1cf592fa40
Refactor away RBML from rustc_metadata. RBML and `ty{en,de}code` have had their long-overdue purge. Summary of changes: * Metadata is now a tree encoded in post-order and with relative backward references pointing to children nodes. With auto-deriving and type safety, this makes maintenance and adding new information to metadata painless and bug-free by default. It's also more compact and cache-friendly (cache misses should be proportional to the depth of the node being accessed, not the number of siblings as in EBML/RBML). * Metadata sizes have been reduced, for `libcore` it went down 16% (`8.38MB` -> `7.05MB`) and for `libstd` 14% (`3.53MB` -> `3.03MB`), while encoding more or less the same information * Specialization is used in the bundled `libserialize` (crates.io `rustc_serialize` remains unaffected) to customize the encoding (and more importantly, decoding) of various types, most notably those interned in the `TyCtxt`. Some of this abuses a soundness hole pending a fix (cc @aturon), but when that fix arrives, we'll move to macros 1.1 `#[derive]` and custom `TyCtxt`-aware serialization traits. * Enumerating children of modules from other crates is now orthogonal to describing those items via `Def` - this is a step towards bridging crate-local HIR and cross-crate metadata * `CrateNum` has been moved to `rustc` and both it and `NodeId` are now newtypes instead of `u32` aliases, for specializing their decoding. This is `[syntax-breaking]` (cc @Manishearth ). cc @rust-lang/compiler
1976 lines
74 KiB
Rust
1976 lines
74 KiB
Rust
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
|
||
// file at the top-level directory of this distribution and at
|
||
// http://rust-lang.org/COPYRIGHT.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||
// option. This file may not be copied, modified, or distributed
|
||
// except according to those terms.
|
||
|
||
//! Translate the completed AST to the LLVM IR.
|
||
//!
|
||
//! Some functions here, such as trans_block and trans_expr, return a value --
|
||
//! the result of the translation to LLVM -- while others, such as trans_fn
|
||
//! and trans_item, are called only for the side effect of adding a
|
||
//! particular definition to the LLVM IR output we're producing.
|
||
//!
|
||
//! Hopefully useful general knowledge about trans:
|
||
//!
|
||
//! * There's no way to find out the Ty type of a ValueRef. Doing so
|
||
//! would be "trying to get the eggs out of an omelette" (credit:
|
||
//! pcwalton). You can, instead, find out its TypeRef by calling val_ty,
|
||
//! but one TypeRef corresponds to many `Ty`s; for instance, tup(int, int,
|
||
//! int) and rec(x=int, y=int, z=int) will have the same TypeRef.
|
||
|
||
#![allow(non_camel_case_types)]
|
||
|
||
use super::CrateTranslation;
|
||
use super::ModuleLlvm;
|
||
use super::ModuleSource;
|
||
use super::ModuleTranslation;
|
||
|
||
use assert_module_sources;
|
||
use back::link;
|
||
use back::linker::LinkerInfo;
|
||
use llvm::{Linkage, ValueRef, Vector, get_param};
|
||
use llvm;
|
||
use rustc::hir::def_id::DefId;
|
||
use middle::lang_items::{LangItem, ExchangeMallocFnLangItem, StartFnLangItem};
|
||
use rustc::ty::subst::Substs;
|
||
use rustc::traits;
|
||
use rustc::ty::{self, Ty, TyCtxt, TypeFoldable};
|
||
use rustc::ty::adjustment::CustomCoerceUnsized;
|
||
use rustc::dep_graph::{DepNode, WorkProduct};
|
||
use rustc::hir::map as hir_map;
|
||
use rustc::util::common::time;
|
||
use rustc::mir::mir_map::MirMap;
|
||
use session::config::{self, NoDebugInfo};
|
||
use rustc_incremental::IncrementalHashesMap;
|
||
use session::Session;
|
||
use abi::{self, Abi, FnType};
|
||
use adt;
|
||
use attributes;
|
||
use build::*;
|
||
use builder::{Builder, noname};
|
||
use callee::{Callee};
|
||
use common::{Block, C_bool, C_bytes_in_context, C_i32, C_uint};
|
||
use collector::{self, TransItemCollectionMode};
|
||
use common::{C_null, C_struct_in_context, C_u64, C_u8, C_undef};
|
||
use common::{CrateContext, FunctionContext};
|
||
use common::{Result};
|
||
use common::{fulfill_obligation};
|
||
use common::{type_is_zero_size, val_ty};
|
||
use common;
|
||
use consts;
|
||
use context::{SharedCrateContext, CrateContextList};
|
||
use debuginfo::{self, DebugLoc};
|
||
use declare;
|
||
use machine;
|
||
use machine::{llalign_of_min, llsize_of};
|
||
use meth;
|
||
use mir;
|
||
use monomorphize::{self, Instance};
|
||
use partitioning::{self, PartitioningStrategy, CodegenUnit};
|
||
use symbol_map::SymbolMap;
|
||
use symbol_names_test;
|
||
use trans_item::TransItem;
|
||
use type_::Type;
|
||
use type_of;
|
||
use value::Value;
|
||
use Disr;
|
||
use util::sha2::Sha256;
|
||
use util::nodemap::{NodeSet, FnvHashMap, FnvHashSet};
|
||
|
||
use arena::TypedArena;
|
||
use libc::c_uint;
|
||
use std::ffi::{CStr, CString};
|
||
use std::borrow::Cow;
|
||
use std::cell::{Cell, RefCell};
|
||
use std::ptr;
|
||
use std::rc::Rc;
|
||
use std::str;
|
||
use std::i32;
|
||
use syntax_pos::{Span, DUMMY_SP};
|
||
use syntax::attr;
|
||
use rustc::hir;
|
||
use syntax::ast;
|
||
|
||
thread_local! {
|
||
static TASK_LOCAL_INSN_KEY: RefCell<Option<Vec<&'static str>>> = {
|
||
RefCell::new(None)
|
||
}
|
||
}
|
||
|
||
pub fn with_insn_ctxt<F>(blk: F)
|
||
where F: FnOnce(&[&'static str])
|
||
{
|
||
TASK_LOCAL_INSN_KEY.with(move |slot| {
|
||
slot.borrow().as_ref().map(move |s| blk(s));
|
||
})
|
||
}
|
||
|
||
pub fn init_insn_ctxt() {
|
||
TASK_LOCAL_INSN_KEY.with(|slot| {
|
||
*slot.borrow_mut() = Some(Vec::new());
|
||
});
|
||
}
|
||
|
||
pub struct _InsnCtxt {
|
||
_cannot_construct_outside_of_this_module: (),
|
||
}
|
||
|
||
impl Drop for _InsnCtxt {
|
||
fn drop(&mut self) {
|
||
TASK_LOCAL_INSN_KEY.with(|slot| {
|
||
if let Some(ctx) = slot.borrow_mut().as_mut() {
|
||
ctx.pop();
|
||
}
|
||
})
|
||
}
|
||
}
|
||
|
||
pub fn push_ctxt(s: &'static str) -> _InsnCtxt {
|
||
debug!("new InsnCtxt: {}", s);
|
||
TASK_LOCAL_INSN_KEY.with(|slot| {
|
||
if let Some(ctx) = slot.borrow_mut().as_mut() {
|
||
ctx.push(s)
|
||
}
|
||
});
|
||
_InsnCtxt {
|
||
_cannot_construct_outside_of_this_module: (),
|
||
}
|
||
}
|
||
|
||
pub struct StatRecorder<'a, 'tcx: 'a> {
|
||
ccx: &'a CrateContext<'a, 'tcx>,
|
||
name: Option<String>,
|
||
istart: usize,
|
||
}
|
||
|
||
impl<'a, 'tcx> StatRecorder<'a, 'tcx> {
|
||
pub fn new(ccx: &'a CrateContext<'a, 'tcx>, name: String) -> StatRecorder<'a, 'tcx> {
|
||
let istart = ccx.stats().n_llvm_insns.get();
|
||
StatRecorder {
|
||
ccx: ccx,
|
||
name: Some(name),
|
||
istart: istart,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'a, 'tcx> Drop for StatRecorder<'a, 'tcx> {
|
||
fn drop(&mut self) {
|
||
if self.ccx.sess().trans_stats() {
|
||
let iend = self.ccx.stats().n_llvm_insns.get();
|
||
self.ccx
|
||
.stats()
|
||
.fn_stats
|
||
.borrow_mut()
|
||
.push((self.name.take().unwrap(), iend - self.istart));
|
||
self.ccx.stats().n_fns.set(self.ccx.stats().n_fns.get() + 1);
|
||
// Reset LLVM insn count to avoid compound costs.
|
||
self.ccx.stats().n_llvm_insns.set(self.istart);
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn get_meta(bcx: Block, fat_ptr: ValueRef) -> ValueRef {
|
||
StructGEP(bcx, fat_ptr, abi::FAT_PTR_EXTRA)
|
||
}
|
||
|
||
pub fn get_dataptr(bcx: Block, fat_ptr: ValueRef) -> ValueRef {
|
||
StructGEP(bcx, fat_ptr, abi::FAT_PTR_ADDR)
|
||
}
|
||
|
||
fn require_alloc_fn<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, info_ty: Ty<'tcx>, it: LangItem) -> DefId {
|
||
match bcx.tcx().lang_items.require(it) {
|
||
Ok(id) => id,
|
||
Err(s) => {
|
||
bcx.sess().fatal(&format!("allocation of `{}` {}", info_ty, s));
|
||
}
|
||
}
|
||
}
|
||
|
||
// The following malloc_raw_dyn* functions allocate a box to contain
|
||
// a given type, but with a potentially dynamic size.
|
||
|
||
pub fn malloc_raw_dyn<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
||
llty_ptr: Type,
|
||
info_ty: Ty<'tcx>,
|
||
size: ValueRef,
|
||
align: ValueRef,
|
||
debug_loc: DebugLoc)
|
||
-> Result<'blk, 'tcx> {
|
||
let _icx = push_ctxt("malloc_raw_exchange");
|
||
|
||
// Allocate space:
|
||
let def_id = require_alloc_fn(bcx, info_ty, ExchangeMallocFnLangItem);
|
||
let r = Callee::def(bcx.ccx(), def_id, Substs::empty(bcx.tcx()))
|
||
.call(bcx, debug_loc, &[size, align], None);
|
||
|
||
Result::new(r.bcx, PointerCast(r.bcx, r.val, llty_ptr))
|
||
}
|
||
|
||
|
||
pub fn bin_op_to_icmp_predicate(op: hir::BinOp_,
|
||
signed: bool)
|
||
-> llvm::IntPredicate {
|
||
match op {
|
||
hir::BiEq => llvm::IntEQ,
|
||
hir::BiNe => llvm::IntNE,
|
||
hir::BiLt => if signed { llvm::IntSLT } else { llvm::IntULT },
|
||
hir::BiLe => if signed { llvm::IntSLE } else { llvm::IntULE },
|
||
hir::BiGt => if signed { llvm::IntSGT } else { llvm::IntUGT },
|
||
hir::BiGe => if signed { llvm::IntSGE } else { llvm::IntUGE },
|
||
op => {
|
||
bug!("comparison_op_to_icmp_predicate: expected comparison operator, \
|
||
found {:?}",
|
||
op)
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn bin_op_to_fcmp_predicate(op: hir::BinOp_) -> llvm::RealPredicate {
|
||
match op {
|
||
hir::BiEq => llvm::RealOEQ,
|
||
hir::BiNe => llvm::RealUNE,
|
||
hir::BiLt => llvm::RealOLT,
|
||
hir::BiLe => llvm::RealOLE,
|
||
hir::BiGt => llvm::RealOGT,
|
||
hir::BiGe => llvm::RealOGE,
|
||
op => {
|
||
bug!("comparison_op_to_fcmp_predicate: expected comparison operator, \
|
||
found {:?}",
|
||
op);
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn compare_fat_ptrs<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
||
lhs_addr: ValueRef,
|
||
lhs_extra: ValueRef,
|
||
rhs_addr: ValueRef,
|
||
rhs_extra: ValueRef,
|
||
_t: Ty<'tcx>,
|
||
op: hir::BinOp_,
|
||
debug_loc: DebugLoc)
|
||
-> ValueRef {
|
||
match op {
|
||
hir::BiEq => {
|
||
let addr_eq = ICmp(bcx, llvm::IntEQ, lhs_addr, rhs_addr, debug_loc);
|
||
let extra_eq = ICmp(bcx, llvm::IntEQ, lhs_extra, rhs_extra, debug_loc);
|
||
And(bcx, addr_eq, extra_eq, debug_loc)
|
||
}
|
||
hir::BiNe => {
|
||
let addr_eq = ICmp(bcx, llvm::IntNE, lhs_addr, rhs_addr, debug_loc);
|
||
let extra_eq = ICmp(bcx, llvm::IntNE, lhs_extra, rhs_extra, debug_loc);
|
||
Or(bcx, addr_eq, extra_eq, debug_loc)
|
||
}
|
||
hir::BiLe | hir::BiLt | hir::BiGe | hir::BiGt => {
|
||
// a OP b ~ a.0 STRICT(OP) b.0 | (a.0 == b.0 && a.1 OP a.1)
|
||
let (op, strict_op) = match op {
|
||
hir::BiLt => (llvm::IntULT, llvm::IntULT),
|
||
hir::BiLe => (llvm::IntULE, llvm::IntULT),
|
||
hir::BiGt => (llvm::IntUGT, llvm::IntUGT),
|
||
hir::BiGe => (llvm::IntUGE, llvm::IntUGT),
|
||
_ => bug!(),
|
||
};
|
||
|
||
let addr_eq = ICmp(bcx, llvm::IntEQ, lhs_addr, rhs_addr, debug_loc);
|
||
let extra_op = ICmp(bcx, op, lhs_extra, rhs_extra, debug_loc);
|
||
let addr_eq_extra_op = And(bcx, addr_eq, extra_op, debug_loc);
|
||
|
||
let addr_strict = ICmp(bcx, strict_op, lhs_addr, rhs_addr, debug_loc);
|
||
Or(bcx, addr_strict, addr_eq_extra_op, debug_loc)
|
||
}
|
||
_ => {
|
||
bug!("unexpected fat ptr binop");
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn compare_scalar_types<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
||
lhs: ValueRef,
|
||
rhs: ValueRef,
|
||
t: Ty<'tcx>,
|
||
op: hir::BinOp_,
|
||
debug_loc: DebugLoc)
|
||
-> ValueRef {
|
||
match t.sty {
|
||
ty::TyTuple(ref tys) if tys.is_empty() => {
|
||
// We don't need to do actual comparisons for nil.
|
||
// () == () holds but () < () does not.
|
||
match op {
|
||
hir::BiEq | hir::BiLe | hir::BiGe => return C_bool(bcx.ccx(), true),
|
||
hir::BiNe | hir::BiLt | hir::BiGt => return C_bool(bcx.ccx(), false),
|
||
// refinements would be nice
|
||
_ => bug!("compare_scalar_types: must be a comparison operator"),
|
||
}
|
||
}
|
||
ty::TyFnDef(..) | ty::TyFnPtr(_) | ty::TyBool | ty::TyUint(_) | ty::TyChar => {
|
||
ICmp(bcx,
|
||
bin_op_to_icmp_predicate(op, false),
|
||
lhs,
|
||
rhs,
|
||
debug_loc)
|
||
}
|
||
ty::TyRawPtr(mt) if common::type_is_sized(bcx.tcx(), mt.ty) => {
|
||
ICmp(bcx,
|
||
bin_op_to_icmp_predicate(op, false),
|
||
lhs,
|
||
rhs,
|
||
debug_loc)
|
||
}
|
||
ty::TyRawPtr(_) => {
|
||
let lhs_addr = Load(bcx, GEPi(bcx, lhs, &[0, abi::FAT_PTR_ADDR]));
|
||
let lhs_extra = Load(bcx, GEPi(bcx, lhs, &[0, abi::FAT_PTR_EXTRA]));
|
||
|
||
let rhs_addr = Load(bcx, GEPi(bcx, rhs, &[0, abi::FAT_PTR_ADDR]));
|
||
let rhs_extra = Load(bcx, GEPi(bcx, rhs, &[0, abi::FAT_PTR_EXTRA]));
|
||
compare_fat_ptrs(bcx,
|
||
lhs_addr,
|
||
lhs_extra,
|
||
rhs_addr,
|
||
rhs_extra,
|
||
t,
|
||
op,
|
||
debug_loc)
|
||
}
|
||
ty::TyInt(_) => {
|
||
ICmp(bcx,
|
||
bin_op_to_icmp_predicate(op, true),
|
||
lhs,
|
||
rhs,
|
||
debug_loc)
|
||
}
|
||
ty::TyFloat(_) => {
|
||
FCmp(bcx,
|
||
bin_op_to_fcmp_predicate(op),
|
||
lhs,
|
||
rhs,
|
||
debug_loc)
|
||
}
|
||
// Should never get here, because t is scalar.
|
||
_ => bug!("non-scalar type passed to compare_scalar_types"),
|
||
}
|
||
}
|
||
|
||
pub fn compare_simd_types<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
||
lhs: ValueRef,
|
||
rhs: ValueRef,
|
||
t: Ty<'tcx>,
|
||
ret_ty: Type,
|
||
op: hir::BinOp_,
|
||
debug_loc: DebugLoc)
|
||
-> ValueRef {
|
||
let signed = match t.sty {
|
||
ty::TyFloat(_) => {
|
||
let cmp = bin_op_to_fcmp_predicate(op);
|
||
return SExt(bcx, FCmp(bcx, cmp, lhs, rhs, debug_loc), ret_ty);
|
||
},
|
||
ty::TyUint(_) => false,
|
||
ty::TyInt(_) => true,
|
||
_ => bug!("compare_simd_types: invalid SIMD type"),
|
||
};
|
||
|
||
let cmp = bin_op_to_icmp_predicate(op, signed);
|
||
// LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
|
||
// to get the correctly sized type. This will compile to a single instruction
|
||
// once the IR is converted to assembly if the SIMD instruction is supported
|
||
// by the target architecture.
|
||
SExt(bcx, ICmp(bcx, cmp, lhs, rhs, debug_loc), ret_ty)
|
||
}
|
||
|
||
/// Retrieve the information we are losing (making dynamic) in an unsizing
|
||
/// adjustment.
|
||
///
|
||
/// The `old_info` argument is a bit funny. It is intended for use
|
||
/// in an upcast, where the new vtable for an object will be drived
|
||
/// from the old one.
|
||
pub fn unsized_info<'ccx, 'tcx>(ccx: &CrateContext<'ccx, 'tcx>,
|
||
source: Ty<'tcx>,
|
||
target: Ty<'tcx>,
|
||
old_info: Option<ValueRef>)
|
||
-> ValueRef {
|
||
let (source, target) = ccx.tcx().struct_lockstep_tails(source, target);
|
||
match (&source.sty, &target.sty) {
|
||
(&ty::TyArray(_, len), &ty::TySlice(_)) => C_uint(ccx, len),
|
||
(&ty::TyTrait(_), &ty::TyTrait(_)) => {
|
||
// For now, upcasts are limited to changes in marker
|
||
// traits, and hence never actually require an actual
|
||
// change to the vtable.
|
||
old_info.expect("unsized_info: missing old info for trait upcast")
|
||
}
|
||
(_, &ty::TyTrait(ref data)) => {
|
||
let trait_ref = data.principal.with_self_ty(ccx.tcx(), source);
|
||
let trait_ref = ccx.tcx().erase_regions(&trait_ref);
|
||
consts::ptrcast(meth::get_vtable(ccx, trait_ref),
|
||
Type::vtable_ptr(ccx))
|
||
}
|
||
_ => bug!("unsized_info: invalid unsizing {:?} -> {:?}",
|
||
source,
|
||
target),
|
||
}
|
||
}
|
||
|
||
/// Coerce `src` to `dst_ty`. `src_ty` must be a thin pointer.
|
||
pub fn unsize_thin_ptr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
||
src: ValueRef,
|
||
src_ty: Ty<'tcx>,
|
||
dst_ty: Ty<'tcx>)
|
||
-> (ValueRef, ValueRef) {
|
||
debug!("unsize_thin_ptr: {:?} => {:?}", src_ty, dst_ty);
|
||
match (&src_ty.sty, &dst_ty.sty) {
|
||
(&ty::TyBox(a), &ty::TyBox(b)) |
|
||
(&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
|
||
&ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) |
|
||
(&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
|
||
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
|
||
(&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
|
||
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
|
||
assert!(common::type_is_sized(bcx.tcx(), a));
|
||
let ptr_ty = type_of::in_memory_type_of(bcx.ccx(), b).ptr_to();
|
||
(PointerCast(bcx, src, ptr_ty),
|
||
unsized_info(bcx.ccx(), a, b, None))
|
||
}
|
||
_ => bug!("unsize_thin_ptr: called on bad types"),
|
||
}
|
||
}
|
||
|
||
/// Coerce `src`, which is a reference to a value of type `src_ty`,
|
||
/// to a value of type `dst_ty` and store the result in `dst`
|
||
pub fn coerce_unsized_into<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
||
src: ValueRef,
|
||
src_ty: Ty<'tcx>,
|
||
dst: ValueRef,
|
||
dst_ty: Ty<'tcx>) {
|
||
match (&src_ty.sty, &dst_ty.sty) {
|
||
(&ty::TyBox(..), &ty::TyBox(..)) |
|
||
(&ty::TyRef(..), &ty::TyRef(..)) |
|
||
(&ty::TyRef(..), &ty::TyRawPtr(..)) |
|
||
(&ty::TyRawPtr(..), &ty::TyRawPtr(..)) => {
|
||
let (base, info) = if common::type_is_fat_ptr(bcx.tcx(), src_ty) {
|
||
// fat-ptr to fat-ptr unsize preserves the vtable
|
||
// i.e. &'a fmt::Debug+Send => &'a fmt::Debug
|
||
// So we need to pointercast the base to ensure
|
||
// the types match up.
|
||
let (base, info) = load_fat_ptr(bcx, src, src_ty);
|
||
let llcast_ty = type_of::fat_ptr_base_ty(bcx.ccx(), dst_ty);
|
||
let base = PointerCast(bcx, base, llcast_ty);
|
||
(base, info)
|
||
} else {
|
||
let base = load_ty(bcx, src, src_ty);
|
||
unsize_thin_ptr(bcx, base, src_ty, dst_ty)
|
||
};
|
||
store_fat_ptr(bcx, base, info, dst, dst_ty);
|
||
}
|
||
|
||
// This can be extended to enums and tuples in the future.
|
||
(&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) => {
|
||
assert_eq!(def_a, def_b);
|
||
|
||
let src_repr = adt::represent_type(bcx.ccx(), src_ty);
|
||
let src_fields = match &*src_repr {
|
||
&adt::Repr::Univariant(ref s) => &s.fields,
|
||
_ => bug!("struct has non-univariant repr"),
|
||
};
|
||
let dst_repr = adt::represent_type(bcx.ccx(), dst_ty);
|
||
let dst_fields = match &*dst_repr {
|
||
&adt::Repr::Univariant(ref s) => &s.fields,
|
||
_ => bug!("struct has non-univariant repr"),
|
||
};
|
||
|
||
let src = adt::MaybeSizedValue::sized(src);
|
||
let dst = adt::MaybeSizedValue::sized(dst);
|
||
|
||
let iter = src_fields.iter().zip(dst_fields).enumerate();
|
||
for (i, (src_fty, dst_fty)) in iter {
|
||
if type_is_zero_size(bcx.ccx(), dst_fty) {
|
||
continue;
|
||
}
|
||
|
||
let src_f = adt::trans_field_ptr(bcx, &src_repr, src, Disr(0), i);
|
||
let dst_f = adt::trans_field_ptr(bcx, &dst_repr, dst, Disr(0), i);
|
||
if src_fty == dst_fty {
|
||
memcpy_ty(bcx, dst_f, src_f, src_fty);
|
||
} else {
|
||
coerce_unsized_into(bcx, src_f, src_fty, dst_f, dst_fty);
|
||
}
|
||
}
|
||
}
|
||
_ => bug!("coerce_unsized_into: invalid coercion {:?} -> {:?}",
|
||
src_ty,
|
||
dst_ty),
|
||
}
|
||
}
|
||
|
||
pub fn custom_coerce_unsize_info<'scx, 'tcx>(scx: &SharedCrateContext<'scx, 'tcx>,
|
||
source_ty: Ty<'tcx>,
|
||
target_ty: Ty<'tcx>)
|
||
-> CustomCoerceUnsized {
|
||
let trait_ref = ty::Binder(ty::TraitRef {
|
||
def_id: scx.tcx().lang_items.coerce_unsized_trait().unwrap(),
|
||
substs: Substs::new_trait(scx.tcx(), source_ty, &[target_ty])
|
||
});
|
||
|
||
match fulfill_obligation(scx, DUMMY_SP, trait_ref) {
|
||
traits::VtableImpl(traits::VtableImplData { impl_def_id, .. }) => {
|
||
scx.tcx().custom_coerce_unsized_kind(impl_def_id)
|
||
}
|
||
vtable => {
|
||
bug!("invalid CoerceUnsized vtable: {:?}", vtable);
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn cast_shift_expr_rhs(cx: Block, op: hir::BinOp_, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
|
||
cast_shift_rhs(op, lhs, rhs, |a, b| Trunc(cx, a, b), |a, b| ZExt(cx, a, b))
|
||
}
|
||
|
||
pub fn cast_shift_const_rhs(op: hir::BinOp_, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
|
||
cast_shift_rhs(op,
|
||
lhs,
|
||
rhs,
|
||
|a, b| unsafe { llvm::LLVMConstTrunc(a, b.to_ref()) },
|
||
|a, b| unsafe { llvm::LLVMConstZExt(a, b.to_ref()) })
|
||
}
|
||
|
||
fn cast_shift_rhs<F, G>(op: hir::BinOp_,
|
||
lhs: ValueRef,
|
||
rhs: ValueRef,
|
||
trunc: F,
|
||
zext: G)
|
||
-> ValueRef
|
||
where F: FnOnce(ValueRef, Type) -> ValueRef,
|
||
G: FnOnce(ValueRef, Type) -> ValueRef
|
||
{
|
||
// Shifts may have any size int on the rhs
|
||
if op.is_shift() {
|
||
let mut rhs_llty = val_ty(rhs);
|
||
let mut lhs_llty = val_ty(lhs);
|
||
if rhs_llty.kind() == Vector {
|
||
rhs_llty = rhs_llty.element_type()
|
||
}
|
||
if lhs_llty.kind() == Vector {
|
||
lhs_llty = lhs_llty.element_type()
|
||
}
|
||
let rhs_sz = rhs_llty.int_width();
|
||
let lhs_sz = lhs_llty.int_width();
|
||
if lhs_sz < rhs_sz {
|
||
trunc(rhs, lhs_llty)
|
||
} else if lhs_sz > rhs_sz {
|
||
// FIXME (#1877: If shifting by negative
|
||
// values becomes not undefined then this is wrong.
|
||
zext(rhs, lhs_llty)
|
||
} else {
|
||
rhs
|
||
}
|
||
} else {
|
||
rhs
|
||
}
|
||
}
|
||
|
||
pub fn invoke<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
||
llfn: ValueRef,
|
||
llargs: &[ValueRef],
|
||
debug_loc: DebugLoc)
|
||
-> (ValueRef, Block<'blk, 'tcx>) {
|
||
let _icx = push_ctxt("invoke_");
|
||
if bcx.unreachable.get() {
|
||
return (C_null(Type::i8(bcx.ccx())), bcx);
|
||
}
|
||
|
||
if need_invoke(bcx) {
|
||
debug!("invoking {:?} at {:?}", Value(llfn), bcx.llbb);
|
||
for &llarg in llargs {
|
||
debug!("arg: {:?}", Value(llarg));
|
||
}
|
||
let normal_bcx = bcx.fcx.new_block("normal-return");
|
||
let landing_pad = bcx.fcx.get_landing_pad();
|
||
|
||
let llresult = Invoke(bcx,
|
||
llfn,
|
||
&llargs[..],
|
||
normal_bcx.llbb,
|
||
landing_pad,
|
||
debug_loc);
|
||
return (llresult, normal_bcx);
|
||
} else {
|
||
debug!("calling {:?} at {:?}", Value(llfn), bcx.llbb);
|
||
for &llarg in llargs {
|
||
debug!("arg: {:?}", Value(llarg));
|
||
}
|
||
|
||
let llresult = Call(bcx, llfn, &llargs[..], debug_loc);
|
||
return (llresult, bcx);
|
||
}
|
||
}
|
||
|
||
/// Returns whether this session's target will use SEH-based unwinding.
|
||
///
|
||
/// This is only true for MSVC targets, and even then the 64-bit MSVC target
|
||
/// currently uses SEH-ish unwinding with DWARF info tables to the side (same as
|
||
/// 64-bit MinGW) instead of "full SEH".
|
||
pub fn wants_msvc_seh(sess: &Session) -> bool {
|
||
sess.target.target.options.is_like_msvc
|
||
}
|
||
|
||
pub fn avoid_invoke(bcx: Block) -> bool {
|
||
bcx.sess().no_landing_pads() || bcx.lpad().is_some()
|
||
}
|
||
|
||
pub fn need_invoke(bcx: Block) -> bool {
|
||
if avoid_invoke(bcx) {
|
||
false
|
||
} else {
|
||
bcx.fcx.needs_invoke()
|
||
}
|
||
}
|
||
|
||
/// Helper for loading values from memory. Does the necessary conversion if the in-memory type
|
||
/// differs from the type used for SSA values. Also handles various special cases where the type
|
||
/// gives us better information about what we are loading.
|
||
pub fn load_ty<'blk, 'tcx>(cx: Block<'blk, 'tcx>, ptr: ValueRef, t: Ty<'tcx>) -> ValueRef {
|
||
if cx.unreachable.get() {
|
||
return C_undef(type_of::type_of(cx.ccx(), t));
|
||
}
|
||
load_ty_builder(&B(cx), ptr, t)
|
||
}
|
||
|
||
pub fn load_ty_builder<'a, 'tcx>(b: &Builder<'a, 'tcx>, ptr: ValueRef, t: Ty<'tcx>) -> ValueRef {
|
||
let ccx = b.ccx;
|
||
if type_is_zero_size(ccx, t) {
|
||
return C_undef(type_of::type_of(ccx, t));
|
||
}
|
||
|
||
unsafe {
|
||
let global = llvm::LLVMIsAGlobalVariable(ptr);
|
||
if !global.is_null() && llvm::LLVMIsGlobalConstant(global) == llvm::True {
|
||
let val = llvm::LLVMGetInitializer(global);
|
||
if !val.is_null() {
|
||
if t.is_bool() {
|
||
return llvm::LLVMConstTrunc(val, Type::i1(ccx).to_ref());
|
||
}
|
||
return val;
|
||
}
|
||
}
|
||
}
|
||
|
||
if t.is_bool() {
|
||
b.trunc(b.load_range_assert(ptr, 0, 2, llvm::False), Type::i1(ccx))
|
||
} else if t.is_char() {
|
||
// a char is a Unicode codepoint, and so takes values from 0
|
||
// to 0x10FFFF inclusive only.
|
||
b.load_range_assert(ptr, 0, 0x10FFFF + 1, llvm::False)
|
||
} else if (t.is_region_ptr() || t.is_unique()) &&
|
||
!common::type_is_fat_ptr(ccx.tcx(), t) {
|
||
b.load_nonnull(ptr)
|
||
} else {
|
||
b.load(ptr)
|
||
}
|
||
}
|
||
|
||
/// Helper for storing values in memory. Does the necessary conversion if the in-memory type
|
||
/// differs from the type used for SSA values.
|
||
pub fn store_ty<'blk, 'tcx>(cx: Block<'blk, 'tcx>, v: ValueRef, dst: ValueRef, t: Ty<'tcx>) {
|
||
if cx.unreachable.get() {
|
||
return;
|
||
}
|
||
|
||
debug!("store_ty: {:?} : {:?} <- {:?}", Value(dst), t, Value(v));
|
||
|
||
if common::type_is_fat_ptr(cx.tcx(), t) {
|
||
Store(cx,
|
||
ExtractValue(cx, v, abi::FAT_PTR_ADDR),
|
||
get_dataptr(cx, dst));
|
||
Store(cx,
|
||
ExtractValue(cx, v, abi::FAT_PTR_EXTRA),
|
||
get_meta(cx, dst));
|
||
} else {
|
||
Store(cx, from_immediate(cx, v), dst);
|
||
}
|
||
}
|
||
|
||
pub fn store_fat_ptr<'blk, 'tcx>(cx: Block<'blk, 'tcx>,
|
||
data: ValueRef,
|
||
extra: ValueRef,
|
||
dst: ValueRef,
|
||
_ty: Ty<'tcx>) {
|
||
// FIXME: emit metadata
|
||
Store(cx, data, get_dataptr(cx, dst));
|
||
Store(cx, extra, get_meta(cx, dst));
|
||
}
|
||
|
||
pub fn load_fat_ptr<'blk, 'tcx>(cx: Block<'blk, 'tcx>,
|
||
src: ValueRef,
|
||
_ty: Ty<'tcx>)
|
||
-> (ValueRef, ValueRef) {
|
||
// FIXME: emit metadata
|
||
(Load(cx, get_dataptr(cx, src)),
|
||
Load(cx, get_meta(cx, src)))
|
||
}
|
||
|
||
pub fn from_immediate(bcx: Block, val: ValueRef) -> ValueRef {
|
||
if val_ty(val) == Type::i1(bcx.ccx()) {
|
||
ZExt(bcx, val, Type::i8(bcx.ccx()))
|
||
} else {
|
||
val
|
||
}
|
||
}
|
||
|
||
pub fn to_immediate(bcx: Block, val: ValueRef, ty: Ty) -> ValueRef {
|
||
if ty.is_bool() {
|
||
Trunc(bcx, val, Type::i1(bcx.ccx()))
|
||
} else {
|
||
val
|
||
}
|
||
}
|
||
|
||
pub fn with_cond<'blk, 'tcx, F>(bcx: Block<'blk, 'tcx>, val: ValueRef, f: F) -> Block<'blk, 'tcx>
|
||
where F: FnOnce(Block<'blk, 'tcx>) -> Block<'blk, 'tcx>
|
||
{
|
||
let _icx = push_ctxt("with_cond");
|
||
|
||
if bcx.unreachable.get() || common::const_to_opt_uint(val) == Some(0) {
|
||
return bcx;
|
||
}
|
||
|
||
let fcx = bcx.fcx;
|
||
let next_cx = fcx.new_block("next");
|
||
let cond_cx = fcx.new_block("cond");
|
||
CondBr(bcx, val, cond_cx.llbb, next_cx.llbb, DebugLoc::None);
|
||
let after_cx = f(cond_cx);
|
||
if !after_cx.terminated.get() {
|
||
Br(after_cx, next_cx.llbb, DebugLoc::None);
|
||
}
|
||
next_cx
|
||
}
|
||
|
||
pub enum Lifetime { Start, End }
|
||
|
||
// If LLVM lifetime intrinsic support is enabled (i.e. optimizations
|
||
// on), and `ptr` is nonzero-sized, then extracts the size of `ptr`
|
||
// and the intrinsic for `lt` and passes them to `emit`, which is in
|
||
// charge of generating code to call the passed intrinsic on whatever
|
||
// block of generated code is targetted for the intrinsic.
|
||
//
|
||
// If LLVM lifetime intrinsic support is disabled (i.e. optimizations
|
||
// off) or `ptr` is zero-sized, then no-op (does not call `emit`).
|
||
fn core_lifetime_emit<'blk, 'tcx, F>(ccx: &'blk CrateContext<'blk, 'tcx>,
|
||
ptr: ValueRef,
|
||
lt: Lifetime,
|
||
emit: F)
|
||
where F: FnOnce(&'blk CrateContext<'blk, 'tcx>, machine::llsize, ValueRef)
|
||
{
|
||
if ccx.sess().opts.optimize == config::OptLevel::No {
|
||
return;
|
||
}
|
||
|
||
let _icx = push_ctxt(match lt {
|
||
Lifetime::Start => "lifetime_start",
|
||
Lifetime::End => "lifetime_end"
|
||
});
|
||
|
||
let size = machine::llsize_of_alloc(ccx, val_ty(ptr).element_type());
|
||
if size == 0 {
|
||
return;
|
||
}
|
||
|
||
let lifetime_intrinsic = ccx.get_intrinsic(match lt {
|
||
Lifetime::Start => "llvm.lifetime.start",
|
||
Lifetime::End => "llvm.lifetime.end"
|
||
});
|
||
emit(ccx, size, lifetime_intrinsic)
|
||
}
|
||
|
||
impl Lifetime {
|
||
pub fn call(self, b: &Builder, ptr: ValueRef) {
|
||
core_lifetime_emit(b.ccx, ptr, self, |ccx, size, lifetime_intrinsic| {
|
||
let ptr = b.pointercast(ptr, Type::i8p(ccx));
|
||
b.call(lifetime_intrinsic, &[C_u64(ccx, size), ptr], None);
|
||
});
|
||
}
|
||
}
|
||
|
||
pub fn call_lifetime_start(bcx: Block, ptr: ValueRef) {
|
||
if !bcx.unreachable.get() {
|
||
Lifetime::Start.call(&bcx.build(), ptr);
|
||
}
|
||
}
|
||
|
||
pub fn call_lifetime_end(bcx: Block, ptr: ValueRef) {
|
||
if !bcx.unreachable.get() {
|
||
Lifetime::End.call(&bcx.build(), ptr);
|
||
}
|
||
}
|
||
|
||
// Generates code for resumption of unwind at the end of a landing pad.
|
||
pub fn trans_unwind_resume(bcx: Block, lpval: ValueRef) {
|
||
if !bcx.sess().target.target.options.custom_unwind_resume {
|
||
Resume(bcx, lpval);
|
||
} else {
|
||
let exc_ptr = ExtractValue(bcx, lpval, 0);
|
||
bcx.fcx.eh_unwind_resume()
|
||
.call(bcx, DebugLoc::None, &[exc_ptr], None);
|
||
}
|
||
}
|
||
|
||
pub fn call_memcpy<'bcx, 'tcx>(b: &Builder<'bcx, 'tcx>,
|
||
dst: ValueRef,
|
||
src: ValueRef,
|
||
n_bytes: ValueRef,
|
||
align: u32) {
|
||
let _icx = push_ctxt("call_memcpy");
|
||
let ccx = b.ccx;
|
||
let ptr_width = &ccx.sess().target.target.target_pointer_width[..];
|
||
let key = format!("llvm.memcpy.p0i8.p0i8.i{}", ptr_width);
|
||
let memcpy = ccx.get_intrinsic(&key);
|
||
let src_ptr = b.pointercast(src, Type::i8p(ccx));
|
||
let dst_ptr = b.pointercast(dst, Type::i8p(ccx));
|
||
let size = b.intcast(n_bytes, ccx.int_type());
|
||
let align = C_i32(ccx, align as i32);
|
||
let volatile = C_bool(ccx, false);
|
||
b.call(memcpy, &[dst_ptr, src_ptr, size, align, volatile], None);
|
||
}
|
||
|
||
pub fn memcpy_ty<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, dst: ValueRef, src: ValueRef, t: Ty<'tcx>) {
|
||
let _icx = push_ctxt("memcpy_ty");
|
||
let ccx = bcx.ccx();
|
||
|
||
if type_is_zero_size(ccx, t) || bcx.unreachable.get() {
|
||
return;
|
||
}
|
||
|
||
if t.is_structural() {
|
||
let llty = type_of::type_of(ccx, t);
|
||
let llsz = llsize_of(ccx, llty);
|
||
let llalign = type_of::align_of(ccx, t);
|
||
call_memcpy(&B(bcx), dst, src, llsz, llalign as u32);
|
||
} else if common::type_is_fat_ptr(bcx.tcx(), t) {
|
||
let (data, extra) = load_fat_ptr(bcx, src, t);
|
||
store_fat_ptr(bcx, data, extra, dst, t);
|
||
} else {
|
||
store_ty(bcx, load_ty(bcx, src, t), dst, t);
|
||
}
|
||
}
|
||
|
||
pub fn init_zero_mem<'blk, 'tcx>(cx: Block<'blk, 'tcx>, llptr: ValueRef, t: Ty<'tcx>) {
|
||
if cx.unreachable.get() {
|
||
return;
|
||
}
|
||
let _icx = push_ctxt("init_zero_mem");
|
||
let bcx = cx;
|
||
memfill(&B(bcx), llptr, t, 0);
|
||
}
|
||
|
||
// Always use this function instead of storing a constant byte to the memory
|
||
// in question. e.g. if you store a zero constant, LLVM will drown in vreg
|
||
// allocation for large data structures, and the generated code will be
|
||
// awful. (A telltale sign of this is large quantities of
|
||
// `mov [byte ptr foo],0` in the generated code.)
|
||
fn memfill<'a, 'tcx>(b: &Builder<'a, 'tcx>, llptr: ValueRef, ty: Ty<'tcx>, byte: u8) {
|
||
let _icx = push_ctxt("memfill");
|
||
let ccx = b.ccx;
|
||
let llty = type_of::type_of(ccx, ty);
|
||
let llptr = b.pointercast(llptr, Type::i8(ccx).ptr_to());
|
||
let llzeroval = C_u8(ccx, byte);
|
||
let size = machine::llsize_of(ccx, llty);
|
||
let align = C_i32(ccx, type_of::align_of(ccx, ty) as i32);
|
||
call_memset(b, llptr, llzeroval, size, align, false);
|
||
}
|
||
|
||
pub fn call_memset<'bcx, 'tcx>(b: &Builder<'bcx, 'tcx>,
|
||
ptr: ValueRef,
|
||
fill_byte: ValueRef,
|
||
size: ValueRef,
|
||
align: ValueRef,
|
||
volatile: bool) {
|
||
let ccx = b.ccx;
|
||
let ptr_width = &ccx.sess().target.target.target_pointer_width[..];
|
||
let intrinsic_key = format!("llvm.memset.p0i8.i{}", ptr_width);
|
||
let llintrinsicfn = ccx.get_intrinsic(&intrinsic_key);
|
||
let volatile = C_bool(ccx, volatile);
|
||
b.call(llintrinsicfn, &[ptr, fill_byte, size, align, volatile], None);
|
||
}
|
||
|
||
pub fn alloc_ty<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
||
ty: Ty<'tcx>,
|
||
name: &str) -> ValueRef {
|
||
assert!(!ty.has_param_types());
|
||
alloca(bcx, type_of::type_of(bcx.ccx(), ty), name)
|
||
}
|
||
|
||
pub fn alloca(cx: Block, ty: Type, name: &str) -> ValueRef {
|
||
let _icx = push_ctxt("alloca");
|
||
if cx.unreachable.get() {
|
||
unsafe {
|
||
return llvm::LLVMGetUndef(ty.ptr_to().to_ref());
|
||
}
|
||
}
|
||
DebugLoc::None.apply(cx.fcx);
|
||
Alloca(cx, ty, name)
|
||
}
|
||
|
||
impl<'blk, 'tcx> FunctionContext<'blk, 'tcx> {
|
||
/// Create a function context for the given function.
|
||
/// Beware that you must call `fcx.init` or `fcx.bind_args`
|
||
/// before doing anything with the returned function context.
|
||
pub fn new(ccx: &'blk CrateContext<'blk, 'tcx>,
|
||
llfndecl: ValueRef,
|
||
fn_ty: FnType,
|
||
definition: Option<(Instance<'tcx>, &ty::FnSig<'tcx>, Abi)>,
|
||
block_arena: &'blk TypedArena<common::BlockS<'blk, 'tcx>>)
|
||
-> FunctionContext<'blk, 'tcx> {
|
||
let (param_substs, def_id) = match definition {
|
||
Some((instance, ..)) => {
|
||
common::validate_substs(instance.substs);
|
||
(instance.substs, Some(instance.def))
|
||
}
|
||
None => (Substs::empty(ccx.tcx()), None)
|
||
};
|
||
|
||
let local_id = def_id.and_then(|id| ccx.tcx().map.as_local_node_id(id));
|
||
|
||
debug!("FunctionContext::new({})",
|
||
definition.map_or(String::new(), |d| d.0.to_string()));
|
||
|
||
let no_debug = if let Some(id) = local_id {
|
||
ccx.tcx().map.attrs(id)
|
||
.iter().any(|item| item.check_name("no_debug"))
|
||
} else if let Some(def_id) = def_id {
|
||
ccx.sess().cstore.item_attrs(def_id)
|
||
.iter().any(|item| item.check_name("no_debug"))
|
||
} else {
|
||
false
|
||
};
|
||
|
||
let mir = def_id.and_then(|id| ccx.get_mir(id));
|
||
|
||
let debug_context = if let (false, Some((instance, sig, abi)), &Some(ref mir)) =
|
||
(no_debug, definition, &mir) {
|
||
debuginfo::create_function_debug_context(ccx, instance, sig, abi, llfndecl, mir)
|
||
} else {
|
||
debuginfo::empty_function_debug_context(ccx)
|
||
};
|
||
|
||
FunctionContext {
|
||
mir: mir,
|
||
llfn: llfndecl,
|
||
llretslotptr: Cell::new(None),
|
||
param_env: ccx.tcx().empty_parameter_environment(),
|
||
alloca_insert_pt: Cell::new(None),
|
||
landingpad_alloca: Cell::new(None),
|
||
fn_ty: fn_ty,
|
||
param_substs: param_substs,
|
||
span: None,
|
||
block_arena: block_arena,
|
||
lpad_arena: TypedArena::new(),
|
||
ccx: ccx,
|
||
debug_context: debug_context,
|
||
scopes: RefCell::new(Vec::new()),
|
||
}
|
||
}
|
||
|
||
/// Performs setup on a newly created function, creating the entry
|
||
/// scope block and allocating space for the return pointer.
|
||
pub fn init(&'blk self, skip_retptr: bool) -> Block<'blk, 'tcx> {
|
||
let entry_bcx = self.new_block("entry-block");
|
||
|
||
// Use a dummy instruction as the insertion point for all allocas.
|
||
// This is later removed in FunctionContext::cleanup.
|
||
self.alloca_insert_pt.set(Some(unsafe {
|
||
Load(entry_bcx, C_null(Type::i8p(self.ccx)));
|
||
llvm::LLVMGetFirstInstruction(entry_bcx.llbb)
|
||
}));
|
||
|
||
if !self.fn_ty.ret.is_ignore() && !skip_retptr {
|
||
// We normally allocate the llretslotptr, unless we
|
||
// have been instructed to skip it for immediate return
|
||
// values, or there is nothing to return at all.
|
||
|
||
// We create an alloca to hold a pointer of type `ret.original_ty`
|
||
// which will hold the pointer to the right alloca which has the
|
||
// final ret value
|
||
let llty = self.fn_ty.ret.memory_ty(self.ccx);
|
||
// But if there are no nested returns, we skip the indirection
|
||
// and have a single retslot
|
||
let slot = if self.fn_ty.ret.is_indirect() {
|
||
get_param(self.llfn, 0)
|
||
} else {
|
||
AllocaFcx(self, llty, "sret_slot")
|
||
};
|
||
|
||
self.llretslotptr.set(Some(slot));
|
||
}
|
||
|
||
entry_bcx
|
||
}
|
||
|
||
/// Ties up the llstaticallocas -> llloadenv -> lltop edges,
|
||
/// and builds the return block.
|
||
pub fn finish(&'blk self, ret_cx: Block<'blk, 'tcx>,
|
||
ret_debug_loc: DebugLoc) {
|
||
let _icx = push_ctxt("FunctionContext::finish");
|
||
|
||
self.build_return_block(ret_cx, ret_debug_loc);
|
||
|
||
DebugLoc::None.apply(self);
|
||
self.cleanup();
|
||
}
|
||
|
||
// Builds the return block for a function.
|
||
pub fn build_return_block(&self, ret_cx: Block<'blk, 'tcx>,
|
||
ret_debug_location: DebugLoc) {
|
||
if self.llretslotptr.get().is_none() ||
|
||
ret_cx.unreachable.get() ||
|
||
self.fn_ty.ret.is_indirect() {
|
||
return RetVoid(ret_cx, ret_debug_location);
|
||
}
|
||
|
||
let retslot = self.llretslotptr.get().unwrap();
|
||
let retptr = Value(retslot);
|
||
let llty = self.fn_ty.ret.original_ty;
|
||
match (retptr.get_dominating_store(ret_cx), self.fn_ty.ret.cast) {
|
||
// If there's only a single store to the ret slot, we can directly return
|
||
// the value that was stored and omit the store and the alloca.
|
||
// However, we only want to do this when there is no cast needed.
|
||
(Some(s), None) => {
|
||
let mut retval = s.get_operand(0).unwrap().get();
|
||
s.erase_from_parent();
|
||
|
||
if retptr.has_no_uses() {
|
||
retptr.erase_from_parent();
|
||
}
|
||
|
||
if self.fn_ty.ret.is_indirect() {
|
||
Store(ret_cx, retval, get_param(self.llfn, 0));
|
||
RetVoid(ret_cx, ret_debug_location)
|
||
} else {
|
||
if llty == Type::i1(self.ccx) {
|
||
retval = Trunc(ret_cx, retval, llty);
|
||
}
|
||
Ret(ret_cx, retval, ret_debug_location)
|
||
}
|
||
}
|
||
(_, cast_ty) if self.fn_ty.ret.is_indirect() => {
|
||
// Otherwise, copy the return value to the ret slot.
|
||
assert_eq!(cast_ty, None);
|
||
let llsz = llsize_of(self.ccx, self.fn_ty.ret.ty);
|
||
let llalign = llalign_of_min(self.ccx, self.fn_ty.ret.ty);
|
||
call_memcpy(&B(ret_cx), get_param(self.llfn, 0),
|
||
retslot, llsz, llalign as u32);
|
||
RetVoid(ret_cx, ret_debug_location)
|
||
}
|
||
(_, Some(cast_ty)) => {
|
||
let load = Load(ret_cx, PointerCast(ret_cx, retslot, cast_ty.ptr_to()));
|
||
let llalign = llalign_of_min(self.ccx, self.fn_ty.ret.ty);
|
||
unsafe {
|
||
llvm::LLVMSetAlignment(load, llalign);
|
||
}
|
||
Ret(ret_cx, load, ret_debug_location)
|
||
}
|
||
(_, None) => {
|
||
let retval = if llty == Type::i1(self.ccx) {
|
||
let val = LoadRangeAssert(ret_cx, retslot, 0, 2, llvm::False);
|
||
Trunc(ret_cx, val, llty)
|
||
} else {
|
||
Load(ret_cx, retslot)
|
||
};
|
||
Ret(ret_cx, retval, ret_debug_location)
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Builds an LLVM function out of a source function.
|
||
///
|
||
/// If the function closes over its environment a closure will be returned.
|
||
pub fn trans_closure<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
||
llfndecl: ValueRef,
|
||
instance: Instance<'tcx>,
|
||
sig: &ty::FnSig<'tcx>,
|
||
abi: Abi) {
|
||
ccx.stats().n_closures.set(ccx.stats().n_closures.get() + 1);
|
||
|
||
let _icx = push_ctxt("trans_closure");
|
||
if !ccx.sess().no_landing_pads() {
|
||
attributes::emit_uwtable(llfndecl, true);
|
||
}
|
||
|
||
// this is an info! to allow collecting monomorphization statistics
|
||
// and to allow finding the last function before LLVM aborts from
|
||
// release builds.
|
||
info!("trans_closure(..., {})", instance);
|
||
|
||
let fn_ty = FnType::new(ccx, abi, sig, &[]);
|
||
|
||
let (arena, fcx): (TypedArena<_>, FunctionContext);
|
||
arena = TypedArena::new();
|
||
fcx = FunctionContext::new(ccx,
|
||
llfndecl,
|
||
fn_ty,
|
||
Some((instance, sig, abi)),
|
||
&arena);
|
||
|
||
if fcx.mir.is_none() {
|
||
bug!("attempted translation of `{}` w/o MIR", instance);
|
||
}
|
||
|
||
mir::trans_mir(&fcx);
|
||
}
|
||
|
||
pub fn trans_instance<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, instance: Instance<'tcx>) {
|
||
let _s = StatRecorder::new(ccx, ccx.tcx().item_path_str(instance.def));
|
||
debug!("trans_instance(instance={:?})", instance);
|
||
let _icx = push_ctxt("trans_instance");
|
||
|
||
let fn_ty = ccx.tcx().lookup_item_type(instance.def).ty;
|
||
let fn_ty = ccx.tcx().erase_regions(&fn_ty);
|
||
let fn_ty = monomorphize::apply_param_substs(ccx.shared(), instance.substs, &fn_ty);
|
||
|
||
let sig = ccx.tcx().erase_late_bound_regions(fn_ty.fn_sig());
|
||
let sig = ccx.tcx().normalize_associated_type(&sig);
|
||
let abi = fn_ty.fn_abi();
|
||
|
||
let lldecl = match ccx.instances().borrow().get(&instance) {
|
||
Some(&val) => val,
|
||
None => bug!("Instance `{:?}` not already declared", instance)
|
||
};
|
||
|
||
trans_closure(ccx, lldecl, instance, &sig, abi);
|
||
}
|
||
|
||
pub fn trans_ctor_shim<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
||
def_id: DefId,
|
||
substs: &'tcx Substs<'tcx>,
|
||
disr: Disr,
|
||
llfndecl: ValueRef) {
|
||
attributes::inline(llfndecl, attributes::InlineAttr::Hint);
|
||
attributes::set_frame_pointer_elimination(ccx, llfndecl);
|
||
|
||
let ctor_ty = ccx.tcx().lookup_item_type(def_id).ty;
|
||
let ctor_ty = monomorphize::apply_param_substs(ccx.shared(), substs, &ctor_ty);
|
||
|
||
let sig = ccx.tcx().erase_late_bound_regions(&ctor_ty.fn_sig());
|
||
let sig = ccx.tcx().normalize_associated_type(&sig);
|
||
let fn_ty = FnType::new(ccx, Abi::Rust, &sig, &[]);
|
||
|
||
let (arena, fcx): (TypedArena<_>, FunctionContext);
|
||
arena = TypedArena::new();
|
||
fcx = FunctionContext::new(ccx, llfndecl, fn_ty, None, &arena);
|
||
let bcx = fcx.init(false);
|
||
|
||
if !fcx.fn_ty.ret.is_ignore() {
|
||
let dest = fcx.llretslotptr.get().unwrap();
|
||
let dest_val = adt::MaybeSizedValue::sized(dest); // Can return unsized value
|
||
let repr = adt::represent_type(ccx, sig.output);
|
||
let mut llarg_idx = fcx.fn_ty.ret.is_indirect() as usize;
|
||
let mut arg_idx = 0;
|
||
for (i, arg_ty) in sig.inputs.into_iter().enumerate() {
|
||
let lldestptr = adt::trans_field_ptr(bcx, &repr, dest_val, Disr::from(disr), i);
|
||
let arg = &fcx.fn_ty.args[arg_idx];
|
||
arg_idx += 1;
|
||
let b = &bcx.build();
|
||
if common::type_is_fat_ptr(bcx.tcx(), arg_ty) {
|
||
let meta = &fcx.fn_ty.args[arg_idx];
|
||
arg_idx += 1;
|
||
arg.store_fn_arg(b, &mut llarg_idx, get_dataptr(bcx, lldestptr));
|
||
meta.store_fn_arg(b, &mut llarg_idx, get_meta(bcx, lldestptr));
|
||
} else {
|
||
arg.store_fn_arg(b, &mut llarg_idx, lldestptr);
|
||
}
|
||
}
|
||
adt::trans_set_discr(bcx, &repr, dest, disr);
|
||
}
|
||
|
||
fcx.finish(bcx, DebugLoc::None);
|
||
}
|
||
|
||
pub fn llvm_linkage_by_name(name: &str) -> Option<Linkage> {
|
||
// Use the names from src/llvm/docs/LangRef.rst here. Most types are only
|
||
// applicable to variable declarations and may not really make sense for
|
||
// Rust code in the first place but whitelist them anyway and trust that
|
||
// the user knows what s/he's doing. Who knows, unanticipated use cases
|
||
// may pop up in the future.
|
||
//
|
||
// ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
|
||
// and don't have to be, LLVM treats them as no-ops.
|
||
match name {
|
||
"appending" => Some(llvm::Linkage::AppendingLinkage),
|
||
"available_externally" => Some(llvm::Linkage::AvailableExternallyLinkage),
|
||
"common" => Some(llvm::Linkage::CommonLinkage),
|
||
"extern_weak" => Some(llvm::Linkage::ExternalWeakLinkage),
|
||
"external" => Some(llvm::Linkage::ExternalLinkage),
|
||
"internal" => Some(llvm::Linkage::InternalLinkage),
|
||
"linkonce" => Some(llvm::Linkage::LinkOnceAnyLinkage),
|
||
"linkonce_odr" => Some(llvm::Linkage::LinkOnceODRLinkage),
|
||
"private" => Some(llvm::Linkage::PrivateLinkage),
|
||
"weak" => Some(llvm::Linkage::WeakAnyLinkage),
|
||
"weak_odr" => Some(llvm::Linkage::WeakODRLinkage),
|
||
_ => None,
|
||
}
|
||
}
|
||
|
||
pub fn set_link_section(ccx: &CrateContext,
|
||
llval: ValueRef,
|
||
attrs: &[ast::Attribute]) {
|
||
if let Some(sect) = attr::first_attr_value_str_by_name(attrs, "link_section") {
|
||
if contains_null(§) {
|
||
ccx.sess().fatal(&format!("Illegal null byte in link_section value: `{}`", §));
|
||
}
|
||
unsafe {
|
||
let buf = CString::new(sect.as_bytes()).unwrap();
|
||
llvm::LLVMSetSection(llval, buf.as_ptr());
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Create the `main` function which will initialise the rust runtime and call
|
||
/// users’ main function.
|
||
pub fn maybe_create_entry_wrapper(ccx: &CrateContext) {
|
||
let (main_def_id, span) = match *ccx.sess().entry_fn.borrow() {
|
||
Some((id, span)) => {
|
||
(ccx.tcx().map.local_def_id(id), span)
|
||
}
|
||
None => return,
|
||
};
|
||
|
||
// check for the #[rustc_error] annotation, which forces an
|
||
// error in trans. This is used to write compile-fail tests
|
||
// that actually test that compilation succeeds without
|
||
// reporting an error.
|
||
if ccx.tcx().has_attr(main_def_id, "rustc_error") {
|
||
ccx.tcx().sess.span_fatal(span, "compilation successful");
|
||
}
|
||
|
||
let instance = Instance::mono(ccx.shared(), main_def_id);
|
||
|
||
if !ccx.codegen_unit().contains_item(&TransItem::Fn(instance)) {
|
||
// We want to create the wrapper in the same codegen unit as Rust's main
|
||
// function.
|
||
return;
|
||
}
|
||
|
||
let main_llfn = Callee::def(ccx, main_def_id, instance.substs).reify(ccx);
|
||
|
||
let et = ccx.sess().entry_type.get().unwrap();
|
||
match et {
|
||
config::EntryMain => {
|
||
create_entry_fn(ccx, span, main_llfn, true);
|
||
}
|
||
config::EntryStart => create_entry_fn(ccx, span, main_llfn, false),
|
||
config::EntryNone => {} // Do nothing.
|
||
}
|
||
|
||
fn create_entry_fn(ccx: &CrateContext,
|
||
sp: Span,
|
||
rust_main: ValueRef,
|
||
use_start_lang_item: bool) {
|
||
let llfty = Type::func(&[ccx.int_type(), Type::i8p(ccx).ptr_to()], &ccx.int_type());
|
||
|
||
if declare::get_defined_value(ccx, "main").is_some() {
|
||
// FIXME: We should be smart and show a better diagnostic here.
|
||
ccx.sess().struct_span_err(sp, "entry symbol `main` defined multiple times")
|
||
.help("did you use #[no_mangle] on `fn main`? Use #[start] instead")
|
||
.emit();
|
||
ccx.sess().abort_if_errors();
|
||
bug!();
|
||
}
|
||
let llfn = declare::declare_cfn(ccx, "main", llfty);
|
||
|
||
let llbb = unsafe {
|
||
llvm::LLVMAppendBasicBlockInContext(ccx.llcx(), llfn, "top\0".as_ptr() as *const _)
|
||
};
|
||
let bld = ccx.raw_builder();
|
||
unsafe {
|
||
llvm::LLVMPositionBuilderAtEnd(bld, llbb);
|
||
|
||
debuginfo::gdb::insert_reference_to_gdb_debug_scripts_section_global(ccx);
|
||
|
||
let (start_fn, args) = if use_start_lang_item {
|
||
let start_def_id = match ccx.tcx().lang_items.require(StartFnLangItem) {
|
||
Ok(id) => id,
|
||
Err(s) => ccx.sess().fatal(&s)
|
||
};
|
||
let empty_substs = Substs::empty(ccx.tcx());
|
||
let start_fn = Callee::def(ccx, start_def_id, empty_substs).reify(ccx);
|
||
let args = {
|
||
let opaque_rust_main =
|
||
llvm::LLVMBuildPointerCast(bld,
|
||
rust_main,
|
||
Type::i8p(ccx).to_ref(),
|
||
"rust_main\0".as_ptr() as *const _);
|
||
|
||
vec![opaque_rust_main, get_param(llfn, 0), get_param(llfn, 1)]
|
||
};
|
||
(start_fn, args)
|
||
} else {
|
||
debug!("using user-defined start fn");
|
||
let args = vec![get_param(llfn, 0 as c_uint), get_param(llfn, 1 as c_uint)];
|
||
|
||
(rust_main, args)
|
||
};
|
||
|
||
let result = llvm::LLVMRustBuildCall(bld,
|
||
start_fn,
|
||
args.as_ptr(),
|
||
args.len() as c_uint,
|
||
ptr::null_mut(),
|
||
noname());
|
||
|
||
llvm::LLVMBuildRet(bld, result);
|
||
}
|
||
}
|
||
}
|
||
|
||
fn contains_null(s: &str) -> bool {
|
||
s.bytes().any(|b| b == 0)
|
||
}
|
||
|
||
fn write_metadata(cx: &SharedCrateContext,
|
||
reachable_ids: &NodeSet) -> Vec<u8> {
|
||
use flate;
|
||
|
||
let any_library = cx.sess()
|
||
.crate_types
|
||
.borrow()
|
||
.iter()
|
||
.any(|ty| *ty != config::CrateTypeExecutable);
|
||
if !any_library {
|
||
return Vec::new();
|
||
}
|
||
|
||
let cstore = &cx.tcx().sess.cstore;
|
||
let metadata = cstore.encode_metadata(cx.tcx(),
|
||
cx.export_map(),
|
||
cx.link_meta(),
|
||
reachable_ids,
|
||
cx.mir_map());
|
||
let mut compressed = cstore.metadata_encoding_version().to_vec();
|
||
compressed.extend_from_slice(&flate::deflate_bytes(&metadata));
|
||
|
||
let llmeta = C_bytes_in_context(cx.metadata_llcx(), &compressed[..]);
|
||
let llconst = C_struct_in_context(cx.metadata_llcx(), &[llmeta], false);
|
||
let name = cx.metadata_symbol_name();
|
||
let buf = CString::new(name).unwrap();
|
||
let llglobal = unsafe {
|
||
llvm::LLVMAddGlobal(cx.metadata_llmod(), val_ty(llconst).to_ref(), buf.as_ptr())
|
||
};
|
||
unsafe {
|
||
llvm::LLVMSetInitializer(llglobal, llconst);
|
||
let section_name =
|
||
cx.tcx().sess.cstore.metadata_section_name(&cx.sess().target.target);
|
||
let name = CString::new(section_name).unwrap();
|
||
llvm::LLVMSetSection(llglobal, name.as_ptr());
|
||
|
||
// Also generate a .section directive to force no
|
||
// flags, at least for ELF outputs, so that the
|
||
// metadata doesn't get loaded into memory.
|
||
let directive = format!(".section {}", section_name);
|
||
let directive = CString::new(directive).unwrap();
|
||
llvm::LLVMSetModuleInlineAsm(cx.metadata_llmod(), directive.as_ptr())
|
||
}
|
||
return metadata;
|
||
}
|
||
|
||
/// Find any symbols that are defined in one compilation unit, but not declared
|
||
/// in any other compilation unit. Give these symbols internal linkage.
|
||
fn internalize_symbols<'a, 'tcx>(sess: &Session,
|
||
ccxs: &CrateContextList<'a, 'tcx>,
|
||
symbol_map: &SymbolMap<'tcx>,
|
||
reachable: &FnvHashSet<&str>) {
|
||
let scx = ccxs.shared();
|
||
let tcx = scx.tcx();
|
||
|
||
// In incr. comp. mode, we can't necessarily see all refs since we
|
||
// don't generate LLVM IR for reused modules, so skip this
|
||
// step. Later we should get smarter.
|
||
if sess.opts.debugging_opts.incremental.is_some() {
|
||
return;
|
||
}
|
||
|
||
// 'unsafe' because we are holding on to CStr's from the LLVM module within
|
||
// this block.
|
||
unsafe {
|
||
let mut referenced_somewhere = FnvHashSet();
|
||
|
||
// Collect all symbols that need to stay externally visible because they
|
||
// are referenced via a declaration in some other codegen unit.
|
||
for ccx in ccxs.iter_need_trans() {
|
||
for val in iter_globals(ccx.llmod()).chain(iter_functions(ccx.llmod())) {
|
||
let linkage = llvm::LLVMRustGetLinkage(val);
|
||
// We only care about external declarations (not definitions)
|
||
// and available_externally definitions.
|
||
let is_available_externally = linkage == llvm::Linkage::AvailableExternallyLinkage;
|
||
let is_decl = llvm::LLVMIsDeclaration(val) != 0;
|
||
|
||
if is_decl || is_available_externally {
|
||
let symbol_name = CStr::from_ptr(llvm::LLVMGetValueName(val));
|
||
referenced_somewhere.insert(symbol_name);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Also collect all symbols for which we cannot adjust linkage, because
|
||
// it is fixed by some directive in the source code (e.g. #[no_mangle]).
|
||
let linkage_fixed_explicitly: FnvHashSet<_> = scx
|
||
.translation_items()
|
||
.borrow()
|
||
.iter()
|
||
.cloned()
|
||
.filter(|trans_item|{
|
||
trans_item.explicit_linkage(tcx).is_some()
|
||
})
|
||
.map(|trans_item| symbol_map.get_or_compute(scx, trans_item))
|
||
.collect();
|
||
|
||
// Examine each external definition. If the definition is not used in
|
||
// any other compilation unit, and is not reachable from other crates,
|
||
// then give it internal linkage.
|
||
for ccx in ccxs.iter_need_trans() {
|
||
for val in iter_globals(ccx.llmod()).chain(iter_functions(ccx.llmod())) {
|
||
let linkage = llvm::LLVMRustGetLinkage(val);
|
||
|
||
let is_externally_visible = (linkage == llvm::Linkage::ExternalLinkage) ||
|
||
(linkage == llvm::Linkage::LinkOnceODRLinkage) ||
|
||
(linkage == llvm::Linkage::WeakODRLinkage);
|
||
let is_definition = llvm::LLVMIsDeclaration(val) == 0;
|
||
|
||
// If this is a definition (as opposed to just a declaration)
|
||
// and externally visible, check if we can internalize it
|
||
if is_definition && is_externally_visible {
|
||
let name_cstr = CStr::from_ptr(llvm::LLVMGetValueName(val));
|
||
let name_str = name_cstr.to_str().unwrap();
|
||
let name_cow = Cow::Borrowed(name_str);
|
||
|
||
let is_referenced_somewhere = referenced_somewhere.contains(&name_cstr);
|
||
let is_reachable = reachable.contains(&name_str);
|
||
let has_fixed_linkage = linkage_fixed_explicitly.contains(&name_cow);
|
||
|
||
if !is_referenced_somewhere && !is_reachable && !has_fixed_linkage {
|
||
llvm::LLVMRustSetLinkage(val, llvm::Linkage::InternalLinkage);
|
||
llvm::LLVMSetDLLStorageClass(val,
|
||
llvm::DLLStorageClass::Default);
|
||
llvm::UnsetComdat(val);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Create a `__imp_<symbol> = &symbol` global for every public static `symbol`.
|
||
// This is required to satisfy `dllimport` references to static data in .rlibs
|
||
// when using MSVC linker. We do this only for data, as linker can fix up
|
||
// code references on its own.
|
||
// See #26591, #27438
|
||
fn create_imps(cx: &CrateContextList) {
|
||
// The x86 ABI seems to require that leading underscores are added to symbol
|
||
// names, so we need an extra underscore on 32-bit. There's also a leading
|
||
// '\x01' here which disables LLVM's symbol mangling (e.g. no extra
|
||
// underscores added in front).
|
||
let prefix = if cx.shared().sess().target.target.target_pointer_width == "32" {
|
||
"\x01__imp__"
|
||
} else {
|
||
"\x01__imp_"
|
||
};
|
||
unsafe {
|
||
for ccx in cx.iter_need_trans() {
|
||
let exported: Vec<_> = iter_globals(ccx.llmod())
|
||
.filter(|&val| {
|
||
llvm::LLVMRustGetLinkage(val) ==
|
||
llvm::Linkage::ExternalLinkage &&
|
||
llvm::LLVMIsDeclaration(val) == 0
|
||
})
|
||
.collect();
|
||
|
||
let i8p_ty = Type::i8p(&ccx);
|
||
for val in exported {
|
||
let name = CStr::from_ptr(llvm::LLVMGetValueName(val));
|
||
let mut imp_name = prefix.as_bytes().to_vec();
|
||
imp_name.extend(name.to_bytes());
|
||
let imp_name = CString::new(imp_name).unwrap();
|
||
let imp = llvm::LLVMAddGlobal(ccx.llmod(),
|
||
i8p_ty.to_ref(),
|
||
imp_name.as_ptr() as *const _);
|
||
let init = llvm::LLVMConstBitCast(val, i8p_ty.to_ref());
|
||
llvm::LLVMSetInitializer(imp, init);
|
||
llvm::LLVMRustSetLinkage(imp, llvm::Linkage::ExternalLinkage);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
struct ValueIter {
|
||
cur: ValueRef,
|
||
step: unsafe extern "C" fn(ValueRef) -> ValueRef,
|
||
}
|
||
|
||
impl Iterator for ValueIter {
|
||
type Item = ValueRef;
|
||
|
||
fn next(&mut self) -> Option<ValueRef> {
|
||
let old = self.cur;
|
||
if !old.is_null() {
|
||
self.cur = unsafe { (self.step)(old) };
|
||
Some(old)
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
}
|
||
|
||
fn iter_globals(llmod: llvm::ModuleRef) -> ValueIter {
|
||
unsafe {
|
||
ValueIter {
|
||
cur: llvm::LLVMGetFirstGlobal(llmod),
|
||
step: llvm::LLVMGetNextGlobal,
|
||
}
|
||
}
|
||
}
|
||
|
||
fn iter_functions(llmod: llvm::ModuleRef) -> ValueIter {
|
||
unsafe {
|
||
ValueIter {
|
||
cur: llvm::LLVMGetFirstFunction(llmod),
|
||
step: llvm::LLVMGetNextFunction,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// The context provided lists a set of reachable ids as calculated by
|
||
/// middle::reachable, but this contains far more ids and symbols than we're
|
||
/// actually exposing from the object file. This function will filter the set in
|
||
/// the context to the set of ids which correspond to symbols that are exposed
|
||
/// from the object file being generated.
|
||
///
|
||
/// This list is later used by linkers to determine the set of symbols needed to
|
||
/// be exposed from a dynamic library and it's also encoded into the metadata.
|
||
pub fn filter_reachable_ids(tcx: TyCtxt, reachable: NodeSet) -> NodeSet {
|
||
reachable.into_iter().filter(|&id| {
|
||
// Next, we want to ignore some FFI functions that are not exposed from
|
||
// this crate. Reachable FFI functions can be lumped into two
|
||
// categories:
|
||
//
|
||
// 1. Those that are included statically via a static library
|
||
// 2. Those included otherwise (e.g. dynamically or via a framework)
|
||
//
|
||
// Although our LLVM module is not literally emitting code for the
|
||
// statically included symbols, it's an export of our library which
|
||
// needs to be passed on to the linker and encoded in the metadata.
|
||
//
|
||
// As a result, if this id is an FFI item (foreign item) then we only
|
||
// let it through if it's included statically.
|
||
match tcx.map.get(id) {
|
||
hir_map::NodeForeignItem(..) => {
|
||
tcx.sess.cstore.is_statically_included_foreign_item(id)
|
||
}
|
||
|
||
// Only consider nodes that actually have exported symbols.
|
||
hir_map::NodeItem(&hir::Item {
|
||
node: hir::ItemStatic(..), .. }) |
|
||
hir_map::NodeItem(&hir::Item {
|
||
node: hir::ItemFn(..), .. }) |
|
||
hir_map::NodeImplItem(&hir::ImplItem {
|
||
node: hir::ImplItemKind::Method(..), .. }) => {
|
||
let def_id = tcx.map.local_def_id(id);
|
||
let generics = tcx.lookup_generics(def_id);
|
||
let attributes = tcx.get_attrs(def_id);
|
||
(generics.parent_types == 0 && generics.types.is_empty()) &&
|
||
// Functions marked with #[inline] are only ever translated
|
||
// with "internal" linkage and are never exported.
|
||
!attr::requests_inline(&attributes[..])
|
||
}
|
||
|
||
_ => false
|
||
}
|
||
}).collect()
|
||
}
|
||
|
||
pub fn trans_crate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
|
||
mir_map: &MirMap<'tcx>,
|
||
analysis: ty::CrateAnalysis,
|
||
incremental_hashes_map: &IncrementalHashesMap)
|
||
-> CrateTranslation {
|
||
let _task = tcx.dep_graph.in_task(DepNode::TransCrate);
|
||
|
||
// Be careful with this krate: obviously it gives access to the
|
||
// entire contents of the krate. So if you push any subtasks of
|
||
// `TransCrate`, you need to be careful to register "reads" of the
|
||
// particular items that will be processed.
|
||
let krate = tcx.map.krate();
|
||
|
||
let ty::CrateAnalysis { export_map, reachable, name, .. } = analysis;
|
||
let reachable = filter_reachable_ids(tcx, reachable);
|
||
|
||
let check_overflow = if let Some(v) = tcx.sess.opts.debugging_opts.force_overflow_checks {
|
||
v
|
||
} else {
|
||
tcx.sess.opts.debug_assertions
|
||
};
|
||
|
||
let link_meta = link::build_link_meta(incremental_hashes_map, name);
|
||
|
||
let shared_ccx = SharedCrateContext::new(tcx,
|
||
&mir_map,
|
||
export_map,
|
||
Sha256::new(),
|
||
link_meta.clone(),
|
||
reachable,
|
||
check_overflow);
|
||
// Translate the metadata.
|
||
let metadata = time(tcx.sess.time_passes(), "write metadata", || {
|
||
write_metadata(&shared_ccx, shared_ccx.reachable())
|
||
});
|
||
|
||
let metadata_module = ModuleTranslation {
|
||
name: "metadata".to_string(),
|
||
symbol_name_hash: 0, // we always rebuild metadata, at least for now
|
||
source: ModuleSource::Translated(ModuleLlvm {
|
||
llcx: shared_ccx.metadata_llcx(),
|
||
llmod: shared_ccx.metadata_llmod(),
|
||
}),
|
||
};
|
||
let no_builtins = attr::contains_name(&krate.attrs, "no_builtins");
|
||
|
||
// Run the translation item collector and partition the collected items into
|
||
// codegen units.
|
||
let (codegen_units, symbol_map) = collect_and_partition_translation_items(&shared_ccx);
|
||
|
||
let symbol_map = Rc::new(symbol_map);
|
||
|
||
let previous_work_products = trans_reuse_previous_work_products(tcx,
|
||
&codegen_units,
|
||
&symbol_map);
|
||
|
||
let crate_context_list = CrateContextList::new(&shared_ccx,
|
||
codegen_units,
|
||
previous_work_products,
|
||
symbol_map.clone());
|
||
let modules: Vec<_> = crate_context_list.iter_all()
|
||
.map(|ccx| {
|
||
let source = match ccx.previous_work_product() {
|
||
Some(buf) => ModuleSource::Preexisting(buf.clone()),
|
||
None => ModuleSource::Translated(ModuleLlvm {
|
||
llcx: ccx.llcx(),
|
||
llmod: ccx.llmod(),
|
||
}),
|
||
};
|
||
|
||
ModuleTranslation {
|
||
name: String::from(ccx.codegen_unit().name()),
|
||
symbol_name_hash: ccx.codegen_unit().compute_symbol_name_hash(tcx, &symbol_map),
|
||
source: source,
|
||
}
|
||
})
|
||
.collect();
|
||
|
||
assert_module_sources::assert_module_sources(tcx, &modules);
|
||
|
||
// Skip crate items and just output metadata in -Z no-trans mode.
|
||
if tcx.sess.opts.debugging_opts.no_trans {
|
||
let linker_info = LinkerInfo::new(&shared_ccx, &[]);
|
||
return CrateTranslation {
|
||
modules: modules,
|
||
metadata_module: metadata_module,
|
||
link: link_meta,
|
||
metadata: metadata,
|
||
reachable: vec![],
|
||
no_builtins: no_builtins,
|
||
linker_info: linker_info
|
||
};
|
||
}
|
||
|
||
// Instantiate translation items without filling out definitions yet...
|
||
for ccx in crate_context_list.iter_need_trans() {
|
||
let cgu = ccx.codegen_unit();
|
||
let trans_items = cgu.items_in_deterministic_order(tcx, &symbol_map);
|
||
|
||
tcx.dep_graph.with_task(cgu.work_product_dep_node(), || {
|
||
for (trans_item, linkage) in trans_items {
|
||
trans_item.predefine(&ccx, linkage);
|
||
}
|
||
});
|
||
}
|
||
|
||
// ... and now that we have everything pre-defined, fill out those definitions.
|
||
for ccx in crate_context_list.iter_need_trans() {
|
||
let cgu = ccx.codegen_unit();
|
||
let trans_items = cgu.items_in_deterministic_order(tcx, &symbol_map);
|
||
tcx.dep_graph.with_task(cgu.work_product_dep_node(), || {
|
||
for (trans_item, _) in trans_items {
|
||
trans_item.define(&ccx);
|
||
}
|
||
|
||
// If this codegen unit contains the main function, also create the
|
||
// wrapper here
|
||
maybe_create_entry_wrapper(&ccx);
|
||
|
||
// Run replace-all-uses-with for statics that need it
|
||
for &(old_g, new_g) in ccx.statics_to_rauw().borrow().iter() {
|
||
unsafe {
|
||
let bitcast = llvm::LLVMConstPointerCast(new_g, llvm::LLVMTypeOf(old_g));
|
||
llvm::LLVMReplaceAllUsesWith(old_g, bitcast);
|
||
llvm::LLVMDeleteGlobal(old_g);
|
||
}
|
||
}
|
||
|
||
// Finalize debuginfo
|
||
if ccx.sess().opts.debuginfo != NoDebugInfo {
|
||
debuginfo::finalize(&ccx);
|
||
}
|
||
});
|
||
}
|
||
|
||
symbol_names_test::report_symbol_names(&shared_ccx);
|
||
|
||
if shared_ccx.sess().trans_stats() {
|
||
let stats = shared_ccx.stats();
|
||
println!("--- trans stats ---");
|
||
println!("n_glues_created: {}", stats.n_glues_created.get());
|
||
println!("n_null_glues: {}", stats.n_null_glues.get());
|
||
println!("n_real_glues: {}", stats.n_real_glues.get());
|
||
|
||
println!("n_fns: {}", stats.n_fns.get());
|
||
println!("n_inlines: {}", stats.n_inlines.get());
|
||
println!("n_closures: {}", stats.n_closures.get());
|
||
println!("fn stats:");
|
||
stats.fn_stats.borrow_mut().sort_by(|&(_, insns_a), &(_, insns_b)| {
|
||
insns_b.cmp(&insns_a)
|
||
});
|
||
for tuple in stats.fn_stats.borrow().iter() {
|
||
match *tuple {
|
||
(ref name, insns) => {
|
||
println!("{} insns, {}", insns, *name);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if shared_ccx.sess().count_llvm_insns() {
|
||
for (k, v) in shared_ccx.stats().llvm_insns.borrow().iter() {
|
||
println!("{:7} {}", *v, *k);
|
||
}
|
||
}
|
||
|
||
let sess = shared_ccx.sess();
|
||
let mut reachable_symbols = shared_ccx.reachable().iter().map(|&id| {
|
||
let def_id = shared_ccx.tcx().map.local_def_id(id);
|
||
symbol_for_def_id(def_id, &shared_ccx, &symbol_map)
|
||
}).collect::<Vec<_>>();
|
||
|
||
if sess.entry_fn.borrow().is_some() {
|
||
reachable_symbols.push("main".to_string());
|
||
}
|
||
|
||
if sess.crate_types.borrow().contains(&config::CrateTypeDylib) {
|
||
reachable_symbols.push(shared_ccx.metadata_symbol_name());
|
||
}
|
||
|
||
// For the purposes of LTO or when creating a cdylib, we add to the
|
||
// reachable set all of the upstream reachable extern fns. These functions
|
||
// are all part of the public ABI of the final product, so we need to
|
||
// preserve them.
|
||
//
|
||
// Note that this happens even if LTO isn't requested or we're not creating
|
||
// a cdylib. In those cases, though, we're not even reading the
|
||
// `reachable_symbols` list later on so it should be ok.
|
||
for cnum in sess.cstore.crates() {
|
||
let syms = sess.cstore.reachable_ids(cnum);
|
||
reachable_symbols.extend(syms.into_iter().filter(|did| {
|
||
sess.cstore.is_extern_item(shared_ccx.tcx(), *did)
|
||
}).map(|did| {
|
||
symbol_for_def_id(did, &shared_ccx, &symbol_map)
|
||
}));
|
||
}
|
||
|
||
time(shared_ccx.sess().time_passes(), "internalize symbols", || {
|
||
internalize_symbols(sess,
|
||
&crate_context_list,
|
||
&symbol_map,
|
||
&reachable_symbols.iter()
|
||
.map(|s| &s[..])
|
||
.collect())
|
||
});
|
||
|
||
if sess.target.target.options.is_like_msvc &&
|
||
sess.crate_types.borrow().iter().any(|ct| *ct == config::CrateTypeRlib) {
|
||
create_imps(&crate_context_list);
|
||
}
|
||
|
||
let linker_info = LinkerInfo::new(&shared_ccx, &reachable_symbols);
|
||
|
||
CrateTranslation {
|
||
modules: modules,
|
||
metadata_module: metadata_module,
|
||
link: link_meta,
|
||
metadata: metadata,
|
||
reachable: reachable_symbols,
|
||
no_builtins: no_builtins,
|
||
linker_info: linker_info
|
||
}
|
||
}
|
||
|
||
/// For each CGU, identify if we can reuse an existing object file (or
|
||
/// maybe other context).
|
||
fn trans_reuse_previous_work_products(tcx: TyCtxt,
|
||
codegen_units: &[CodegenUnit],
|
||
symbol_map: &SymbolMap)
|
||
-> Vec<Option<WorkProduct>> {
|
||
debug!("trans_reuse_previous_work_products()");
|
||
codegen_units
|
||
.iter()
|
||
.map(|cgu| {
|
||
let id = cgu.work_product_id();
|
||
|
||
let hash = cgu.compute_symbol_name_hash(tcx, symbol_map);
|
||
|
||
debug!("trans_reuse_previous_work_products: id={:?} hash={}", id, hash);
|
||
|
||
if let Some(work_product) = tcx.dep_graph.previous_work_product(&id) {
|
||
if work_product.input_hash == hash {
|
||
debug!("trans_reuse_previous_work_products: reusing {:?}", work_product);
|
||
return Some(work_product);
|
||
} else {
|
||
debug!("trans_reuse_previous_work_products: \
|
||
not reusing {:?} because hash changed to {:?}",
|
||
work_product, hash);
|
||
}
|
||
}
|
||
|
||
None
|
||
})
|
||
.collect()
|
||
}
|
||
|
||
fn collect_and_partition_translation_items<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>)
|
||
-> (Vec<CodegenUnit<'tcx>>, SymbolMap<'tcx>) {
|
||
let time_passes = scx.sess().time_passes();
|
||
|
||
let collection_mode = match scx.sess().opts.debugging_opts.print_trans_items {
|
||
Some(ref s) => {
|
||
let mode_string = s.to_lowercase();
|
||
let mode_string = mode_string.trim();
|
||
if mode_string == "eager" {
|
||
TransItemCollectionMode::Eager
|
||
} else {
|
||
if mode_string != "lazy" {
|
||
let message = format!("Unknown codegen-item collection mode '{}'. \
|
||
Falling back to 'lazy' mode.",
|
||
mode_string);
|
||
scx.sess().warn(&message);
|
||
}
|
||
|
||
TransItemCollectionMode::Lazy
|
||
}
|
||
}
|
||
None => TransItemCollectionMode::Lazy
|
||
};
|
||
|
||
let (items, inlining_map) =
|
||
time(time_passes, "translation item collection", || {
|
||
collector::collect_crate_translation_items(&scx, collection_mode)
|
||
});
|
||
|
||
let symbol_map = SymbolMap::build(scx, items.iter().cloned());
|
||
|
||
let strategy = if scx.sess().opts.debugging_opts.incremental.is_some() {
|
||
PartitioningStrategy::PerModule
|
||
} else {
|
||
PartitioningStrategy::FixedUnitCount(scx.sess().opts.cg.codegen_units)
|
||
};
|
||
|
||
let codegen_units = time(time_passes, "codegen unit partitioning", || {
|
||
partitioning::partition(scx,
|
||
items.iter().cloned(),
|
||
strategy,
|
||
&inlining_map)
|
||
});
|
||
|
||
assert!(scx.tcx().sess.opts.cg.codegen_units == codegen_units.len() ||
|
||
scx.tcx().sess.opts.debugging_opts.incremental.is_some());
|
||
|
||
{
|
||
let mut ccx_map = scx.translation_items().borrow_mut();
|
||
|
||
for trans_item in items.iter().cloned() {
|
||
ccx_map.insert(trans_item);
|
||
}
|
||
}
|
||
|
||
if scx.sess().opts.debugging_opts.print_trans_items.is_some() {
|
||
let mut item_to_cgus = FnvHashMap();
|
||
|
||
for cgu in &codegen_units {
|
||
for (&trans_item, &linkage) in cgu.items() {
|
||
item_to_cgus.entry(trans_item)
|
||
.or_insert(Vec::new())
|
||
.push((cgu.name().clone(), linkage));
|
||
}
|
||
}
|
||
|
||
let mut item_keys: Vec<_> = items
|
||
.iter()
|
||
.map(|i| {
|
||
let mut output = i.to_string(scx.tcx());
|
||
output.push_str(" @@");
|
||
let mut empty = Vec::new();
|
||
let mut cgus = item_to_cgus.get_mut(i).unwrap_or(&mut empty);
|
||
cgus.as_mut_slice().sort_by_key(|&(ref name, _)| name.clone());
|
||
cgus.dedup();
|
||
for &(ref cgu_name, linkage) in cgus.iter() {
|
||
output.push_str(" ");
|
||
output.push_str(&cgu_name[..]);
|
||
|
||
let linkage_abbrev = match linkage {
|
||
llvm::Linkage::ExternalLinkage => "External",
|
||
llvm::Linkage::AvailableExternallyLinkage => "Available",
|
||
llvm::Linkage::LinkOnceAnyLinkage => "OnceAny",
|
||
llvm::Linkage::LinkOnceODRLinkage => "OnceODR",
|
||
llvm::Linkage::WeakAnyLinkage => "WeakAny",
|
||
llvm::Linkage::WeakODRLinkage => "WeakODR",
|
||
llvm::Linkage::AppendingLinkage => "Appending",
|
||
llvm::Linkage::InternalLinkage => "Internal",
|
||
llvm::Linkage::PrivateLinkage => "Private",
|
||
llvm::Linkage::ExternalWeakLinkage => "ExternalWeak",
|
||
llvm::Linkage::CommonLinkage => "Common",
|
||
};
|
||
|
||
output.push_str("[");
|
||
output.push_str(linkage_abbrev);
|
||
output.push_str("]");
|
||
}
|
||
output
|
||
})
|
||
.collect();
|
||
|
||
item_keys.sort();
|
||
|
||
for item in item_keys {
|
||
println!("TRANS_ITEM {}", item);
|
||
}
|
||
}
|
||
|
||
(codegen_units, symbol_map)
|
||
}
|
||
|
||
fn symbol_for_def_id<'a, 'tcx>(def_id: DefId,
|
||
scx: &SharedCrateContext<'a, 'tcx>,
|
||
symbol_map: &SymbolMap<'tcx>)
|
||
-> String {
|
||
// Just try to look things up in the symbol map. If nothing's there, we
|
||
// recompute.
|
||
if let Some(node_id) = scx.tcx().map.as_local_node_id(def_id) {
|
||
if let Some(sym) = symbol_map.get(TransItem::Static(node_id)) {
|
||
return sym.to_owned();
|
||
}
|
||
}
|
||
|
||
let instance = Instance::mono(scx, def_id);
|
||
|
||
symbol_map.get(TransItem::Fn(instance))
|
||
.map(str::to_owned)
|
||
.unwrap_or_else(|| instance.symbol_name(scx))
|
||
}
|