rust/src/libstd/num/f32.rs
bors b48bc9ec93 auto merge of #12445 : huonw/rust/less-unsafe, r=alexcrichton
Commits for details. Highlights:

- `flate` returns `CVec<u8>` to save reallocating a whole new `&[u8]`
- a lot of `transmute`s removed outright or replaced with `as` (etc.)
2014-02-24 14:37:01 -08:00

1188 lines
37 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Operations and constants for 32-bits floats (`f32` type)
#[allow(missing_doc)];
use prelude::*;
use cmath;
use default::Default;
use libc::{c_float, c_int};
use num::{FPCategory, FPNaN, FPInfinite , FPZero, FPSubnormal, FPNormal};
use num::{Zero, One, Bounded, strconv};
use num;
use intrinsics;
macro_rules! delegate(
(
$(
fn $name:ident(
$(
$arg:ident : $arg_ty:ty
),*
) -> $rv:ty = $bound_name:path
),*
) => (
$(
#[inline]
pub fn $name($( $arg : $arg_ty ),*) -> $rv {
unsafe {
$bound_name($( $arg ),*)
}
}
)*
)
)
delegate!(
// intrinsics
fn abs(n: f32) -> f32 = intrinsics::fabsf32,
fn cos(n: f32) -> f32 = intrinsics::cosf32,
fn exp(n: f32) -> f32 = intrinsics::expf32,
fn exp2(n: f32) -> f32 = intrinsics::exp2f32,
fn floor(x: f32) -> f32 = intrinsics::floorf32,
fn ln(n: f32) -> f32 = intrinsics::logf32,
fn log10(n: f32) -> f32 = intrinsics::log10f32,
fn log2(n: f32) -> f32 = intrinsics::log2f32,
fn mul_add(a: f32, b: f32, c: f32) -> f32 = intrinsics::fmaf32,
fn pow(n: f32, e: f32) -> f32 = intrinsics::powf32,
// fn powi(n: f32, e: c_int) -> f32 = intrinsics::powif32,
fn sin(n: f32) -> f32 = intrinsics::sinf32,
fn sqrt(n: f32) -> f32 = intrinsics::sqrtf32,
// LLVM 3.3 required to use intrinsics for these four
fn ceil(n: c_float) -> c_float = cmath::c_float::ceil,
fn trunc(n: c_float) -> c_float = cmath::c_float::trunc,
/*
fn ceil(n: f32) -> f32 = intrinsics::ceilf32,
fn trunc(n: f32) -> f32 = intrinsics::truncf32,
fn rint(n: f32) -> f32 = intrinsics::rintf32,
fn nearbyint(n: f32) -> f32 = intrinsics::nearbyintf32,
*/
// cmath
fn acos(n: c_float) -> c_float = cmath::c_float::acos,
fn asin(n: c_float) -> c_float = cmath::c_float::asin,
fn atan(n: c_float) -> c_float = cmath::c_float::atan,
fn atan2(a: c_float, b: c_float) -> c_float = cmath::c_float::atan2,
fn cbrt(n: c_float) -> c_float = cmath::c_float::cbrt,
fn copysign(x: c_float, y: c_float) -> c_float = cmath::c_float::copysign,
fn cosh(n: c_float) -> c_float = cmath::c_float::cosh,
// fn erf(n: c_float) -> c_float = cmath::c_float::erf,
// fn erfc(n: c_float) -> c_float = cmath::c_float::erfc,
fn exp_m1(n: c_float) -> c_float = cmath::c_float::exp_m1,
fn abs_sub(a: c_float, b: c_float) -> c_float = cmath::c_float::abs_sub,
fn next_after(x: c_float, y: c_float) -> c_float = cmath::c_float::next_after,
fn frexp(n: c_float, value: &mut c_int) -> c_float = cmath::c_float::frexp,
fn hypot(x: c_float, y: c_float) -> c_float = cmath::c_float::hypot,
fn ldexp(x: c_float, n: c_int) -> c_float = cmath::c_float::ldexp,
// fn log_radix(n: c_float) -> c_float = cmath::c_float::log_radix,
fn ln_1p(n: c_float) -> c_float = cmath::c_float::ln_1p,
// fn ilog_radix(n: c_float) -> c_int = cmath::c_float::ilog_radix,
// fn modf(n: c_float, iptr: &mut c_float) -> c_float = cmath::c_float::modf,
fn round(n: c_float) -> c_float = cmath::c_float::round,
// fn ldexp_radix(n: c_float, i: c_int) -> c_float = cmath::c_float::ldexp_radix,
fn sinh(n: c_float) -> c_float = cmath::c_float::sinh,
fn tan(n: c_float) -> c_float = cmath::c_float::tan,
fn tanh(n: c_float) -> c_float = cmath::c_float::tanh
)
// FIXME(#11621): These constants should be deprecated once CTFE is implemented
// in favour of calling their respective functions in `Bounded` and `Float`.
pub static RADIX: uint = 2u;
pub static MANTISSA_DIGITS: uint = 53u;
pub static DIGITS: uint = 15u;
pub static EPSILON: f64 = 2.220446e-16_f64;
// FIXME (#1433): this is wrong, replace with hexadecimal (%a) statics
// below.
pub static MIN_VALUE: f64 = 2.225074e-308_f64;
pub static MAX_VALUE: f64 = 1.797693e+308_f64;
pub static MIN_EXP: uint = -1021u;
pub static MAX_EXP: uint = 1024u;
pub static MIN_10_EXP: int = -307;
pub static MAX_10_EXP: int = 308;
pub static NAN: f32 = 0.0_f32/0.0_f32;
pub static INFINITY: f32 = 1.0_f32/0.0_f32;
pub static NEG_INFINITY: f32 = -1.0_f32/0.0_f32;
/* Module: consts */
pub mod consts {
// FIXME (requires Issue #1433 to fix): replace with mathematical
// staticants from cmath.
// FIXME(#11621): These constants should be deprecated once CTFE is
// implemented in favour of calling their respective functions in `Float`.
/// Archimedes' constant
pub static PI: f32 = 3.14159265358979323846264338327950288_f32;
/// pi/2.0
pub static FRAC_PI_2: f32 = 1.57079632679489661923132169163975144_f32;
/// pi/4.0
pub static FRAC_PI_4: f32 = 0.785398163397448309615660845819875721_f32;
/// 1.0/pi
pub static FRAC_1_PI: f32 = 0.318309886183790671537767526745028724_f32;
/// 2.0/pi
pub static FRAC_2_PI: f32 = 0.636619772367581343075535053490057448_f32;
/// 2.0/sqrt(pi)
pub static FRAC_2_SQRTPI: f32 = 1.12837916709551257389615890312154517_f32;
/// sqrt(2.0)
pub static SQRT2: f32 = 1.41421356237309504880168872420969808_f32;
/// 1.0/sqrt(2.0)
pub static FRAC_1_SQRT2: f32 = 0.707106781186547524400844362104849039_f32;
/// Euler's number
pub static E: f32 = 2.71828182845904523536028747135266250_f32;
/// log2(e)
pub static LOG2_E: f32 = 1.44269504088896340735992468100189214_f32;
/// log10(e)
pub static LOG10_E: f32 = 0.434294481903251827651128918916605082_f32;
/// ln(2.0)
pub static LN_2: f32 = 0.693147180559945309417232121458176568_f32;
/// ln(10.0)
pub static LN_10: f32 = 2.30258509299404568401799145468436421_f32;
}
impl Num for f32 {}
#[cfg(not(test))]
impl Eq for f32 {
#[inline]
fn eq(&self, other: &f32) -> bool { (*self) == (*other) }
}
#[cfg(not(test))]
impl Ord for f32 {
#[inline]
fn lt(&self, other: &f32) -> bool { (*self) < (*other) }
#[inline]
fn le(&self, other: &f32) -> bool { (*self) <= (*other) }
#[inline]
fn ge(&self, other: &f32) -> bool { (*self) >= (*other) }
#[inline]
fn gt(&self, other: &f32) -> bool { (*self) > (*other) }
}
impl Default for f32 {
#[inline]
fn default() -> f32 { 0.0 }
}
impl Zero for f32 {
#[inline]
fn zero() -> f32 { 0.0 }
/// Returns true if the number is equal to either `0.0` or `-0.0`
#[inline]
fn is_zero(&self) -> bool { *self == 0.0 || *self == -0.0 }
}
impl One for f32 {
#[inline]
fn one() -> f32 { 1.0 }
}
#[cfg(not(test))]
impl Add<f32,f32> for f32 {
#[inline]
fn add(&self, other: &f32) -> f32 { *self + *other }
}
#[cfg(not(test))]
impl Sub<f32,f32> for f32 {
#[inline]
fn sub(&self, other: &f32) -> f32 { *self - *other }
}
#[cfg(not(test))]
impl Mul<f32,f32> for f32 {
#[inline]
fn mul(&self, other: &f32) -> f32 { *self * *other }
}
#[cfg(not(test))]
impl Div<f32,f32> for f32 {
#[inline]
fn div(&self, other: &f32) -> f32 { *self / *other }
}
#[cfg(not(test))]
impl Rem<f32,f32> for f32 {
#[inline]
fn rem(&self, other: &f32) -> f32 { *self % *other }
}
#[cfg(not(test))]
impl Neg<f32> for f32 {
#[inline]
fn neg(&self) -> f32 { -*self }
}
impl Signed for f32 {
/// Computes the absolute value. Returns `NAN` if the number is `NAN`.
#[inline]
fn abs(&self) -> f32 { abs(*self) }
/// The positive difference of two numbers. Returns `0.0` if the number is less than or
/// equal to `other`, otherwise the difference between`self` and `other` is returned.
#[inline]
fn abs_sub(&self, other: &f32) -> f32 { abs_sub(*self, *other) }
/// # Returns
///
/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - `NAN` if the number is NaN
#[inline]
fn signum(&self) -> f32 {
if self.is_nan() { NAN } else { copysign(1.0, *self) }
}
/// Returns `true` if the number is positive, including `+0.0` and `INFINITY`
#[inline]
fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == INFINITY }
/// Returns `true` if the number is negative, including `-0.0` and `NEG_INFINITY`
#[inline]
fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == NEG_INFINITY }
}
impl Round for f32 {
/// Round half-way cases toward `NEG_INFINITY`
#[inline]
fn floor(&self) -> f32 { floor(*self) }
/// Round half-way cases toward `INFINITY`
#[inline]
fn ceil(&self) -> f32 { ceil(*self) }
/// Round half-way cases away from `0.0`
#[inline]
fn round(&self) -> f32 { round(*self) }
/// The integer part of the number (rounds towards `0.0`)
#[inline]
fn trunc(&self) -> f32 { trunc(*self) }
/// The fractional part of the number, satisfying:
///
/// ```rust
/// let x = 1.65f32;
/// assert!(x == x.trunc() + x.fract())
/// ```
#[inline]
fn fract(&self) -> f32 { *self - self.trunc() }
}
impl Bounded for f32 {
#[inline]
fn min_value() -> f32 { 1.17549435e-38 }
#[inline]
fn max_value() -> f32 { 3.40282347e+38 }
}
impl Primitive for f32 {}
impl Float for f32 {
#[inline]
fn nan() -> f32 { 0.0 / 0.0 }
#[inline]
fn infinity() -> f32 { 1.0 / 0.0 }
#[inline]
fn neg_infinity() -> f32 { -1.0 / 0.0 }
#[inline]
fn neg_zero() -> f32 { -0.0 }
/// Returns `true` if the number is NaN
#[inline]
fn is_nan(&self) -> bool { *self != *self }
/// Returns `true` if the number is infinite
#[inline]
fn is_infinite(&self) -> bool {
*self == Float::infinity() || *self == Float::neg_infinity()
}
/// Returns `true` if the number is neither infinite or NaN
#[inline]
fn is_finite(&self) -> bool {
!(self.is_nan() || self.is_infinite())
}
/// Returns `true` if the number is neither zero, infinite, subnormal or NaN
#[inline]
fn is_normal(&self) -> bool {
self.classify() == FPNormal
}
/// Returns the floating point category of the number. If only one property is going to
/// be tested, it is generally faster to use the specific predicate instead.
fn classify(&self) -> FPCategory {
static EXP_MASK: u32 = 0x7f800000;
static MAN_MASK: u32 = 0x007fffff;
let bits: u32 = unsafe {::cast::transmute(*self)};
match (bits & MAN_MASK, bits & EXP_MASK) {
(0, 0) => FPZero,
(_, 0) => FPSubnormal,
(0, EXP_MASK) => FPInfinite,
(_, EXP_MASK) => FPNaN,
_ => FPNormal,
}
}
#[inline]
fn mantissa_digits(_: Option<f32>) -> uint { 24 }
#[inline]
fn digits(_: Option<f32>) -> uint { 6 }
#[inline]
fn epsilon() -> f32 { 1.19209290e-07 }
#[inline]
fn min_exp(_: Option<f32>) -> int { -125 }
#[inline]
fn max_exp(_: Option<f32>) -> int { 128 }
#[inline]
fn min_10_exp(_: Option<f32>) -> int { -37 }
#[inline]
fn max_10_exp(_: Option<f32>) -> int { 38 }
/// Constructs a floating point number by multiplying `x` by 2 raised to the power of `exp`
#[inline]
fn ldexp(x: f32, exp: int) -> f32 {
ldexp(x, exp as c_int)
}
/// Breaks the number into a normalized fraction and a base-2 exponent, satisfying:
///
/// - `self = x * pow(2, exp)`
/// - `0.5 <= abs(x) < 1.0`
#[inline]
fn frexp(&self) -> (f32, int) {
let mut exp = 0;
let x = frexp(*self, &mut exp);
(x, exp as int)
}
/// Returns the exponential of the number, minus `1`, in a way that is accurate
/// even if the number is close to zero
#[inline]
fn exp_m1(&self) -> f32 { exp_m1(*self) }
/// Returns the natural logarithm of the number plus `1` (`ln(1+n)`) more accurately
/// than if the operations were performed separately
#[inline]
fn ln_1p(&self) -> f32 { ln_1p(*self) }
/// Fused multiply-add. Computes `(self * a) + b` with only one rounding error. This
/// produces a more accurate result with better performance than a separate multiplication
/// operation followed by an add.
#[inline]
fn mul_add(&self, a: f32, b: f32) -> f32 {
mul_add(*self, a, b)
}
/// Returns the next representable floating-point value in the direction of `other`
#[inline]
fn next_after(&self, other: f32) -> f32 {
next_after(*self, other)
}
/// Returns the mantissa, exponent and sign as integers.
fn integer_decode(&self) -> (u64, i16, i8) {
let bits: u32 = unsafe {
::cast::transmute(*self)
};
let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 };
let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
let mantissa = if exponent == 0 {
(bits & 0x7fffff) << 1
} else {
(bits & 0x7fffff) | 0x800000
};
// Exponent bias + mantissa shift
exponent -= 127 + 23;
(mantissa as u64, exponent, sign)
}
/// Archimedes' constant
#[inline]
fn pi() -> f32 { 3.14159265358979323846264338327950288 }
/// 2.0 * pi
#[inline]
fn two_pi() -> f32 { 6.28318530717958647692528676655900576 }
/// pi / 2.0
#[inline]
fn frac_pi_2() -> f32 { 1.57079632679489661923132169163975144 }
/// pi / 3.0
#[inline]
fn frac_pi_3() -> f32 { 1.04719755119659774615421446109316763 }
/// pi / 4.0
#[inline]
fn frac_pi_4() -> f32 { 0.785398163397448309615660845819875721 }
/// pi / 6.0
#[inline]
fn frac_pi_6() -> f32 { 0.52359877559829887307710723054658381 }
/// pi / 8.0
#[inline]
fn frac_pi_8() -> f32 { 0.39269908169872415480783042290993786 }
/// 1 .0/ pi
#[inline]
fn frac_1_pi() -> f32 { 0.318309886183790671537767526745028724 }
/// 2.0 / pi
#[inline]
fn frac_2_pi() -> f32 { 0.636619772367581343075535053490057448 }
/// 2.0 / sqrt(pi)
#[inline]
fn frac_2_sqrtpi() -> f32 { 1.12837916709551257389615890312154517 }
/// sqrt(2.0)
#[inline]
fn sqrt2() -> f32 { 1.41421356237309504880168872420969808 }
/// 1.0 / sqrt(2.0)
#[inline]
fn frac_1_sqrt2() -> f32 { 0.707106781186547524400844362104849039 }
/// Euler's number
#[inline]
fn e() -> f32 { 2.71828182845904523536028747135266250 }
/// log2(e)
#[inline]
fn log2_e() -> f32 { 1.44269504088896340735992468100189214 }
/// log10(e)
#[inline]
fn log10_e() -> f32 { 0.434294481903251827651128918916605082 }
/// ln(2.0)
#[inline]
fn ln_2() -> f32 { 0.693147180559945309417232121458176568 }
/// ln(10.0)
#[inline]
fn ln_10() -> f32 { 2.30258509299404568401799145468436421 }
/// The reciprocal (multiplicative inverse) of the number
#[inline]
fn recip(&self) -> f32 { 1.0 / *self }
#[inline]
fn powf(&self, n: &f32) -> f32 { pow(*self, *n) }
#[inline]
fn sqrt(&self) -> f32 { sqrt(*self) }
#[inline]
fn rsqrt(&self) -> f32 { self.sqrt().recip() }
#[inline]
fn cbrt(&self) -> f32 { cbrt(*self) }
#[inline]
fn hypot(&self, other: &f32) -> f32 { hypot(*self, *other) }
#[inline]
fn sin(&self) -> f32 { sin(*self) }
#[inline]
fn cos(&self) -> f32 { cos(*self) }
#[inline]
fn tan(&self) -> f32 { tan(*self) }
#[inline]
fn asin(&self) -> f32 { asin(*self) }
#[inline]
fn acos(&self) -> f32 { acos(*self) }
#[inline]
fn atan(&self) -> f32 { atan(*self) }
#[inline]
fn atan2(&self, other: &f32) -> f32 { atan2(*self, *other) }
/// Simultaneously computes the sine and cosine of the number
#[inline]
fn sin_cos(&self) -> (f32, f32) {
(self.sin(), self.cos())
}
/// Returns the exponential of the number
#[inline]
fn exp(&self) -> f32 { exp(*self) }
/// Returns 2 raised to the power of the number
#[inline]
fn exp2(&self) -> f32 { exp2(*self) }
/// Returns the natural logarithm of the number
#[inline]
fn ln(&self) -> f32 { ln(*self) }
/// Returns the logarithm of the number with respect to an arbitrary base
#[inline]
fn log(&self, base: &f32) -> f32 { self.ln() / base.ln() }
/// Returns the base 2 logarithm of the number
#[inline]
fn log2(&self) -> f32 { log2(*self) }
/// Returns the base 10 logarithm of the number
#[inline]
fn log10(&self) -> f32 { log10(*self) }
#[inline]
fn sinh(&self) -> f32 { sinh(*self) }
#[inline]
fn cosh(&self) -> f32 { cosh(*self) }
#[inline]
fn tanh(&self) -> f32 { tanh(*self) }
/// Inverse hyperbolic sine
///
/// # Returns
///
/// - on success, the inverse hyperbolic sine of `self` will be returned
/// - `self` if `self` is `0.0`, `-0.0`, `INFINITY`, or `NEG_INFINITY`
/// - `NAN` if `self` is `NAN`
#[inline]
fn asinh(&self) -> f32 {
match *self {
NEG_INFINITY => NEG_INFINITY,
x => (x + ((x * x) + 1.0).sqrt()).ln(),
}
}
/// Inverse hyperbolic cosine
///
/// # Returns
///
/// - on success, the inverse hyperbolic cosine of `self` will be returned
/// - `INFINITY` if `self` is `INFINITY`
/// - `NAN` if `self` is `NAN` or `self < 1.0` (including `NEG_INFINITY`)
#[inline]
fn acosh(&self) -> f32 {
match *self {
x if x < 1.0 => Float::nan(),
x => (x + ((x * x) - 1.0).sqrt()).ln(),
}
}
/// Inverse hyperbolic tangent
///
/// # Returns
///
/// - on success, the inverse hyperbolic tangent of `self` will be returned
/// - `self` if `self` is `0.0` or `-0.0`
/// - `INFINITY` if `self` is `1.0`
/// - `NEG_INFINITY` if `self` is `-1.0`
/// - `NAN` if the `self` is `NAN` or outside the domain of `-1.0 <= self <= 1.0`
/// (including `INFINITY` and `NEG_INFINITY`)
#[inline]
fn atanh(&self) -> f32 {
0.5 * ((2.0 * *self) / (1.0 - *self)).ln_1p()
}
/// Converts to degrees, assuming the number is in radians
#[inline]
fn to_degrees(&self) -> f32 { *self * (180.0f32 / Float::pi()) }
/// Converts to radians, assuming the number is in degrees
#[inline]
fn to_radians(&self) -> f32 {
let value: f32 = Float::pi();
*self * (value / 180.0f32)
}
}
//
// Section: String Conversions
//
/// Converts a float to a string
///
/// # Arguments
///
/// * num - The float value
#[inline]
pub fn to_str(num: f32) -> ~str {
let (r, _) = strconv::float_to_str_common(
num, 10u, true, strconv::SignNeg, strconv::DigAll, strconv::ExpNone, false);
r
}
/// Converts a float to a string in hexadecimal format
///
/// # Arguments
///
/// * num - The float value
#[inline]
pub fn to_str_hex(num: f32) -> ~str {
let (r, _) = strconv::float_to_str_common(
num, 16u, true, strconv::SignNeg, strconv::DigAll, strconv::ExpNone, false);
r
}
/// Converts a float to a string in a given radix, and a flag indicating
/// whether it's a special value
///
/// # Arguments
///
/// * num - The float value
/// * radix - The base to use
#[inline]
pub fn to_str_radix_special(num: f32, rdx: uint) -> (~str, bool) {
strconv::float_to_str_common(num, rdx, true,
strconv::SignNeg, strconv::DigAll, strconv::ExpNone, false)
}
/// Converts a float to a string with exactly the number of
/// provided significant digits
///
/// # Arguments
///
/// * num - The float value
/// * digits - The number of significant digits
#[inline]
pub fn to_str_exact(num: f32, dig: uint) -> ~str {
let (r, _) = strconv::float_to_str_common(
num, 10u, true, strconv::SignNeg, strconv::DigExact(dig), strconv::ExpNone, false);
r
}
/// Converts a float to a string with a maximum number of
/// significant digits
///
/// # Arguments
///
/// * num - The float value
/// * digits - The number of significant digits
#[inline]
pub fn to_str_digits(num: f32, dig: uint) -> ~str {
let (r, _) = strconv::float_to_str_common(
num, 10u, true, strconv::SignNeg, strconv::DigMax(dig), strconv::ExpNone, false);
r
}
/// Converts a float to a string using the exponential notation with exactly the number of
/// provided digits after the decimal point in the significand
///
/// # Arguments
///
/// * num - The float value
/// * digits - The number of digits after the decimal point
/// * upper - Use `E` instead of `e` for the exponent sign
#[inline]
pub fn to_str_exp_exact(num: f32, dig: uint, upper: bool) -> ~str {
let (r, _) = strconv::float_to_str_common(
num, 10u, true, strconv::SignNeg, strconv::DigExact(dig), strconv::ExpDec, upper);
r
}
/// Converts a float to a string using the exponential notation with the maximum number of
/// digits after the decimal point in the significand
///
/// # Arguments
///
/// * num - The float value
/// * digits - The number of digits after the decimal point
/// * upper - Use `E` instead of `e` for the exponent sign
#[inline]
pub fn to_str_exp_digits(num: f32, dig: uint, upper: bool) -> ~str {
let (r, _) = strconv::float_to_str_common(
num, 10u, true, strconv::SignNeg, strconv::DigMax(dig), strconv::ExpDec, upper);
r
}
impl num::ToStrRadix for f32 {
/// Converts a float to a string in a given radix
///
/// # Arguments
///
/// * num - The float value
/// * radix - The base to use
///
/// # Failure
///
/// Fails if called on a special value like `inf`, `-inf` or `NaN` due to
/// possible misinterpretation of the result at higher bases. If those values
/// are expected, use `to_str_radix_special()` instead.
#[inline]
fn to_str_radix(&self, rdx: uint) -> ~str {
let (r, special) = strconv::float_to_str_common(
*self, rdx, true, strconv::SignNeg, strconv::DigAll, strconv::ExpNone, false);
if special { fail!("number has a special value, \
try to_str_radix_special() if those are expected") }
r
}
}
/// Convert a string in base 16 to a float.
/// Accepts an optional binary exponent.
///
/// This function accepts strings such as
///
/// * 'a4.fe'
/// * '+a4.fe', equivalent to 'a4.fe'
/// * '-a4.fe'
/// * '2b.aP128', or equivalently, '2b.ap128'
/// * '2b.aP-128'
/// * '.' (understood as 0)
/// * 'c.'
/// * '.c', or, equivalently, '0.c'
/// * '+inf', 'inf', '-inf', 'NaN'
///
/// Leading and trailing whitespace represent an error.
///
/// # Arguments
///
/// * num - A string
///
/// # Return value
///
/// `None` if the string did not represent a valid number. Otherwise,
/// `Some(n)` where `n` is the floating-point number represented by `[num]`.
#[inline]
pub fn from_str_hex(num: &str) -> Option<f32> {
strconv::from_str_common(num, 16u, true, true, true,
strconv::ExpBin, false, false)
}
impl FromStr for f32 {
/// Convert a string in base 10 to a float.
/// Accepts an optional decimal exponent.
///
/// This function accepts strings such as
///
/// * '3.14'
/// * '+3.14', equivalent to '3.14'
/// * '-3.14'
/// * '2.5E10', or equivalently, '2.5e10'
/// * '2.5E-10'
/// * '.' (understood as 0)
/// * '5.'
/// * '.5', or, equivalently, '0.5'
/// * '+inf', 'inf', '-inf', 'NaN'
///
/// Leading and trailing whitespace represent an error.
///
/// # Arguments
///
/// * num - A string
///
/// # Return value
///
/// `None` if the string did not represent a valid number. Otherwise,
/// `Some(n)` where `n` is the floating-point number represented by `num`.
#[inline]
fn from_str(val: &str) -> Option<f32> {
strconv::from_str_common(val, 10u, true, true, true,
strconv::ExpDec, false, false)
}
}
impl num::FromStrRadix for f32 {
/// Convert a string in a given base to a float.
///
/// Due to possible conflicts, this function does **not** accept
/// the special values `inf`, `-inf`, `+inf` and `NaN`, **nor**
/// does it recognize exponents of any kind.
///
/// Leading and trailing whitespace represent an error.
///
/// # Arguments
///
/// * num - A string
/// * radix - The base to use. Must lie in the range [2 .. 36]
///
/// # Return value
///
/// `None` if the string did not represent a valid number. Otherwise,
/// `Some(n)` where `n` is the floating-point number represented by `num`.
#[inline]
fn from_str_radix(val: &str, rdx: uint) -> Option<f32> {
strconv::from_str_common(val, rdx, true, true, false,
strconv::ExpNone, false, false)
}
}
#[cfg(test)]
mod tests {
use f32::*;
use num::*;
use num;
#[test]
fn test_num() {
num::test_num(10f32, 2f32);
}
#[test]
fn test_floor() {
assert_approx_eq!(1.0f32.floor(), 1.0f32);
assert_approx_eq!(1.3f32.floor(), 1.0f32);
assert_approx_eq!(1.5f32.floor(), 1.0f32);
assert_approx_eq!(1.7f32.floor(), 1.0f32);
assert_approx_eq!(0.0f32.floor(), 0.0f32);
assert_approx_eq!((-0.0f32).floor(), -0.0f32);
assert_approx_eq!((-1.0f32).floor(), -1.0f32);
assert_approx_eq!((-1.3f32).floor(), -2.0f32);
assert_approx_eq!((-1.5f32).floor(), -2.0f32);
assert_approx_eq!((-1.7f32).floor(), -2.0f32);
}
#[test]
fn test_ceil() {
assert_approx_eq!(1.0f32.ceil(), 1.0f32);
assert_approx_eq!(1.3f32.ceil(), 2.0f32);
assert_approx_eq!(1.5f32.ceil(), 2.0f32);
assert_approx_eq!(1.7f32.ceil(), 2.0f32);
assert_approx_eq!(0.0f32.ceil(), 0.0f32);
assert_approx_eq!((-0.0f32).ceil(), -0.0f32);
assert_approx_eq!((-1.0f32).ceil(), -1.0f32);
assert_approx_eq!((-1.3f32).ceil(), -1.0f32);
assert_approx_eq!((-1.5f32).ceil(), -1.0f32);
assert_approx_eq!((-1.7f32).ceil(), -1.0f32);
}
#[test]
fn test_round() {
assert_approx_eq!(1.0f32.round(), 1.0f32);
assert_approx_eq!(1.3f32.round(), 1.0f32);
assert_approx_eq!(1.5f32.round(), 2.0f32);
assert_approx_eq!(1.7f32.round(), 2.0f32);
assert_approx_eq!(0.0f32.round(), 0.0f32);
assert_approx_eq!((-0.0f32).round(), -0.0f32);
assert_approx_eq!((-1.0f32).round(), -1.0f32);
assert_approx_eq!((-1.3f32).round(), -1.0f32);
assert_approx_eq!((-1.5f32).round(), -2.0f32);
assert_approx_eq!((-1.7f32).round(), -2.0f32);
}
#[test]
fn test_trunc() {
assert_approx_eq!(1.0f32.trunc(), 1.0f32);
assert_approx_eq!(1.3f32.trunc(), 1.0f32);
assert_approx_eq!(1.5f32.trunc(), 1.0f32);
assert_approx_eq!(1.7f32.trunc(), 1.0f32);
assert_approx_eq!(0.0f32.trunc(), 0.0f32);
assert_approx_eq!((-0.0f32).trunc(), -0.0f32);
assert_approx_eq!((-1.0f32).trunc(), -1.0f32);
assert_approx_eq!((-1.3f32).trunc(), -1.0f32);
assert_approx_eq!((-1.5f32).trunc(), -1.0f32);
assert_approx_eq!((-1.7f32).trunc(), -1.0f32);
}
#[test]
fn test_fract() {
assert_approx_eq!(1.0f32.fract(), 0.0f32);
assert_approx_eq!(1.3f32.fract(), 0.3f32);
assert_approx_eq!(1.5f32.fract(), 0.5f32);
assert_approx_eq!(1.7f32.fract(), 0.7f32);
assert_approx_eq!(0.0f32.fract(), 0.0f32);
assert_approx_eq!((-0.0f32).fract(), -0.0f32);
assert_approx_eq!((-1.0f32).fract(), -0.0f32);
assert_approx_eq!((-1.3f32).fract(), -0.3f32);
assert_approx_eq!((-1.5f32).fract(), -0.5f32);
assert_approx_eq!((-1.7f32).fract(), -0.7f32);
}
#[test]
fn test_asinh() {
assert_eq!(0.0f32.asinh(), 0.0f32);
assert_eq!((-0.0f32).asinh(), -0.0f32);
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let nan: f32 = Float::nan();
assert_eq!(inf.asinh(), inf);
assert_eq!(neg_inf.asinh(), neg_inf);
assert!(nan.asinh().is_nan());
assert_approx_eq!(2.0f32.asinh(), 1.443635475178810342493276740273105f32);
assert_approx_eq!((-2.0f32).asinh(), -1.443635475178810342493276740273105f32);
}
#[test]
fn test_acosh() {
assert_eq!(1.0f32.acosh(), 0.0f32);
assert!(0.999f32.acosh().is_nan());
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let nan: f32 = Float::nan();
assert_eq!(inf.acosh(), inf);
assert!(neg_inf.acosh().is_nan());
assert!(nan.acosh().is_nan());
assert_approx_eq!(2.0f32.acosh(), 1.31695789692481670862504634730796844f32);
assert_approx_eq!(3.0f32.acosh(), 1.76274717403908605046521864995958461f32);
}
#[test]
fn test_atanh() {
assert_eq!(0.0f32.atanh(), 0.0f32);
assert_eq!((-0.0f32).atanh(), -0.0f32);
let inf32: f32 = Float::infinity();
let neg_inf32: f32 = Float::neg_infinity();
assert_eq!(1.0f32.atanh(), inf32);
assert_eq!((-1.0f32).atanh(), neg_inf32);
assert!(2f64.atanh().atanh().is_nan());
assert!((-2f64).atanh().atanh().is_nan());
let inf64: f32 = Float::infinity();
let neg_inf64: f32 = Float::neg_infinity();
let nan32: f32 = Float::nan();
assert!(inf64.atanh().is_nan());
assert!(neg_inf64.atanh().is_nan());
assert!(nan32.atanh().is_nan());
assert_approx_eq!(0.5f32.atanh(), 0.54930614433405484569762261846126285f32);
assert_approx_eq!((-0.5f32).atanh(), -0.54930614433405484569762261846126285f32);
}
#[test]
fn test_real_consts() {
let pi: f32 = Float::pi();
let two_pi: f32 = Float::two_pi();
let frac_pi_2: f32 = Float::frac_pi_2();
let frac_pi_3: f32 = Float::frac_pi_3();
let frac_pi_4: f32 = Float::frac_pi_4();
let frac_pi_6: f32 = Float::frac_pi_6();
let frac_pi_8: f32 = Float::frac_pi_8();
let frac_1_pi: f32 = Float::frac_1_pi();
let frac_2_pi: f32 = Float::frac_2_pi();
let frac_2_sqrtpi: f32 = Float::frac_2_sqrtpi();
let sqrt2: f32 = Float::sqrt2();
let frac_1_sqrt2: f32 = Float::frac_1_sqrt2();
let e: f32 = Float::e();
let log2_e: f32 = Float::log2_e();
let log10_e: f32 = Float::log10_e();
let ln_2: f32 = Float::ln_2();
let ln_10: f32 = Float::ln_10();
assert_approx_eq!(two_pi, 2f32 * pi);
assert_approx_eq!(frac_pi_2, pi / 2f32);
assert_approx_eq!(frac_pi_3, pi / 3f32);
assert_approx_eq!(frac_pi_4, pi / 4f32);
assert_approx_eq!(frac_pi_6, pi / 6f32);
assert_approx_eq!(frac_pi_8, pi / 8f32);
assert_approx_eq!(frac_1_pi, 1f32 / pi);
assert_approx_eq!(frac_2_pi, 2f32 / pi);
assert_approx_eq!(frac_2_sqrtpi, 2f32 / pi.sqrt());
assert_approx_eq!(sqrt2, 2f32.sqrt());
assert_approx_eq!(frac_1_sqrt2, 1f32 / 2f32.sqrt());
assert_approx_eq!(log2_e, e.log2());
assert_approx_eq!(log10_e, e.log10());
assert_approx_eq!(ln_2, 2f32.ln());
assert_approx_eq!(ln_10, 10f32.ln());
}
#[test]
pub fn test_abs() {
assert_eq!(INFINITY.abs(), INFINITY);
assert_eq!(1f32.abs(), 1f32);
assert_eq!(0f32.abs(), 0f32);
assert_eq!((-0f32).abs(), 0f32);
assert_eq!((-1f32).abs(), 1f32);
assert_eq!(NEG_INFINITY.abs(), INFINITY);
assert_eq!((1f32/NEG_INFINITY).abs(), 0f32);
assert!(NAN.abs().is_nan());
}
#[test]
fn test_abs_sub() {
assert_eq!((-1f32).abs_sub(&1f32), 0f32);
assert_eq!(1f32.abs_sub(&1f32), 0f32);
assert_eq!(1f32.abs_sub(&0f32), 1f32);
assert_eq!(1f32.abs_sub(&-1f32), 2f32);
assert_eq!(NEG_INFINITY.abs_sub(&0f32), 0f32);
assert_eq!(INFINITY.abs_sub(&1f32), INFINITY);
assert_eq!(0f32.abs_sub(&NEG_INFINITY), INFINITY);
assert_eq!(0f32.abs_sub(&INFINITY), 0f32);
}
#[test] #[ignore(cfg(windows))] // FIXME #8663
fn test_abs_sub_nowin() {
assert!(NAN.abs_sub(&-1f32).is_nan());
assert!(1f32.abs_sub(&NAN).is_nan());
}
#[test]
fn test_signum() {
assert_eq!(INFINITY.signum(), 1f32);
assert_eq!(1f32.signum(), 1f32);
assert_eq!(0f32.signum(), 1f32);
assert_eq!((-0f32).signum(), -1f32);
assert_eq!((-1f32).signum(), -1f32);
assert_eq!(NEG_INFINITY.signum(), -1f32);
assert_eq!((1f32/NEG_INFINITY).signum(), -1f32);
assert!(NAN.signum().is_nan());
}
#[test]
fn test_is_positive() {
assert!(INFINITY.is_positive());
assert!(1f32.is_positive());
assert!(0f32.is_positive());
assert!(!(-0f32).is_positive());
assert!(!(-1f32).is_positive());
assert!(!NEG_INFINITY.is_positive());
assert!(!(1f32/NEG_INFINITY).is_positive());
assert!(!NAN.is_positive());
}
#[test]
fn test_is_negative() {
assert!(!INFINITY.is_negative());
assert!(!1f32.is_negative());
assert!(!0f32.is_negative());
assert!((-0f32).is_negative());
assert!((-1f32).is_negative());
assert!(NEG_INFINITY.is_negative());
assert!((1f32/NEG_INFINITY).is_negative());
assert!(!NAN.is_negative());
}
#[test]
fn test_is_normal() {
let nan: f32 = Float::nan();
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let zero: f32 = Zero::zero();
let neg_zero: f32 = Float::neg_zero();
assert!(!nan.is_normal());
assert!(!inf.is_normal());
assert!(!neg_inf.is_normal());
assert!(!zero.is_normal());
assert!(!neg_zero.is_normal());
assert!(1f32.is_normal());
assert!(1e-37f32.is_normal());
assert!(!1e-38f32.is_normal());
}
#[test]
fn test_classify() {
let nan: f32 = Float::nan();
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let zero: f32 = Zero::zero();
let neg_zero: f32 = Float::neg_zero();
assert_eq!(nan.classify(), FPNaN);
assert_eq!(inf.classify(), FPInfinite);
assert_eq!(neg_inf.classify(), FPInfinite);
assert_eq!(zero.classify(), FPZero);
assert_eq!(neg_zero.classify(), FPZero);
assert_eq!(1f32.classify(), FPNormal);
assert_eq!(1e-37f32.classify(), FPNormal);
assert_eq!(1e-38f32.classify(), FPSubnormal);
}
#[test]
fn test_ldexp() {
// We have to use from_str until base-2 exponents
// are supported in floating-point literals
let f1: f32 = from_str_hex("1p-123").unwrap();
let f2: f32 = from_str_hex("1p-111").unwrap();
assert_eq!(Float::ldexp(1f32, -123), f1);
assert_eq!(Float::ldexp(1f32, -111), f2);
assert_eq!(Float::ldexp(0f32, -123), 0f32);
assert_eq!(Float::ldexp(-0f32, -123), -0f32);
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let nan: f32 = Float::nan();
assert_eq!(Float::ldexp(inf, -123), inf);
assert_eq!(Float::ldexp(neg_inf, -123), neg_inf);
assert!(Float::ldexp(nan, -123).is_nan());
}
#[test]
fn test_frexp() {
// We have to use from_str until base-2 exponents
// are supported in floating-point literals
let f1: f32 = from_str_hex("1p-123").unwrap();
let f2: f32 = from_str_hex("1p-111").unwrap();
let (x1, exp1) = f1.frexp();
let (x2, exp2) = f2.frexp();
assert_eq!((x1, exp1), (0.5f32, -122));
assert_eq!((x2, exp2), (0.5f32, -110));
assert_eq!(Float::ldexp(x1, exp1), f1);
assert_eq!(Float::ldexp(x2, exp2), f2);
assert_eq!(0f32.frexp(), (0f32, 0));
assert_eq!((-0f32).frexp(), (-0f32, 0));
}
#[test] #[ignore(cfg(windows))] // FIXME #8755
fn test_frexp_nowin() {
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let nan: f32 = Float::nan();
assert_eq!(match inf.frexp() { (x, _) => x }, inf)
assert_eq!(match neg_inf.frexp() { (x, _) => x }, neg_inf)
assert!(match nan.frexp() { (x, _) => x.is_nan() })
}
#[test]
fn test_integer_decode() {
assert_eq!(3.14159265359f32.integer_decode(), (13176795u64, -22i16, 1i8));
assert_eq!((-8573.5918555f32).integer_decode(), (8779358u64, -10i16, -1i8));
assert_eq!(2f32.powf(&100.0).integer_decode(), (8388608u64, 77i16, 1i8));
assert_eq!(0f32.integer_decode(), (0u64, -150i16, 1i8));
assert_eq!((-0f32).integer_decode(), (0u64, -150i16, -1i8));
assert_eq!(INFINITY.integer_decode(), (8388608u64, 105i16, 1i8));
assert_eq!(NEG_INFINITY.integer_decode(), (8388608u64, 105i16, -1i8));
assert_eq!(NAN.integer_decode(), (12582912u64, 105i16, 1i8));
}
}