OneChar(_, _) | CharClass(_, _) | Any(_) => {
nlist.add(pc, groups, false);
}
}
}
// FIXME: For case insensitive comparisons, it uses the uppercase
// character and tests for equality. IIUC, this does not generalize to
// all of Unicode. I believe we need to check the entire fold for each
// character. This will be easy to add if and when it gets added to Rust's
// standard library.
#[inline]
fn char_eq(&self, casei: bool, textc: Option<char>, regc: char) -> bool {
match textc {
None => false,
Some(textc) => {
regc == textc
|| (casei && regc.to_uppercase() == textc.to_uppercase())
}
}
}
#[inline]
fn char_is(&self, textc: Option<char>, regc: char) -> bool {
textc == Some(regc)
}
}
/// CharReader is responsible for maintaining a "previous" and a "current"
/// character. This one-character lookahead is necessary for assertions that
/// look one character before or after the current position.
pub struct CharReader<'t> {
/// The previous character read. It is None only when processing the first
/// character of the input.
pub prev: Option<char>,
/// The current character.
pub cur: Option<char>,
input: &'t str,
next: uint,
}
impl<'t> CharReader<'t> {
/// Returns a new CharReader that advances through the input given.
/// Note that a CharReader has no knowledge of the range in which to search
/// the input.
pub fn new(input: &'t str) -> CharReader<'t> {
CharReader {
prev: None,
cur: None,
input: input,
next: 0,
}
}
/// Sets the previous and current character given any arbitrary byte
/// index (at a Unicode codepoint boundary).
#[inline]
pub fn set(&mut self, ic: uint) -> uint {
self.prev = None;
self.cur = None;
self.next = 0;
if self.input.len() == 0 {
return 1
}
if ic > 0 {
let i = cmp::min(ic, self.input.len());
let prev = self.input.char_range_at_reverse(i);
self.prev = Some(prev.ch);
}
if ic < self.input.len() {
let cur = self.input.char_range_at(ic);
self.cur = Some(cur.ch);
self.next = cur.next;
self.next
} else {
self.input.len() + 1
}
}
/// Does the same as `set`, except it always advances to the next
/// character in the input (and therefore does half as many UTF8 decodings).
#[inline]
pub fn advance(&mut self) -> uint {
self.prev = self.cur;
if self.next < self.input.len() {
let cur = self.input.char_range_at(self.next);
self.cur = Some(cur.ch);
self.next = cur.next;
} else {
self.cur = None;
self.next = self.input.len() + 1;
}
self.next
}
/// Returns true if and only if this is the beginning of the input
/// (ignoring the range of the input to search).
#[inline]
pub fn is_begin(&self) -> bool { self.prev.is_none() }
/// Returns true if and only if this is the end of the input
/// (ignoring the range of the input to search).
#[inline]
pub fn is_end(&self) -> bool { self.cur.is_none() }
/// Returns true if and only if the current position is a word boundary.
/// (Ignoring the range of the input to search.)
pub fn is_word_boundary(&self) -> bool {
if self.is_begin() {
return is_word(self.cur)
}
if self.is_end() {
return is_word(self.prev)
}
(is_word(self.cur) && !is_word(self.prev))
|| (is_word(self.prev) && !is_word(self.cur))
}
}
struct Thread {
pc: uint,
groups: Vec<Option<uint>>,
}
struct Threads {
which: MatchKind,
queue: Vec<Thread>,
sparse: Vec<uint>,
size: uint,
}
impl Threads {
// This is using a wicked neat trick to provide constant time lookup
// for threads in the queue using a sparse set. A queue of threads is
// allocated once with maximal size when the VM initializes and is reused
// throughout execution. That is, there should be zero allocation during
// the execution of a VM.
//
// See http://research.swtch.com/sparse for the deets.
fn new(which: MatchKind, num_insts: uint, ncaps: uint) -> Threads {
Threads {
which: which,
queue: Vec::from_fn(num_insts, |_| {
Thread { pc: 0, groups: Vec::from_elem(ncaps * 2, None) }
}),
sparse: Vec::from_elem(num_insts, 0u),
size: 0,
}
}
fn add(&mut self, pc: uint, groups: &[Option<uint>], empty: bool) {
let t = &mut self.queue[self.size];
t.pc = pc;
match (empty, self.which) {
(_, Exists) | (true, _) => {},
(false, Location) => {
t.groups[0] = groups[0];
t.groups[1] = groups[1];
}
(false, Submatches) => {
for (slot, val) in t.groups.iter_mut().zip(groups.iter()) {
*slot = *val;
}
}
}
self.sparse[pc] = self.size;
self.size += 1;
}
#[inline]
fn contains(&self, pc: uint) -> bool {
let s = self.sparse[pc];
s < self.size && self.queue[s].pc == pc
}
#[inline]
fn empty(&mut self) {
self.size = 0;
}
#[inline]
fn pc(&self, i: uint) -> uint {
self.queue[i].pc
}
#[inline]
fn groups<'r>(&'r mut self, i: uint) -> &'r mut [Option<uint>] {
self.queue[i].groups.as_mut_slice()
}
}
/// Returns true if the character is a word character, according to the
/// (Unicode friendly) Perl character class '\w'.
/// Note that this is only use for testing word boundaries. The actual '\w'
/// is encoded as a CharClass instruction.
pub fn is_word(c: Option<char>) -> bool {
let c = match c {
None => return false,
Some(c) => c,
};
// Try the common ASCII case before invoking binary search.
match c {
'_' | '0' ... '9' | 'a' ... 'z' | 'A' ... 'Z' => true,
_ => PERLW.binary_search(|&(start, end)| {
if c >= start && c <= end {
Equal
} else if start > c {
Greater
} else {
Less
}
}).found().is_some()
}
}
/// Given a character and a single character class range, return an ordering
/// indicating whether the character is less than the start of the range,
/// in the range (inclusive) or greater than the end of the range.
///
/// If `casei` is `true`, then this ordering is computed case insensitively.
///
/// This function is meant to be used with a binary search.
#[inline]
fn class_cmp(casei: bool, mut textc: char,
(mut start, mut end): (char, char)) -> Ordering {
if casei {
// FIXME: This is pretty ridiculous. All of this case conversion
// can be moved outside this function:
// 1) textc should be uppercased outside the bsearch.
// 2) the character class itself should be uppercased either in the
// parser or the compiler.
// FIXME: This is too simplistic for correct Unicode support.
// See also: char_eq
textc = textc.to_uppercase();
start = start.to_uppercase();
end = end.to_uppercase();
}
if textc >= start && textc <= end {
Equal
} else if start > textc {
Greater
} else {
Less
}
}
/// Returns the starting location of `needle` in `haystack`.
/// If `needle` is not in `haystack`, then `None` is returned.
///
/// Note that this is using a naive substring algorithm.
#[inline]
pub fn find_prefix(needle: &[u8], haystack: &[u8]) -> Option<uint> {
let (hlen, nlen) = (haystack.len(), needle.len());
if nlen > hlen || nlen == 0 {
return None
}
for (offset, window) in haystack.windows(nlen).enumerate() {
if window == needle {
return Some(offset)
}
}
None
}