b44d94a516
There were various places that we are invoking `drain_fulfillment_cx` with a "result" of `()`. This is kind of pointless, since it amounts to just a call to `select_all_or_error` along with some extra overhead.
1112 lines
37 KiB
Rust
1112 lines
37 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
#![allow(non_camel_case_types, non_snake_case)]
|
|
|
|
//! Code that is useful in various trans modules.
|
|
|
|
use session::Session;
|
|
use llvm;
|
|
use llvm::{ValueRef, BasicBlockRef, BuilderRef, ContextRef, TypeKind};
|
|
use llvm::{True, False, Bool, OperandBundleDef};
|
|
use rustc::hir::def::Def;
|
|
use rustc::hir::def_id::DefId;
|
|
use rustc::infer::TransNormalize;
|
|
use rustc::util::common::MemoizationMap;
|
|
use middle::lang_items::LangItem;
|
|
use rustc::ty::subst::Substs;
|
|
use abi::{Abi, FnType};
|
|
use base;
|
|
use build;
|
|
use builder::Builder;
|
|
use callee::Callee;
|
|
use cleanup;
|
|
use consts;
|
|
use debuginfo::{self, DebugLoc};
|
|
use declare;
|
|
use machine;
|
|
use mir::CachedMir;
|
|
use monomorphize;
|
|
use type_::Type;
|
|
use value::Value;
|
|
use rustc::ty::{self, Ty, TyCtxt};
|
|
use rustc::ty::layout::Layout;
|
|
use rustc::traits::{self, SelectionContext, Reveal};
|
|
use rustc::ty::fold::TypeFoldable;
|
|
use rustc::hir;
|
|
|
|
use arena::TypedArena;
|
|
use libc::{c_uint, c_char};
|
|
use std::ops::Deref;
|
|
use std::ffi::CString;
|
|
use std::cell::{Cell, RefCell};
|
|
|
|
use syntax::ast;
|
|
use syntax::parse::token::InternedString;
|
|
use syntax::parse::token;
|
|
use syntax_pos::{DUMMY_SP, Span};
|
|
|
|
pub use context::{CrateContext, SharedCrateContext};
|
|
|
|
/// Is the type's representation size known at compile time?
|
|
pub fn type_is_sized<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, ty: Ty<'tcx>) -> bool {
|
|
ty.is_sized(tcx, &tcx.empty_parameter_environment(), DUMMY_SP)
|
|
}
|
|
|
|
pub fn type_is_fat_ptr<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, ty: Ty<'tcx>) -> bool {
|
|
match ty.sty {
|
|
ty::TyRawPtr(ty::TypeAndMut{ty, ..}) |
|
|
ty::TyRef(_, ty::TypeAndMut{ty, ..}) |
|
|
ty::TyBox(ty) => {
|
|
!type_is_sized(tcx, ty)
|
|
}
|
|
_ => {
|
|
false
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn type_is_immediate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
|
|
use machine::llsize_of_alloc;
|
|
use type_of::sizing_type_of;
|
|
|
|
let tcx = ccx.tcx();
|
|
let simple = ty.is_scalar() ||
|
|
ty.is_unique() || ty.is_region_ptr() ||
|
|
ty.is_simd();
|
|
if simple && !type_is_fat_ptr(tcx, ty) {
|
|
return true;
|
|
}
|
|
if !type_is_sized(tcx, ty) {
|
|
return false;
|
|
}
|
|
match ty.sty {
|
|
ty::TyStruct(..) | ty::TyEnum(..) | ty::TyTuple(..) | ty::TyArray(_, _) |
|
|
ty::TyClosure(..) => {
|
|
let llty = sizing_type_of(ccx, ty);
|
|
llsize_of_alloc(ccx, llty) <= llsize_of_alloc(ccx, ccx.int_type())
|
|
}
|
|
_ => type_is_zero_size(ccx, ty)
|
|
}
|
|
}
|
|
|
|
/// Returns Some([a, b]) if the type has a pair of fields with types a and b.
|
|
pub fn type_pair_fields<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>)
|
|
-> Option<[Ty<'tcx>; 2]> {
|
|
match ty.sty {
|
|
ty::TyEnum(adt, substs) | ty::TyStruct(adt, substs) => {
|
|
assert_eq!(adt.variants.len(), 1);
|
|
let fields = &adt.variants[0].fields;
|
|
if fields.len() != 2 {
|
|
return None;
|
|
}
|
|
Some([monomorphize::field_ty(ccx.tcx(), substs, &fields[0]),
|
|
monomorphize::field_ty(ccx.tcx(), substs, &fields[1])])
|
|
}
|
|
ty::TyClosure(_, ty::ClosureSubsts { upvar_tys: tys, .. }) |
|
|
ty::TyTuple(tys) => {
|
|
if tys.len() != 2 {
|
|
return None;
|
|
}
|
|
Some([tys[0], tys[1]])
|
|
}
|
|
_ => None
|
|
}
|
|
}
|
|
|
|
/// Returns true if the type is represented as a pair of immediates.
|
|
pub fn type_is_imm_pair<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>)
|
|
-> bool {
|
|
match *ccx.layout_of(ty) {
|
|
Layout::FatPointer { .. } => true,
|
|
Layout::Univariant { ref variant, .. } => {
|
|
// There must be only 2 fields.
|
|
if variant.offset_after_field.len() != 2 {
|
|
return false;
|
|
}
|
|
|
|
match type_pair_fields(ccx, ty) {
|
|
Some([a, b]) => {
|
|
type_is_immediate(ccx, a) && type_is_immediate(ccx, b)
|
|
}
|
|
None => false
|
|
}
|
|
}
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
/// Identify types which have size zero at runtime.
|
|
pub fn type_is_zero_size<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
|
|
use machine::llsize_of_alloc;
|
|
use type_of::sizing_type_of;
|
|
let llty = sizing_type_of(ccx, ty);
|
|
llsize_of_alloc(ccx, llty) == 0
|
|
}
|
|
|
|
/// Generates a unique symbol based off the name given. This is used to create
|
|
/// unique symbols for things like closures.
|
|
pub fn gensym_name(name: &str) -> ast::Name {
|
|
let num = token::gensym(name).0;
|
|
// use one colon which will get translated to a period by the mangler, and
|
|
// we're guaranteed that `num` is globally unique for this crate.
|
|
token::gensym(&format!("{}:{}", name, num))
|
|
}
|
|
|
|
/*
|
|
* A note on nomenclature of linking: "extern", "foreign", and "upcall".
|
|
*
|
|
* An "extern" is an LLVM symbol we wind up emitting an undefined external
|
|
* reference to. This means "we don't have the thing in this compilation unit,
|
|
* please make sure you link it in at runtime". This could be a reference to
|
|
* C code found in a C library, or rust code found in a rust crate.
|
|
*
|
|
* Most "externs" are implicitly declared (automatically) as a result of a
|
|
* user declaring an extern _module_ dependency; this causes the rust driver
|
|
* to locate an extern crate, scan its compilation metadata, and emit extern
|
|
* declarations for any symbols used by the declaring crate.
|
|
*
|
|
* A "foreign" is an extern that references C (or other non-rust ABI) code.
|
|
* There is no metadata to scan for extern references so in these cases either
|
|
* a header-digester like bindgen, or manual function prototypes, have to
|
|
* serve as declarators. So these are usually given explicitly as prototype
|
|
* declarations, in rust code, with ABI attributes on them noting which ABI to
|
|
* link via.
|
|
*
|
|
* An "upcall" is a foreign call generated by the compiler (not corresponding
|
|
* to any user-written call in the code) into the runtime library, to perform
|
|
* some helper task such as bringing a task to life, allocating memory, etc.
|
|
*
|
|
*/
|
|
|
|
use Disr;
|
|
|
|
/// The concrete version of ty::FieldDef. The name is the field index if
|
|
/// the field is numeric.
|
|
pub struct Field<'tcx>(pub ast::Name, pub Ty<'tcx>);
|
|
|
|
/// The concrete version of ty::VariantDef
|
|
pub struct VariantInfo<'tcx> {
|
|
pub discr: Disr,
|
|
pub fields: Vec<Field<'tcx>>
|
|
}
|
|
|
|
impl<'a, 'tcx> VariantInfo<'tcx> {
|
|
pub fn from_ty(tcx: TyCtxt<'a, 'tcx, 'tcx>,
|
|
ty: Ty<'tcx>,
|
|
opt_def: Option<Def>)
|
|
-> Self
|
|
{
|
|
match ty.sty {
|
|
ty::TyStruct(adt, substs) | ty::TyEnum(adt, substs) => {
|
|
let variant = match opt_def {
|
|
None => adt.struct_variant(),
|
|
Some(def) => adt.variant_of_def(def)
|
|
};
|
|
|
|
VariantInfo {
|
|
discr: Disr::from(variant.disr_val),
|
|
fields: variant.fields.iter().map(|f| {
|
|
Field(f.name, monomorphize::field_ty(tcx, substs, f))
|
|
}).collect()
|
|
}
|
|
}
|
|
|
|
ty::TyTuple(ref v) => {
|
|
VariantInfo {
|
|
discr: Disr(0),
|
|
fields: v.iter().enumerate().map(|(i, &t)| {
|
|
Field(token::intern(&i.to_string()), t)
|
|
}).collect()
|
|
}
|
|
}
|
|
|
|
_ => {
|
|
bug!("cannot get field types from the type {:?}", ty);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct BuilderRef_res {
|
|
pub b: BuilderRef,
|
|
}
|
|
|
|
impl Drop for BuilderRef_res {
|
|
fn drop(&mut self) {
|
|
unsafe {
|
|
llvm::LLVMDisposeBuilder(self.b);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn BuilderRef_res(b: BuilderRef) -> BuilderRef_res {
|
|
BuilderRef_res {
|
|
b: b
|
|
}
|
|
}
|
|
|
|
pub fn validate_substs(substs: &Substs) {
|
|
assert!(!substs.needs_infer());
|
|
}
|
|
|
|
// Function context. Every LLVM function we create will have one of
|
|
// these.
|
|
pub struct FunctionContext<'a, 'tcx: 'a> {
|
|
// The MIR for this function. At present, this is optional because
|
|
// we only have MIR available for things that are local to the
|
|
// crate.
|
|
pub mir: Option<CachedMir<'a, 'tcx>>,
|
|
|
|
// The ValueRef returned from a call to llvm::LLVMAddFunction; the
|
|
// address of the first instruction in the sequence of
|
|
// instructions for this function that will go in the .text
|
|
// section of the executable we're generating.
|
|
pub llfn: ValueRef,
|
|
|
|
// always an empty parameter-environment NOTE: @jroesch another use of ParamEnv
|
|
pub param_env: ty::ParameterEnvironment<'tcx>,
|
|
|
|
// A pointer to where to store the return value. If the return type is
|
|
// immediate, this points to an alloca in the function. Otherwise, it's a
|
|
// pointer to the hidden first parameter of the function. After function
|
|
// construction, this should always be Some.
|
|
pub llretslotptr: Cell<Option<ValueRef>>,
|
|
|
|
// These pub elements: "hoisted basic blocks" containing
|
|
// administrative activities that have to happen in only one place in
|
|
// the function, due to LLVM's quirks.
|
|
// A marker for the place where we want to insert the function's static
|
|
// allocas, so that LLVM will coalesce them into a single alloca call.
|
|
pub alloca_insert_pt: Cell<Option<ValueRef>>,
|
|
|
|
// When working with landingpad-based exceptions this value is alloca'd and
|
|
// later loaded when using the resume instruction. This ends up being
|
|
// critical to chaining landing pads and resuing already-translated
|
|
// cleanups.
|
|
//
|
|
// Note that for cleanuppad-based exceptions this is not used.
|
|
pub landingpad_alloca: Cell<Option<ValueRef>>,
|
|
|
|
// Describes the return/argument LLVM types and their ABI handling.
|
|
pub fn_ty: FnType,
|
|
|
|
// If this function is being monomorphized, this contains the type
|
|
// substitutions used.
|
|
pub param_substs: &'tcx Substs<'tcx>,
|
|
|
|
// The source span and nesting context where this function comes from, for
|
|
// error reporting and symbol generation.
|
|
pub span: Option<Span>,
|
|
|
|
// The arena that blocks are allocated from.
|
|
pub block_arena: &'a TypedArena<BlockS<'a, 'tcx>>,
|
|
|
|
// The arena that landing pads are allocated from.
|
|
pub lpad_arena: TypedArena<LandingPad>,
|
|
|
|
// This function's enclosing crate context.
|
|
pub ccx: &'a CrateContext<'a, 'tcx>,
|
|
|
|
// Used and maintained by the debuginfo module.
|
|
pub debug_context: debuginfo::FunctionDebugContext,
|
|
|
|
// Cleanup scopes.
|
|
pub scopes: RefCell<Vec<cleanup::CleanupScope<'tcx>>>,
|
|
}
|
|
|
|
impl<'a, 'tcx> FunctionContext<'a, 'tcx> {
|
|
pub fn mir(&self) -> CachedMir<'a, 'tcx> {
|
|
self.mir.clone().expect("fcx.mir was empty")
|
|
}
|
|
|
|
pub fn cleanup(&self) {
|
|
unsafe {
|
|
llvm::LLVMInstructionEraseFromParent(self.alloca_insert_pt
|
|
.get()
|
|
.unwrap());
|
|
}
|
|
}
|
|
|
|
pub fn new_block(&'a self,
|
|
name: &str)
|
|
-> Block<'a, 'tcx> {
|
|
unsafe {
|
|
let name = CString::new(name).unwrap();
|
|
let llbb = llvm::LLVMAppendBasicBlockInContext(self.ccx.llcx(),
|
|
self.llfn,
|
|
name.as_ptr());
|
|
BlockS::new(llbb, self)
|
|
}
|
|
}
|
|
|
|
pub fn monomorphize<T>(&self, value: &T) -> T
|
|
where T: TransNormalize<'tcx>
|
|
{
|
|
monomorphize::apply_param_substs(self.ccx.tcx(),
|
|
self.param_substs,
|
|
value)
|
|
}
|
|
|
|
/// This is the same as `common::type_needs_drop`, except that it
|
|
/// may use or update caches within this `FunctionContext`.
|
|
pub fn type_needs_drop(&self, ty: Ty<'tcx>) -> bool {
|
|
self.ccx.tcx().type_needs_drop_given_env(ty, &self.param_env)
|
|
}
|
|
|
|
pub fn eh_personality(&self) -> ValueRef {
|
|
// The exception handling personality function.
|
|
//
|
|
// If our compilation unit has the `eh_personality` lang item somewhere
|
|
// within it, then we just need to translate that. Otherwise, we're
|
|
// building an rlib which will depend on some upstream implementation of
|
|
// this function, so we just codegen a generic reference to it. We don't
|
|
// specify any of the types for the function, we just make it a symbol
|
|
// that LLVM can later use.
|
|
//
|
|
// Note that MSVC is a little special here in that we don't use the
|
|
// `eh_personality` lang item at all. Currently LLVM has support for
|
|
// both Dwarf and SEH unwind mechanisms for MSVC targets and uses the
|
|
// *name of the personality function* to decide what kind of unwind side
|
|
// tables/landing pads to emit. It looks like Dwarf is used by default,
|
|
// injecting a dependency on the `_Unwind_Resume` symbol for resuming
|
|
// an "exception", but for MSVC we want to force SEH. This means that we
|
|
// can't actually have the personality function be our standard
|
|
// `rust_eh_personality` function, but rather we wired it up to the
|
|
// CRT's custom personality function, which forces LLVM to consider
|
|
// landing pads as "landing pads for SEH".
|
|
let ccx = self.ccx;
|
|
let tcx = ccx.tcx();
|
|
match tcx.lang_items.eh_personality() {
|
|
Some(def_id) if !base::wants_msvc_seh(ccx.sess()) => {
|
|
Callee::def(ccx, def_id, Substs::empty(tcx)).reify(ccx)
|
|
}
|
|
_ => {
|
|
if let Some(llpersonality) = ccx.eh_personality().get() {
|
|
return llpersonality
|
|
}
|
|
let name = if base::wants_msvc_seh(ccx.sess()) {
|
|
"__CxxFrameHandler3"
|
|
} else {
|
|
"rust_eh_personality"
|
|
};
|
|
let fty = Type::variadic_func(&[], &Type::i32(ccx));
|
|
let f = declare::declare_cfn(ccx, name, fty);
|
|
ccx.eh_personality().set(Some(f));
|
|
f
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns a ValueRef of the "eh_unwind_resume" lang item if one is defined,
|
|
// otherwise declares it as an external function.
|
|
pub fn eh_unwind_resume(&self) -> Callee<'tcx> {
|
|
use attributes;
|
|
let ccx = self.ccx;
|
|
let tcx = ccx.tcx();
|
|
assert!(ccx.sess().target.target.options.custom_unwind_resume);
|
|
if let Some(def_id) = tcx.lang_items.eh_unwind_resume() {
|
|
return Callee::def(ccx, def_id, Substs::empty(tcx));
|
|
}
|
|
|
|
let ty = tcx.mk_fn_ptr(tcx.mk_bare_fn(ty::BareFnTy {
|
|
unsafety: hir::Unsafety::Unsafe,
|
|
abi: Abi::C,
|
|
sig: ty::Binder(ty::FnSig {
|
|
inputs: vec![tcx.mk_mut_ptr(tcx.types.u8)],
|
|
output: tcx.types.never,
|
|
variadic: false
|
|
}),
|
|
}));
|
|
|
|
let unwresume = ccx.eh_unwind_resume();
|
|
if let Some(llfn) = unwresume.get() {
|
|
return Callee::ptr(llfn, ty);
|
|
}
|
|
let llfn = declare::declare_fn(ccx, "rust_eh_unwind_resume", ty);
|
|
attributes::unwind(llfn, true);
|
|
unwresume.set(Some(llfn));
|
|
Callee::ptr(llfn, ty)
|
|
}
|
|
}
|
|
|
|
// Basic block context. We create a block context for each basic block
|
|
// (single-entry, single-exit sequence of instructions) we generate from Rust
|
|
// code. Each basic block we generate is attached to a function, typically
|
|
// with many basic blocks per function. All the basic blocks attached to a
|
|
// function are organized as a directed graph.
|
|
pub struct BlockS<'blk, 'tcx: 'blk> {
|
|
// The BasicBlockRef returned from a call to
|
|
// llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic
|
|
// block to the function pointed to by llfn. We insert
|
|
// instructions into that block by way of this block context.
|
|
// The block pointing to this one in the function's digraph.
|
|
pub llbb: BasicBlockRef,
|
|
pub terminated: Cell<bool>,
|
|
pub unreachable: Cell<bool>,
|
|
|
|
// If this block part of a landing pad, then this is `Some` indicating what
|
|
// kind of landing pad its in, otherwise this is none.
|
|
pub lpad: Cell<Option<&'blk LandingPad>>,
|
|
|
|
// The function context for the function to which this block is
|
|
// attached.
|
|
pub fcx: &'blk FunctionContext<'blk, 'tcx>,
|
|
}
|
|
|
|
pub type Block<'blk, 'tcx> = &'blk BlockS<'blk, 'tcx>;
|
|
|
|
impl<'blk, 'tcx> BlockS<'blk, 'tcx> {
|
|
pub fn new(llbb: BasicBlockRef,
|
|
fcx: &'blk FunctionContext<'blk, 'tcx>)
|
|
-> Block<'blk, 'tcx> {
|
|
fcx.block_arena.alloc(BlockS {
|
|
llbb: llbb,
|
|
terminated: Cell::new(false),
|
|
unreachable: Cell::new(false),
|
|
lpad: Cell::new(None),
|
|
fcx: fcx
|
|
})
|
|
}
|
|
|
|
pub fn ccx(&self) -> &'blk CrateContext<'blk, 'tcx> {
|
|
self.fcx.ccx
|
|
}
|
|
pub fn fcx(&self) -> &'blk FunctionContext<'blk, 'tcx> {
|
|
self.fcx
|
|
}
|
|
pub fn tcx(&self) -> TyCtxt<'blk, 'tcx, 'tcx> {
|
|
self.fcx.ccx.tcx()
|
|
}
|
|
pub fn sess(&self) -> &'blk Session { self.fcx.ccx.sess() }
|
|
|
|
pub fn lpad(&self) -> Option<&'blk LandingPad> {
|
|
self.lpad.get()
|
|
}
|
|
|
|
pub fn set_lpad_ref(&self, lpad: Option<&'blk LandingPad>) {
|
|
// FIXME: use an IVar?
|
|
self.lpad.set(lpad);
|
|
}
|
|
|
|
pub fn set_lpad(&self, lpad: Option<LandingPad>) {
|
|
self.set_lpad_ref(lpad.map(|p| &*self.fcx().lpad_arena.alloc(p)))
|
|
}
|
|
|
|
pub fn mir(&self) -> CachedMir<'blk, 'tcx> {
|
|
self.fcx.mir()
|
|
}
|
|
|
|
pub fn name(&self, name: ast::Name) -> String {
|
|
name.to_string()
|
|
}
|
|
|
|
pub fn node_id_to_string(&self, id: ast::NodeId) -> String {
|
|
self.tcx().map.node_to_string(id).to_string()
|
|
}
|
|
|
|
pub fn to_str(&self) -> String {
|
|
format!("[block {:p}]", self)
|
|
}
|
|
|
|
pub fn monomorphize<T>(&self, value: &T) -> T
|
|
where T: TransNormalize<'tcx>
|
|
{
|
|
monomorphize::apply_param_substs(self.tcx(),
|
|
self.fcx.param_substs,
|
|
value)
|
|
}
|
|
|
|
pub fn build(&'blk self) -> BlockAndBuilder<'blk, 'tcx> {
|
|
BlockAndBuilder::new(self, OwnedBuilder::new_with_ccx(self.ccx()))
|
|
}
|
|
}
|
|
|
|
pub struct OwnedBuilder<'blk, 'tcx: 'blk> {
|
|
builder: Builder<'blk, 'tcx>
|
|
}
|
|
|
|
impl<'blk, 'tcx> OwnedBuilder<'blk, 'tcx> {
|
|
pub fn new_with_ccx(ccx: &'blk CrateContext<'blk, 'tcx>) -> Self {
|
|
// Create a fresh builder from the crate context.
|
|
let llbuilder = unsafe {
|
|
llvm::LLVMCreateBuilderInContext(ccx.llcx())
|
|
};
|
|
OwnedBuilder {
|
|
builder: Builder {
|
|
llbuilder: llbuilder,
|
|
ccx: ccx,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'blk, 'tcx> Drop for OwnedBuilder<'blk, 'tcx> {
|
|
fn drop(&mut self) {
|
|
unsafe {
|
|
llvm::LLVMDisposeBuilder(self.builder.llbuilder);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct BlockAndBuilder<'blk, 'tcx: 'blk> {
|
|
bcx: Block<'blk, 'tcx>,
|
|
owned_builder: OwnedBuilder<'blk, 'tcx>,
|
|
}
|
|
|
|
impl<'blk, 'tcx> BlockAndBuilder<'blk, 'tcx> {
|
|
pub fn new(bcx: Block<'blk, 'tcx>, owned_builder: OwnedBuilder<'blk, 'tcx>) -> Self {
|
|
// Set the builder's position to this block's end.
|
|
owned_builder.builder.position_at_end(bcx.llbb);
|
|
BlockAndBuilder {
|
|
bcx: bcx,
|
|
owned_builder: owned_builder,
|
|
}
|
|
}
|
|
|
|
pub fn with_block<F, R>(&self, f: F) -> R
|
|
where F: FnOnce(Block<'blk, 'tcx>) -> R
|
|
{
|
|
let result = f(self.bcx);
|
|
self.position_at_end(self.bcx.llbb);
|
|
result
|
|
}
|
|
|
|
pub fn map_block<F>(self, f: F) -> Self
|
|
where F: FnOnce(Block<'blk, 'tcx>) -> Block<'blk, 'tcx>
|
|
{
|
|
let BlockAndBuilder { bcx, owned_builder } = self;
|
|
let bcx = f(bcx);
|
|
BlockAndBuilder::new(bcx, owned_builder)
|
|
}
|
|
|
|
pub fn at_start<F, R>(&self, f: F) -> R
|
|
where F: FnOnce(&BlockAndBuilder<'blk, 'tcx>) -> R
|
|
{
|
|
self.position_at_start(self.bcx.llbb);
|
|
let r = f(self);
|
|
self.position_at_end(self.bcx.llbb);
|
|
r
|
|
}
|
|
|
|
// Methods delegated to bcx
|
|
|
|
pub fn is_unreachable(&self) -> bool {
|
|
self.bcx.unreachable.get()
|
|
}
|
|
|
|
pub fn ccx(&self) -> &'blk CrateContext<'blk, 'tcx> {
|
|
self.bcx.ccx()
|
|
}
|
|
pub fn fcx(&self) -> &'blk FunctionContext<'blk, 'tcx> {
|
|
self.bcx.fcx()
|
|
}
|
|
pub fn tcx(&self) -> TyCtxt<'blk, 'tcx, 'tcx> {
|
|
self.bcx.tcx()
|
|
}
|
|
pub fn sess(&self) -> &'blk Session {
|
|
self.bcx.sess()
|
|
}
|
|
|
|
pub fn llbb(&self) -> BasicBlockRef {
|
|
self.bcx.llbb
|
|
}
|
|
|
|
pub fn mir(&self) -> CachedMir<'blk, 'tcx> {
|
|
self.bcx.mir()
|
|
}
|
|
|
|
pub fn monomorphize<T>(&self, value: &T) -> T
|
|
where T: TransNormalize<'tcx>
|
|
{
|
|
self.bcx.monomorphize(value)
|
|
}
|
|
|
|
pub fn set_lpad(&self, lpad: Option<LandingPad>) {
|
|
self.bcx.set_lpad(lpad)
|
|
}
|
|
|
|
pub fn set_lpad_ref(&self, lpad: Option<&'blk LandingPad>) {
|
|
// FIXME: use an IVar?
|
|
self.bcx.set_lpad_ref(lpad);
|
|
}
|
|
|
|
pub fn lpad(&self) -> Option<&'blk LandingPad> {
|
|
self.bcx.lpad()
|
|
}
|
|
}
|
|
|
|
impl<'blk, 'tcx> Deref for BlockAndBuilder<'blk, 'tcx> {
|
|
type Target = Builder<'blk, 'tcx>;
|
|
fn deref(&self) -> &Self::Target {
|
|
&self.owned_builder.builder
|
|
}
|
|
}
|
|
|
|
/// A structure representing an active landing pad for the duration of a basic
|
|
/// block.
|
|
///
|
|
/// Each `Block` may contain an instance of this, indicating whether the block
|
|
/// is part of a landing pad or not. This is used to make decision about whether
|
|
/// to emit `invoke` instructions (e.g. in a landing pad we don't continue to
|
|
/// use `invoke`) and also about various function call metadata.
|
|
///
|
|
/// For GNU exceptions (`landingpad` + `resume` instructions) this structure is
|
|
/// just a bunch of `None` instances (not too interesting), but for MSVC
|
|
/// exceptions (`cleanuppad` + `cleanupret` instructions) this contains data.
|
|
/// When inside of a landing pad, each function call in LLVM IR needs to be
|
|
/// annotated with which landing pad it's a part of. This is accomplished via
|
|
/// the `OperandBundleDef` value created for MSVC landing pads.
|
|
pub struct LandingPad {
|
|
cleanuppad: Option<ValueRef>,
|
|
operand: Option<OperandBundleDef>,
|
|
}
|
|
|
|
impl LandingPad {
|
|
pub fn gnu() -> LandingPad {
|
|
LandingPad { cleanuppad: None, operand: None }
|
|
}
|
|
|
|
pub fn msvc(cleanuppad: ValueRef) -> LandingPad {
|
|
LandingPad {
|
|
cleanuppad: Some(cleanuppad),
|
|
operand: Some(OperandBundleDef::new("funclet", &[cleanuppad])),
|
|
}
|
|
}
|
|
|
|
pub fn bundle(&self) -> Option<&OperandBundleDef> {
|
|
self.operand.as_ref()
|
|
}
|
|
|
|
pub fn cleanuppad(&self) -> Option<ValueRef> {
|
|
self.cleanuppad
|
|
}
|
|
}
|
|
|
|
impl Clone for LandingPad {
|
|
fn clone(&self) -> LandingPad {
|
|
LandingPad {
|
|
cleanuppad: self.cleanuppad,
|
|
operand: self.cleanuppad.map(|p| {
|
|
OperandBundleDef::new("funclet", &[p])
|
|
}),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct Result<'blk, 'tcx: 'blk> {
|
|
pub bcx: Block<'blk, 'tcx>,
|
|
pub val: ValueRef
|
|
}
|
|
|
|
impl<'b, 'tcx> Result<'b, 'tcx> {
|
|
pub fn new(bcx: Block<'b, 'tcx>, val: ValueRef) -> Result<'b, 'tcx> {
|
|
Result {
|
|
bcx: bcx,
|
|
val: val,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn val_ty(v: ValueRef) -> Type {
|
|
unsafe {
|
|
Type::from_ref(llvm::LLVMTypeOf(v))
|
|
}
|
|
}
|
|
|
|
// LLVM constant constructors.
|
|
pub fn C_null(t: Type) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMConstNull(t.to_ref())
|
|
}
|
|
}
|
|
|
|
pub fn C_undef(t: Type) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMGetUndef(t.to_ref())
|
|
}
|
|
}
|
|
|
|
pub fn C_integral(t: Type, u: u64, sign_extend: bool) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMConstInt(t.to_ref(), u, sign_extend as Bool)
|
|
}
|
|
}
|
|
|
|
pub fn C_floating_f64(f: f64, t: Type) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMConstReal(t.to_ref(), f)
|
|
}
|
|
}
|
|
|
|
pub fn C_nil(ccx: &CrateContext) -> ValueRef {
|
|
C_struct(ccx, &[], false)
|
|
}
|
|
|
|
pub fn C_bool(ccx: &CrateContext, val: bool) -> ValueRef {
|
|
C_integral(Type::i1(ccx), val as u64, false)
|
|
}
|
|
|
|
pub fn C_i32(ccx: &CrateContext, i: i32) -> ValueRef {
|
|
C_integral(Type::i32(ccx), i as u64, true)
|
|
}
|
|
|
|
pub fn C_u32(ccx: &CrateContext, i: u32) -> ValueRef {
|
|
C_integral(Type::i32(ccx), i as u64, false)
|
|
}
|
|
|
|
pub fn C_u64(ccx: &CrateContext, i: u64) -> ValueRef {
|
|
C_integral(Type::i64(ccx), i, false)
|
|
}
|
|
|
|
pub fn C_uint<I: AsU64>(ccx: &CrateContext, i: I) -> ValueRef {
|
|
let v = i.as_u64();
|
|
|
|
let bit_size = machine::llbitsize_of_real(ccx, ccx.int_type());
|
|
|
|
if bit_size < 64 {
|
|
// make sure it doesn't overflow
|
|
assert!(v < (1<<bit_size));
|
|
}
|
|
|
|
C_integral(ccx.int_type(), v, false)
|
|
}
|
|
|
|
pub trait AsI64 { fn as_i64(self) -> i64; }
|
|
pub trait AsU64 { fn as_u64(self) -> u64; }
|
|
|
|
// FIXME: remove the intptr conversions, because they
|
|
// are host-architecture-dependent
|
|
impl AsI64 for i64 { fn as_i64(self) -> i64 { self as i64 }}
|
|
impl AsI64 for i32 { fn as_i64(self) -> i64 { self as i64 }}
|
|
impl AsI64 for isize { fn as_i64(self) -> i64 { self as i64 }}
|
|
|
|
impl AsU64 for u64 { fn as_u64(self) -> u64 { self as u64 }}
|
|
impl AsU64 for u32 { fn as_u64(self) -> u64 { self as u64 }}
|
|
impl AsU64 for usize { fn as_u64(self) -> u64 { self as u64 }}
|
|
|
|
pub fn C_u8(ccx: &CrateContext, i: u8) -> ValueRef {
|
|
C_integral(Type::i8(ccx), i as u64, false)
|
|
}
|
|
|
|
|
|
// This is a 'c-like' raw string, which differs from
|
|
// our boxed-and-length-annotated strings.
|
|
pub fn C_cstr(cx: &CrateContext, s: InternedString, null_terminated: bool) -> ValueRef {
|
|
unsafe {
|
|
if let Some(&llval) = cx.const_cstr_cache().borrow().get(&s) {
|
|
return llval;
|
|
}
|
|
|
|
let sc = llvm::LLVMConstStringInContext(cx.llcx(),
|
|
s.as_ptr() as *const c_char,
|
|
s.len() as c_uint,
|
|
!null_terminated as Bool);
|
|
|
|
let gsym = token::gensym("str");
|
|
let sym = format!("str{}", gsym.0);
|
|
let g = declare::define_global(cx, &sym[..], val_ty(sc)).unwrap_or_else(||{
|
|
bug!("symbol `{}` is already defined", sym);
|
|
});
|
|
llvm::LLVMSetInitializer(g, sc);
|
|
llvm::LLVMSetGlobalConstant(g, True);
|
|
llvm::LLVMSetLinkage(g, llvm::InternalLinkage);
|
|
|
|
cx.const_cstr_cache().borrow_mut().insert(s, g);
|
|
g
|
|
}
|
|
}
|
|
|
|
// NB: Do not use `do_spill_noroot` to make this into a constant string, or
|
|
// you will be kicked off fast isel. See issue #4352 for an example of this.
|
|
pub fn C_str_slice(cx: &CrateContext, s: InternedString) -> ValueRef {
|
|
let len = s.len();
|
|
let cs = consts::ptrcast(C_cstr(cx, s, false), Type::i8p(cx));
|
|
C_named_struct(cx.tn().find_type("str_slice").unwrap(), &[cs, C_uint(cx, len)])
|
|
}
|
|
|
|
pub fn C_struct(cx: &CrateContext, elts: &[ValueRef], packed: bool) -> ValueRef {
|
|
C_struct_in_context(cx.llcx(), elts, packed)
|
|
}
|
|
|
|
pub fn C_struct_in_context(llcx: ContextRef, elts: &[ValueRef], packed: bool) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMConstStructInContext(llcx,
|
|
elts.as_ptr(), elts.len() as c_uint,
|
|
packed as Bool)
|
|
}
|
|
}
|
|
|
|
pub fn C_named_struct(t: Type, elts: &[ValueRef]) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMConstNamedStruct(t.to_ref(), elts.as_ptr(), elts.len() as c_uint)
|
|
}
|
|
}
|
|
|
|
pub fn C_array(ty: Type, elts: &[ValueRef]) -> ValueRef {
|
|
unsafe {
|
|
return llvm::LLVMConstArray(ty.to_ref(), elts.as_ptr(), elts.len() as c_uint);
|
|
}
|
|
}
|
|
|
|
pub fn C_vector(elts: &[ValueRef]) -> ValueRef {
|
|
unsafe {
|
|
return llvm::LLVMConstVector(elts.as_ptr(), elts.len() as c_uint);
|
|
}
|
|
}
|
|
|
|
pub fn C_bytes(cx: &CrateContext, bytes: &[u8]) -> ValueRef {
|
|
C_bytes_in_context(cx.llcx(), bytes)
|
|
}
|
|
|
|
pub fn C_bytes_in_context(llcx: ContextRef, bytes: &[u8]) -> ValueRef {
|
|
unsafe {
|
|
let ptr = bytes.as_ptr() as *const c_char;
|
|
return llvm::LLVMConstStringInContext(llcx, ptr, bytes.len() as c_uint, True);
|
|
}
|
|
}
|
|
|
|
pub fn const_get_elt(v: ValueRef, us: &[c_uint])
|
|
-> ValueRef {
|
|
unsafe {
|
|
let r = llvm::LLVMConstExtractValue(v, us.as_ptr(), us.len() as c_uint);
|
|
|
|
debug!("const_get_elt(v={:?}, us={:?}, r={:?})",
|
|
Value(v), us, Value(r));
|
|
|
|
r
|
|
}
|
|
}
|
|
|
|
pub fn const_to_int(v: ValueRef) -> i64 {
|
|
unsafe {
|
|
llvm::LLVMConstIntGetSExtValue(v)
|
|
}
|
|
}
|
|
|
|
pub fn const_to_uint(v: ValueRef) -> u64 {
|
|
unsafe {
|
|
llvm::LLVMConstIntGetZExtValue(v)
|
|
}
|
|
}
|
|
|
|
fn is_const_integral(v: ValueRef) -> bool {
|
|
unsafe {
|
|
!llvm::LLVMIsAConstantInt(v).is_null()
|
|
}
|
|
}
|
|
|
|
pub fn const_to_opt_int(v: ValueRef) -> Option<i64> {
|
|
unsafe {
|
|
if is_const_integral(v) {
|
|
Some(llvm::LLVMConstIntGetSExtValue(v))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn const_to_opt_uint(v: ValueRef) -> Option<u64> {
|
|
unsafe {
|
|
if is_const_integral(v) {
|
|
Some(llvm::LLVMConstIntGetZExtValue(v))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn is_undef(val: ValueRef) -> bool {
|
|
unsafe {
|
|
llvm::LLVMIsUndef(val) != False
|
|
}
|
|
}
|
|
|
|
#[allow(dead_code)] // potentially useful
|
|
pub fn is_null(val: ValueRef) -> bool {
|
|
unsafe {
|
|
llvm::LLVMIsNull(val) != False
|
|
}
|
|
}
|
|
|
|
/// Attempts to resolve an obligation. The result is a shallow vtable resolution -- meaning that we
|
|
/// do not (necessarily) resolve all nested obligations on the impl. Note that type check should
|
|
/// guarantee to us that all nested obligations *could be* resolved if we wanted to.
|
|
pub fn fulfill_obligation<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
|
|
span: Span,
|
|
trait_ref: ty::PolyTraitRef<'tcx>)
|
|
-> traits::Vtable<'tcx, ()>
|
|
{
|
|
let tcx = scx.tcx();
|
|
|
|
// Remove any references to regions; this helps improve caching.
|
|
let trait_ref = tcx.erase_regions(&trait_ref);
|
|
|
|
scx.trait_cache().memoize(trait_ref, || {
|
|
debug!("trans::fulfill_obligation(trait_ref={:?}, def_id={:?})",
|
|
trait_ref, trait_ref.def_id());
|
|
|
|
// Do the initial selection for the obligation. This yields the
|
|
// shallow result we are looking for -- that is, what specific impl.
|
|
tcx.normalizing_infer_ctxt(Reveal::All).enter(|infcx| {
|
|
let mut selcx = SelectionContext::new(&infcx);
|
|
|
|
let obligation_cause = traits::ObligationCause::misc(span,
|
|
ast::DUMMY_NODE_ID);
|
|
let obligation = traits::Obligation::new(obligation_cause,
|
|
trait_ref.to_poly_trait_predicate());
|
|
|
|
let selection = match selcx.select(&obligation) {
|
|
Ok(Some(selection)) => selection,
|
|
Ok(None) => {
|
|
// Ambiguity can happen when monomorphizing during trans
|
|
// expands to some humongo type that never occurred
|
|
// statically -- this humongo type can then overflow,
|
|
// leading to an ambiguous result. So report this as an
|
|
// overflow bug, since I believe this is the only case
|
|
// where ambiguity can result.
|
|
debug!("Encountered ambiguity selecting `{:?}` during trans, \
|
|
presuming due to overflow",
|
|
trait_ref);
|
|
tcx.sess.span_fatal(span,
|
|
"reached the recursion limit during monomorphization \
|
|
(selection ambiguity)");
|
|
}
|
|
Err(e) => {
|
|
span_bug!(span, "Encountered error `{:?}` selecting `{:?}` during trans",
|
|
e, trait_ref)
|
|
}
|
|
};
|
|
|
|
debug!("fulfill_obligation: selection={:?}", selection);
|
|
|
|
// Currently, we use a fulfillment context to completely resolve
|
|
// all nested obligations. This is because they can inform the
|
|
// inference of the impl's type parameters.
|
|
let mut fulfill_cx = traits::FulfillmentContext::new();
|
|
let vtable = selection.map(|predicate| {
|
|
debug!("fulfill_obligation: register_predicate_obligation {:?}", predicate);
|
|
fulfill_cx.register_predicate_obligation(&infcx, predicate);
|
|
});
|
|
let vtable = infcx.drain_fulfillment_cx_or_panic(span, &mut fulfill_cx, &vtable);
|
|
|
|
info!("Cache miss: {:?} => {:?}", trait_ref, vtable);
|
|
vtable
|
|
})
|
|
})
|
|
}
|
|
|
|
/// Normalizes the predicates and checks whether they hold. If this
|
|
/// returns false, then either normalize encountered an error or one
|
|
/// of the predicates did not hold. Used when creating vtables to
|
|
/// check for unsatisfiable methods.
|
|
pub fn normalize_and_test_predicates<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
|
|
predicates: Vec<ty::Predicate<'tcx>>)
|
|
-> bool
|
|
{
|
|
debug!("normalize_and_test_predicates(predicates={:?})",
|
|
predicates);
|
|
|
|
tcx.normalizing_infer_ctxt(Reveal::All).enter(|infcx| {
|
|
let mut selcx = SelectionContext::new(&infcx);
|
|
let mut fulfill_cx = traits::FulfillmentContext::new();
|
|
let cause = traits::ObligationCause::dummy();
|
|
let traits::Normalized { value: predicates, obligations } =
|
|
traits::normalize(&mut selcx, cause.clone(), &predicates);
|
|
for obligation in obligations {
|
|
fulfill_cx.register_predicate_obligation(&infcx, obligation);
|
|
}
|
|
for predicate in predicates {
|
|
let obligation = traits::Obligation::new(cause.clone(), predicate);
|
|
fulfill_cx.register_predicate_obligation(&infcx, obligation);
|
|
}
|
|
|
|
fulfill_cx.select_all_or_error(infcx).is_ok()
|
|
})
|
|
}
|
|
|
|
pub fn langcall(tcx: TyCtxt,
|
|
span: Option<Span>,
|
|
msg: &str,
|
|
li: LangItem)
|
|
-> DefId {
|
|
match tcx.lang_items.require(li) {
|
|
Ok(id) => id,
|
|
Err(s) => {
|
|
let msg = format!("{} {}", msg, s);
|
|
match span {
|
|
Some(span) => tcx.sess.span_fatal(span, &msg[..]),
|
|
None => tcx.sess.fatal(&msg[..]),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// To avoid UB from LLVM, these two functions mask RHS with an
|
|
// appropriate mask unconditionally (i.e. the fallback behavior for
|
|
// all shifts). For 32- and 64-bit types, this matches the semantics
|
|
// of Java. (See related discussion on #1877 and #10183.)
|
|
|
|
pub fn build_unchecked_lshift<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
lhs: ValueRef,
|
|
rhs: ValueRef,
|
|
binop_debug_loc: DebugLoc) -> ValueRef {
|
|
let rhs = base::cast_shift_expr_rhs(bcx, hir::BinOp_::BiShl, lhs, rhs);
|
|
// #1877, #10183: Ensure that input is always valid
|
|
let rhs = shift_mask_rhs(bcx, rhs, binop_debug_loc);
|
|
build::Shl(bcx, lhs, rhs, binop_debug_loc)
|
|
}
|
|
|
|
pub fn build_unchecked_rshift<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
lhs_t: Ty<'tcx>,
|
|
lhs: ValueRef,
|
|
rhs: ValueRef,
|
|
binop_debug_loc: DebugLoc) -> ValueRef {
|
|
let rhs = base::cast_shift_expr_rhs(bcx, hir::BinOp_::BiShr, lhs, rhs);
|
|
// #1877, #10183: Ensure that input is always valid
|
|
let rhs = shift_mask_rhs(bcx, rhs, binop_debug_loc);
|
|
let is_signed = lhs_t.is_signed();
|
|
if is_signed {
|
|
build::AShr(bcx, lhs, rhs, binop_debug_loc)
|
|
} else {
|
|
build::LShr(bcx, lhs, rhs, binop_debug_loc)
|
|
}
|
|
}
|
|
|
|
fn shift_mask_rhs<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
rhs: ValueRef,
|
|
debug_loc: DebugLoc) -> ValueRef {
|
|
let rhs_llty = val_ty(rhs);
|
|
build::And(bcx, rhs, shift_mask_val(bcx, rhs_llty, rhs_llty, false), debug_loc)
|
|
}
|
|
|
|
pub fn shift_mask_val<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
llty: Type,
|
|
mask_llty: Type,
|
|
invert: bool) -> ValueRef {
|
|
let kind = llty.kind();
|
|
match kind {
|
|
TypeKind::Integer => {
|
|
// i8/u8 can shift by at most 7, i16/u16 by at most 15, etc.
|
|
let val = llty.int_width() - 1;
|
|
if invert {
|
|
C_integral(mask_llty, !val, true)
|
|
} else {
|
|
C_integral(mask_llty, val, false)
|
|
}
|
|
},
|
|
TypeKind::Vector => {
|
|
let mask = shift_mask_val(bcx, llty.element_type(), mask_llty.element_type(), invert);
|
|
build::VectorSplat(bcx, mask_llty.vector_length(), mask)
|
|
},
|
|
_ => bug!("shift_mask_val: expected Integer or Vector, found {:?}", kind),
|
|
}
|
|
}
|