3016626c3a
Although the set of APIs being stabilized this release is relatively small, the trains keep going! Listed below are the APIs in the standard library which have either transitioned from unstable to stable or those from unstable to deprecated. Stable * `BTreeMap::{append, split_off}` * `BTreeSet::{append, split_off}` * `Cell::get_mut` * `RefCell::get_mut` * `BinaryHeap::append` * `{f32, f64}::{to_degrees, to_radians}` - libcore stabilizations mirroring past libstd stabilizations * `Iterator::sum` * `Iterator::product` Deprecated * `{f32, f64}::next_after` * `{f32, f64}::integer_decode` * `{f32, f64}::ldexp` * `{f32, f64}::frexp` * `num::One` * `num::Zero` Added APIs (all unstable) * `iter::Sum` * `iter::Product` * `iter::Step` - a few methods were added to accomodate deprecation of One/Zero Removed APIs * `From<Range<T>> for RangeInclusive<T>` - everything about `RangeInclusive` is unstable Closes #27739 Closes #27752 Closes #32526 Closes #33444 Closes #34152 cc #34529 (new tracking issue)
1149 lines
32 KiB
Rust
1149 lines
32 KiB
Rust
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! A priority queue implemented with a binary heap.
|
|
//!
|
|
//! Insertion and popping the largest element have `O(log n)` time complexity.
|
|
//! Checking the largest element is `O(1)`. Converting a vector to a binary heap
|
|
//! can be done in-place, and has `O(n)` complexity. A binary heap can also be
|
|
//! converted to a sorted vector in-place, allowing it to be used for an `O(n
|
|
//! log n)` in-place heapsort.
|
|
//!
|
|
//! # Examples
|
|
//!
|
|
//! This is a larger example that implements [Dijkstra's algorithm][dijkstra]
|
|
//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
|
|
//! It shows how to use `BinaryHeap` with custom types.
|
|
//!
|
|
//! [dijkstra]: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
|
|
//! [sssp]: http://en.wikipedia.org/wiki/Shortest_path_problem
|
|
//! [dir_graph]: http://en.wikipedia.org/wiki/Directed_graph
|
|
//!
|
|
//! ```
|
|
//! use std::cmp::Ordering;
|
|
//! use std::collections::BinaryHeap;
|
|
//! use std::usize;
|
|
//!
|
|
//! #[derive(Copy, Clone, Eq, PartialEq)]
|
|
//! struct State {
|
|
//! cost: usize,
|
|
//! position: usize,
|
|
//! }
|
|
//!
|
|
//! // The priority queue depends on `Ord`.
|
|
//! // Explicitly implement the trait so the queue becomes a min-heap
|
|
//! // instead of a max-heap.
|
|
//! impl Ord for State {
|
|
//! fn cmp(&self, other: &State) -> Ordering {
|
|
//! // Notice that the we flip the ordering here
|
|
//! other.cost.cmp(&self.cost)
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! // `PartialOrd` needs to be implemented as well.
|
|
//! impl PartialOrd for State {
|
|
//! fn partial_cmp(&self, other: &State) -> Option<Ordering> {
|
|
//! Some(self.cmp(other))
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! // Each node is represented as an `usize`, for a shorter implementation.
|
|
//! struct Edge {
|
|
//! node: usize,
|
|
//! cost: usize,
|
|
//! }
|
|
//!
|
|
//! // Dijkstra's shortest path algorithm.
|
|
//!
|
|
//! // Start at `start` and use `dist` to track the current shortest distance
|
|
//! // to each node. This implementation isn't memory-efficient as it may leave duplicate
|
|
//! // nodes in the queue. It also uses `usize::MAX` as a sentinel value,
|
|
//! // for a simpler implementation.
|
|
//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> Option<usize> {
|
|
//! // dist[node] = current shortest distance from `start` to `node`
|
|
//! let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect();
|
|
//!
|
|
//! let mut heap = BinaryHeap::new();
|
|
//!
|
|
//! // We're at `start`, with a zero cost
|
|
//! dist[start] = 0;
|
|
//! heap.push(State { cost: 0, position: start });
|
|
//!
|
|
//! // Examine the frontier with lower cost nodes first (min-heap)
|
|
//! while let Some(State { cost, position }) = heap.pop() {
|
|
//! // Alternatively we could have continued to find all shortest paths
|
|
//! if position == goal { return Some(cost); }
|
|
//!
|
|
//! // Important as we may have already found a better way
|
|
//! if cost > dist[position] { continue; }
|
|
//!
|
|
//! // For each node we can reach, see if we can find a way with
|
|
//! // a lower cost going through this node
|
|
//! for edge in &adj_list[position] {
|
|
//! let next = State { cost: cost + edge.cost, position: edge.node };
|
|
//!
|
|
//! // If so, add it to the frontier and continue
|
|
//! if next.cost < dist[next.position] {
|
|
//! heap.push(next);
|
|
//! // Relaxation, we have now found a better way
|
|
//! dist[next.position] = next.cost;
|
|
//! }
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! // Goal not reachable
|
|
//! None
|
|
//! }
|
|
//!
|
|
//! fn main() {
|
|
//! // This is the directed graph we're going to use.
|
|
//! // The node numbers correspond to the different states,
|
|
//! // and the edge weights symbolize the cost of moving
|
|
//! // from one node to another.
|
|
//! // Note that the edges are one-way.
|
|
//! //
|
|
//! // 7
|
|
//! // +-----------------+
|
|
//! // | |
|
|
//! // v 1 2 | 2
|
|
//! // 0 -----> 1 -----> 3 ---> 4
|
|
//! // | ^ ^ ^
|
|
//! // | | 1 | |
|
|
//! // | | | 3 | 1
|
|
//! // +------> 2 -------+ |
|
|
//! // 10 | |
|
|
//! // +---------------+
|
|
//! //
|
|
//! // The graph is represented as an adjacency list where each index,
|
|
//! // corresponding to a node value, has a list of outgoing edges.
|
|
//! // Chosen for its efficiency.
|
|
//! let graph = vec![
|
|
//! // Node 0
|
|
//! vec![Edge { node: 2, cost: 10 },
|
|
//! Edge { node: 1, cost: 1 }],
|
|
//! // Node 1
|
|
//! vec![Edge { node: 3, cost: 2 }],
|
|
//! // Node 2
|
|
//! vec![Edge { node: 1, cost: 1 },
|
|
//! Edge { node: 3, cost: 3 },
|
|
//! Edge { node: 4, cost: 1 }],
|
|
//! // Node 3
|
|
//! vec![Edge { node: 0, cost: 7 },
|
|
//! Edge { node: 4, cost: 2 }],
|
|
//! // Node 4
|
|
//! vec![]];
|
|
//!
|
|
//! assert_eq!(shortest_path(&graph, 0, 1), Some(1));
|
|
//! assert_eq!(shortest_path(&graph, 0, 3), Some(3));
|
|
//! assert_eq!(shortest_path(&graph, 3, 0), Some(7));
|
|
//! assert_eq!(shortest_path(&graph, 0, 4), Some(5));
|
|
//! assert_eq!(shortest_path(&graph, 4, 0), None);
|
|
//! }
|
|
//! ```
|
|
|
|
#![allow(missing_docs)]
|
|
#![stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
use core::ops::{Drop, Deref, DerefMut};
|
|
use core::iter::FromIterator;
|
|
use core::mem::swap;
|
|
use core::mem::size_of;
|
|
use core::ptr;
|
|
use core::fmt;
|
|
|
|
use slice;
|
|
use vec::{self, Vec};
|
|
|
|
use super::SpecExtend;
|
|
|
|
/// A priority queue implemented with a binary heap.
|
|
///
|
|
/// This will be a max-heap.
|
|
///
|
|
/// It is a logic error for an item to be modified in such a way that the
|
|
/// item's ordering relative to any other item, as determined by the `Ord`
|
|
/// trait, changes while it is in the heap. This is normally only possible
|
|
/// through `Cell`, `RefCell`, global state, I/O, or unsafe code.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
///
|
|
/// // Type inference lets us omit an explicit type signature (which
|
|
/// // would be `BinaryHeap<i32>` in this example).
|
|
/// let mut heap = BinaryHeap::new();
|
|
///
|
|
/// // We can use peek to look at the next item in the heap. In this case,
|
|
/// // there's no items in there yet so we get None.
|
|
/// assert_eq!(heap.peek(), None);
|
|
///
|
|
/// // Let's add some scores...
|
|
/// heap.push(1);
|
|
/// heap.push(5);
|
|
/// heap.push(2);
|
|
///
|
|
/// // Now peek shows the most important item in the heap.
|
|
/// assert_eq!(heap.peek(), Some(&5));
|
|
///
|
|
/// // We can check the length of a heap.
|
|
/// assert_eq!(heap.len(), 3);
|
|
///
|
|
/// // We can iterate over the items in the heap, although they are returned in
|
|
/// // a random order.
|
|
/// for x in &heap {
|
|
/// println!("{}", x);
|
|
/// }
|
|
///
|
|
/// // If we instead pop these scores, they should come back in order.
|
|
/// assert_eq!(heap.pop(), Some(5));
|
|
/// assert_eq!(heap.pop(), Some(2));
|
|
/// assert_eq!(heap.pop(), Some(1));
|
|
/// assert_eq!(heap.pop(), None);
|
|
///
|
|
/// // We can clear the heap of any remaining items.
|
|
/// heap.clear();
|
|
///
|
|
/// // The heap should now be empty.
|
|
/// assert!(heap.is_empty())
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub struct BinaryHeap<T> {
|
|
data: Vec<T>,
|
|
}
|
|
|
|
/// A container object that represents the result of the [`peek_mut()`] method
|
|
/// on `BinaryHeap`. See its documentation for details.
|
|
///
|
|
/// [`peek_mut()`]: struct.BinaryHeap.html#method.peek_mut
|
|
#[unstable(feature = "binary_heap_peek_mut", issue = "34392")]
|
|
pub struct PeekMut<'a, T: 'a + Ord> {
|
|
heap: &'a mut BinaryHeap<T>
|
|
}
|
|
|
|
#[unstable(feature = "binary_heap_peek_mut", issue = "34392")]
|
|
impl<'a, T: Ord> Drop for PeekMut<'a, T> {
|
|
fn drop(&mut self) {
|
|
self.heap.sift_down(0);
|
|
}
|
|
}
|
|
|
|
#[unstable(feature = "binary_heap_peek_mut", issue = "34392")]
|
|
impl<'a, T: Ord> Deref for PeekMut<'a, T> {
|
|
type Target = T;
|
|
fn deref(&self) -> &T {
|
|
&self.heap.data[0]
|
|
}
|
|
}
|
|
|
|
#[unstable(feature = "binary_heap_peek_mut", issue = "34392")]
|
|
impl<'a, T: Ord> DerefMut for PeekMut<'a, T> {
|
|
fn deref_mut(&mut self) -> &mut T {
|
|
&mut self.heap.data[0]
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<T: Clone> Clone for BinaryHeap<T> {
|
|
fn clone(&self) -> Self {
|
|
BinaryHeap { data: self.data.clone() }
|
|
}
|
|
|
|
fn clone_from(&mut self, source: &Self) {
|
|
self.data.clone_from(&source.data);
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<T: Ord> Default for BinaryHeap<T> {
|
|
#[inline]
|
|
fn default() -> BinaryHeap<T> {
|
|
BinaryHeap::new()
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "binaryheap_debug", since = "1.4.0")]
|
|
impl<T: fmt::Debug + Ord> fmt::Debug for BinaryHeap<T> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
f.debug_list().entries(self.iter()).finish()
|
|
}
|
|
}
|
|
|
|
impl<T: Ord> BinaryHeap<T> {
|
|
/// Creates an empty `BinaryHeap` as a max-heap.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::new();
|
|
/// heap.push(4);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn new() -> BinaryHeap<T> {
|
|
BinaryHeap { data: vec![] }
|
|
}
|
|
|
|
/// Creates an empty `BinaryHeap` with a specific capacity.
|
|
/// This preallocates enough memory for `capacity` elements,
|
|
/// so that the `BinaryHeap` does not have to be reallocated
|
|
/// until it contains at least that many values.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::with_capacity(10);
|
|
/// heap.push(4);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn with_capacity(capacity: usize) -> BinaryHeap<T> {
|
|
BinaryHeap { data: Vec::with_capacity(capacity) }
|
|
}
|
|
|
|
/// Returns an iterator visiting all values in the underlying vector, in
|
|
/// arbitrary order.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let heap = BinaryHeap::from(vec![1, 2, 3, 4]);
|
|
///
|
|
/// // Print 1, 2, 3, 4 in arbitrary order
|
|
/// for x in heap.iter() {
|
|
/// println!("{}", x);
|
|
/// }
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn iter(&self) -> Iter<T> {
|
|
Iter { iter: self.data.iter() }
|
|
}
|
|
|
|
/// Returns the greatest item in the binary heap, or `None` if it is empty.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::new();
|
|
/// assert_eq!(heap.peek(), None);
|
|
///
|
|
/// heap.push(1);
|
|
/// heap.push(5);
|
|
/// heap.push(2);
|
|
/// assert_eq!(heap.peek(), Some(&5));
|
|
///
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn peek(&self) -> Option<&T> {
|
|
self.data.get(0)
|
|
}
|
|
|
|
/// Returns a mutable reference to the greatest item in the binary heap, or
|
|
/// `None` if it is empty.
|
|
///
|
|
/// Note: If the `PeekMut` value is leaked, the heap may be in an
|
|
/// inconsistent state.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// #![feature(binary_heap_peek_mut)]
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::new();
|
|
/// assert!(heap.peek_mut().is_none());
|
|
///
|
|
/// heap.push(1);
|
|
/// heap.push(5);
|
|
/// heap.push(2);
|
|
/// {
|
|
/// let mut val = heap.peek_mut().unwrap();
|
|
/// *val = 0;
|
|
/// }
|
|
/// assert_eq!(heap.peek(), Some(&2));
|
|
/// ```
|
|
#[unstable(feature = "binary_heap_peek_mut", issue = "34392")]
|
|
pub fn peek_mut(&mut self) -> Option<PeekMut<T>> {
|
|
if self.is_empty() {
|
|
None
|
|
} else {
|
|
Some(PeekMut {
|
|
heap: self
|
|
})
|
|
}
|
|
}
|
|
|
|
/// Returns the number of elements the binary heap can hold without reallocating.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::with_capacity(100);
|
|
/// assert!(heap.capacity() >= 100);
|
|
/// heap.push(4);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn capacity(&self) -> usize {
|
|
self.data.capacity()
|
|
}
|
|
|
|
/// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
|
|
/// given `BinaryHeap`. Does nothing if the capacity is already sufficient.
|
|
///
|
|
/// Note that the allocator may give the collection more space than it requests. Therefore
|
|
/// capacity can not be relied upon to be precisely minimal. Prefer `reserve` if future
|
|
/// insertions are expected.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if the new capacity overflows `usize`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::new();
|
|
/// heap.reserve_exact(100);
|
|
/// assert!(heap.capacity() >= 100);
|
|
/// heap.push(4);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn reserve_exact(&mut self, additional: usize) {
|
|
self.data.reserve_exact(additional);
|
|
}
|
|
|
|
/// Reserves capacity for at least `additional` more elements to be inserted in the
|
|
/// `BinaryHeap`. The collection may reserve more space to avoid frequent reallocations.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if the new capacity overflows `usize`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::new();
|
|
/// heap.reserve(100);
|
|
/// assert!(heap.capacity() >= 100);
|
|
/// heap.push(4);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn reserve(&mut self, additional: usize) {
|
|
self.data.reserve(additional);
|
|
}
|
|
|
|
/// Discards as much additional capacity as possible.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
|
|
///
|
|
/// assert!(heap.capacity() >= 100);
|
|
/// heap.shrink_to_fit();
|
|
/// assert!(heap.capacity() == 0);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn shrink_to_fit(&mut self) {
|
|
self.data.shrink_to_fit();
|
|
}
|
|
|
|
/// Removes the greatest item from the binary heap and returns it, or `None` if it
|
|
/// is empty.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::from(vec![1, 3]);
|
|
///
|
|
/// assert_eq!(heap.pop(), Some(3));
|
|
/// assert_eq!(heap.pop(), Some(1));
|
|
/// assert_eq!(heap.pop(), None);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn pop(&mut self) -> Option<T> {
|
|
self.data.pop().map(|mut item| {
|
|
if !self.is_empty() {
|
|
swap(&mut item, &mut self.data[0]);
|
|
self.sift_down_to_bottom(0);
|
|
}
|
|
item
|
|
})
|
|
}
|
|
|
|
/// Pushes an item onto the binary heap.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::new();
|
|
/// heap.push(3);
|
|
/// heap.push(5);
|
|
/// heap.push(1);
|
|
///
|
|
/// assert_eq!(heap.len(), 3);
|
|
/// assert_eq!(heap.peek(), Some(&5));
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn push(&mut self, item: T) {
|
|
let old_len = self.len();
|
|
self.data.push(item);
|
|
self.sift_up(0, old_len);
|
|
}
|
|
|
|
/// Pushes an item onto the binary heap, then pops the greatest item off the queue in
|
|
/// an optimized fashion.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// #![feature(binary_heap_extras)]
|
|
///
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::new();
|
|
/// heap.push(1);
|
|
/// heap.push(5);
|
|
///
|
|
/// assert_eq!(heap.push_pop(3), 5);
|
|
/// assert_eq!(heap.push_pop(9), 9);
|
|
/// assert_eq!(heap.len(), 2);
|
|
/// assert_eq!(heap.peek(), Some(&3));
|
|
/// ```
|
|
#[unstable(feature = "binary_heap_extras",
|
|
reason = "needs to be audited",
|
|
issue = "28147")]
|
|
pub fn push_pop(&mut self, mut item: T) -> T {
|
|
match self.data.get_mut(0) {
|
|
None => return item,
|
|
Some(top) => {
|
|
if *top > item {
|
|
swap(&mut item, top);
|
|
} else {
|
|
return item;
|
|
}
|
|
}
|
|
}
|
|
|
|
self.sift_down(0);
|
|
item
|
|
}
|
|
|
|
/// Pops the greatest item off the binary heap, then pushes an item onto the queue in
|
|
/// an optimized fashion. The push is done regardless of whether the binary heap
|
|
/// was empty.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// #![feature(binary_heap_extras)]
|
|
///
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::new();
|
|
///
|
|
/// assert_eq!(heap.replace(1), None);
|
|
/// assert_eq!(heap.replace(3), Some(1));
|
|
/// assert_eq!(heap.len(), 1);
|
|
/// assert_eq!(heap.peek(), Some(&3));
|
|
/// ```
|
|
#[unstable(feature = "binary_heap_extras",
|
|
reason = "needs to be audited",
|
|
issue = "28147")]
|
|
pub fn replace(&mut self, mut item: T) -> Option<T> {
|
|
if !self.is_empty() {
|
|
swap(&mut item, &mut self.data[0]);
|
|
self.sift_down(0);
|
|
Some(item)
|
|
} else {
|
|
self.push(item);
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Consumes the `BinaryHeap` and returns the underlying vector
|
|
/// in arbitrary order.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let heap = BinaryHeap::from(vec![1, 2, 3, 4, 5, 6, 7]);
|
|
/// let vec = heap.into_vec();
|
|
///
|
|
/// // Will print in some order
|
|
/// for x in vec {
|
|
/// println!("{}", x);
|
|
/// }
|
|
/// ```
|
|
#[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
|
|
pub fn into_vec(self) -> Vec<T> {
|
|
self.into()
|
|
}
|
|
|
|
/// Consumes the `BinaryHeap` and returns a vector in sorted
|
|
/// (ascending) order.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
///
|
|
/// let mut heap = BinaryHeap::from(vec![1, 2, 4, 5, 7]);
|
|
/// heap.push(6);
|
|
/// heap.push(3);
|
|
///
|
|
/// let vec = heap.into_sorted_vec();
|
|
/// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
|
|
/// ```
|
|
#[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
|
|
pub fn into_sorted_vec(mut self) -> Vec<T> {
|
|
let mut end = self.len();
|
|
while end > 1 {
|
|
end -= 1;
|
|
self.data.swap(0, end);
|
|
self.sift_down_range(0, end);
|
|
}
|
|
self.into_vec()
|
|
}
|
|
|
|
// The implementations of sift_up and sift_down use unsafe blocks in
|
|
// order to move an element out of the vector (leaving behind a
|
|
// hole), shift along the others and move the removed element back into the
|
|
// vector at the final location of the hole.
|
|
// The `Hole` type is used to represent this, and make sure
|
|
// the hole is filled back at the end of its scope, even on panic.
|
|
// Using a hole reduces the constant factor compared to using swaps,
|
|
// which involves twice as many moves.
|
|
fn sift_up(&mut self, start: usize, pos: usize) {
|
|
unsafe {
|
|
// Take out the value at `pos` and create a hole.
|
|
let mut hole = Hole::new(&mut self.data, pos);
|
|
|
|
while hole.pos() > start {
|
|
let parent = (hole.pos() - 1) / 2;
|
|
if hole.element() <= hole.get(parent) {
|
|
break;
|
|
}
|
|
hole.move_to(parent);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Take an element at `pos` and move it down the heap,
|
|
/// while its children are larger.
|
|
fn sift_down_range(&mut self, pos: usize, end: usize) {
|
|
unsafe {
|
|
let mut hole = Hole::new(&mut self.data, pos);
|
|
let mut child = 2 * pos + 1;
|
|
while child < end {
|
|
let right = child + 1;
|
|
// compare with the greater of the two children
|
|
if right < end && !(hole.get(child) > hole.get(right)) {
|
|
child = right;
|
|
}
|
|
// if we are already in order, stop.
|
|
if hole.element() >= hole.get(child) {
|
|
break;
|
|
}
|
|
hole.move_to(child);
|
|
child = 2 * hole.pos() + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn sift_down(&mut self, pos: usize) {
|
|
let len = self.len();
|
|
self.sift_down_range(pos, len);
|
|
}
|
|
|
|
/// Take an element at `pos` and move it all the way down the heap,
|
|
/// then sift it up to its position.
|
|
///
|
|
/// Note: This is faster when the element is known to be large / should
|
|
/// be closer to the bottom.
|
|
fn sift_down_to_bottom(&mut self, mut pos: usize) {
|
|
let end = self.len();
|
|
let start = pos;
|
|
unsafe {
|
|
let mut hole = Hole::new(&mut self.data, pos);
|
|
let mut child = 2 * pos + 1;
|
|
while child < end {
|
|
let right = child + 1;
|
|
// compare with the greater of the two children
|
|
if right < end && !(hole.get(child) > hole.get(right)) {
|
|
child = right;
|
|
}
|
|
hole.move_to(child);
|
|
child = 2 * hole.pos() + 1;
|
|
}
|
|
pos = hole.pos;
|
|
}
|
|
self.sift_up(start, pos);
|
|
}
|
|
|
|
/// Returns the length of the binary heap.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let heap = BinaryHeap::from(vec![1, 3]);
|
|
///
|
|
/// assert_eq!(heap.len(), 2);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn len(&self) -> usize {
|
|
self.data.len()
|
|
}
|
|
|
|
/// Checks if the binary heap is empty.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::new();
|
|
///
|
|
/// assert!(heap.is_empty());
|
|
///
|
|
/// heap.push(3);
|
|
/// heap.push(5);
|
|
/// heap.push(1);
|
|
///
|
|
/// assert!(!heap.is_empty());
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn is_empty(&self) -> bool {
|
|
self.len() == 0
|
|
}
|
|
|
|
/// Clears the binary heap, returning an iterator over the removed elements.
|
|
///
|
|
/// The elements are removed in arbitrary order.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::from(vec![1, 3]);
|
|
///
|
|
/// assert!(!heap.is_empty());
|
|
///
|
|
/// for x in heap.drain() {
|
|
/// println!("{}", x);
|
|
/// }
|
|
///
|
|
/// assert!(heap.is_empty());
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "drain", since = "1.6.0")]
|
|
pub fn drain(&mut self) -> Drain<T> {
|
|
Drain { iter: self.data.drain(..) }
|
|
}
|
|
|
|
/// Drops all items from the binary heap.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::from(vec![1, 3]);
|
|
///
|
|
/// assert!(!heap.is_empty());
|
|
///
|
|
/// heap.clear();
|
|
///
|
|
/// assert!(heap.is_empty());
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn clear(&mut self) {
|
|
self.drain();
|
|
}
|
|
|
|
fn rebuild(&mut self) {
|
|
let mut n = self.len() / 2;
|
|
while n > 0 {
|
|
n -= 1;
|
|
self.sift_down(n);
|
|
}
|
|
}
|
|
|
|
/// Moves all the elements of `other` into `self`, leaving `other` empty.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
///
|
|
/// let v = vec![-10, 1, 2, 3, 3];
|
|
/// let mut a = BinaryHeap::from(v);
|
|
///
|
|
/// let v = vec![-20, 5, 43];
|
|
/// let mut b = BinaryHeap::from(v);
|
|
///
|
|
/// a.append(&mut b);
|
|
///
|
|
/// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
|
|
/// assert!(b.is_empty());
|
|
/// ```
|
|
#[stable(feature = "binary_heap_append", since = "1.11.0")]
|
|
pub fn append(&mut self, other: &mut Self) {
|
|
if self.len() < other.len() {
|
|
swap(self, other);
|
|
}
|
|
|
|
if other.is_empty() {
|
|
return;
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn log2_fast(x: usize) -> usize {
|
|
8 * size_of::<usize>() - (x.leading_zeros() as usize) - 1
|
|
}
|
|
|
|
// `rebuild` takes O(len1 + len2) operations
|
|
// and about 2 * (len1 + len2) comparisons in the worst case
|
|
// while `extend` takes O(len2 * log_2(len1)) operations
|
|
// and about 1 * len2 * log_2(len1) comparisons in the worst case,
|
|
// assuming len1 >= len2.
|
|
#[inline]
|
|
fn better_to_rebuild(len1: usize, len2: usize) -> bool {
|
|
2 * (len1 + len2) < len2 * log2_fast(len1)
|
|
}
|
|
|
|
if better_to_rebuild(self.len(), other.len()) {
|
|
self.data.append(&mut other.data);
|
|
self.rebuild();
|
|
} else {
|
|
self.extend(other.drain());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Hole represents a hole in a slice i.e. an index without valid value
|
|
/// (because it was moved from or duplicated).
|
|
/// In drop, `Hole` will restore the slice by filling the hole
|
|
/// position with the value that was originally removed.
|
|
struct Hole<'a, T: 'a> {
|
|
data: &'a mut [T],
|
|
/// `elt` is always `Some` from new until drop.
|
|
elt: Option<T>,
|
|
pos: usize,
|
|
}
|
|
|
|
impl<'a, T> Hole<'a, T> {
|
|
/// Create a new Hole at index `pos`.
|
|
fn new(data: &'a mut [T], pos: usize) -> Self {
|
|
unsafe {
|
|
let elt = ptr::read(&data[pos]);
|
|
Hole {
|
|
data: data,
|
|
elt: Some(elt),
|
|
pos: pos,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn pos(&self) -> usize {
|
|
self.pos
|
|
}
|
|
|
|
/// Return a reference to the element removed
|
|
#[inline(always)]
|
|
fn element(&self) -> &T {
|
|
self.elt.as_ref().unwrap()
|
|
}
|
|
|
|
/// Return a reference to the element at `index`.
|
|
///
|
|
/// Panics if the index is out of bounds.
|
|
///
|
|
/// Unsafe because index must not equal pos.
|
|
#[inline(always)]
|
|
unsafe fn get(&self, index: usize) -> &T {
|
|
debug_assert!(index != self.pos);
|
|
&self.data[index]
|
|
}
|
|
|
|
/// Move hole to new location
|
|
///
|
|
/// Unsafe because index must not equal pos.
|
|
#[inline(always)]
|
|
unsafe fn move_to(&mut self, index: usize) {
|
|
debug_assert!(index != self.pos);
|
|
let index_ptr: *const _ = &self.data[index];
|
|
let hole_ptr = &mut self.data[self.pos];
|
|
ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1);
|
|
self.pos = index;
|
|
}
|
|
}
|
|
|
|
impl<'a, T> Drop for Hole<'a, T> {
|
|
fn drop(&mut self) {
|
|
// fill the hole again
|
|
unsafe {
|
|
let pos = self.pos;
|
|
ptr::write(&mut self.data[pos], self.elt.take().unwrap());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// `BinaryHeap` iterator.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub struct Iter<'a, T: 'a> {
|
|
iter: slice::Iter<'a, T>,
|
|
}
|
|
|
|
// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a, T> Clone for Iter<'a, T> {
|
|
fn clone(&self) -> Iter<'a, T> {
|
|
Iter { iter: self.iter.clone() }
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a, T> Iterator for Iter<'a, T> {
|
|
type Item = &'a T;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'a T> {
|
|
self.iter.next()
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
self.iter.size_hint()
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<&'a T> {
|
|
self.iter.next_back()
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a, T> ExactSizeIterator for Iter<'a, T> {}
|
|
|
|
/// An iterator that moves out of a `BinaryHeap`.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[derive(Clone)]
|
|
pub struct IntoIter<T> {
|
|
iter: vec::IntoIter<T>,
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<T> Iterator for IntoIter<T> {
|
|
type Item = T;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<T> {
|
|
self.iter.next()
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
self.iter.size_hint()
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<T> DoubleEndedIterator for IntoIter<T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<T> {
|
|
self.iter.next_back()
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<T> ExactSizeIterator for IntoIter<T> {}
|
|
|
|
/// An iterator that drains a `BinaryHeap`.
|
|
#[stable(feature = "drain", since = "1.6.0")]
|
|
pub struct Drain<'a, T: 'a> {
|
|
iter: vec::Drain<'a, T>,
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a, T: 'a> Iterator for Drain<'a, T> {
|
|
type Item = T;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<T> {
|
|
self.iter.next()
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
self.iter.size_hint()
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a, T: 'a> DoubleEndedIterator for Drain<'a, T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<T> {
|
|
self.iter.next_back()
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a, T: 'a> ExactSizeIterator for Drain<'a, T> {}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<T: Ord> From<Vec<T>> for BinaryHeap<T> {
|
|
fn from(vec: Vec<T>) -> BinaryHeap<T> {
|
|
let mut heap = BinaryHeap { data: vec };
|
|
heap.rebuild();
|
|
heap
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<T> From<BinaryHeap<T>> for Vec<T> {
|
|
fn from(heap: BinaryHeap<T>) -> Vec<T> {
|
|
heap.data
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<T: Ord> FromIterator<T> for BinaryHeap<T> {
|
|
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BinaryHeap<T> {
|
|
BinaryHeap::from(iter.into_iter().collect::<Vec<_>>())
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<T: Ord> IntoIterator for BinaryHeap<T> {
|
|
type Item = T;
|
|
type IntoIter = IntoIter<T>;
|
|
|
|
/// Creates a consuming iterator, that is, one that moves each value out of
|
|
/// the binary heap in arbitrary order. The binary heap cannot be used
|
|
/// after calling this.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let heap = BinaryHeap::from(vec![1, 2, 3, 4]);
|
|
///
|
|
/// // Print 1, 2, 3, 4 in arbitrary order
|
|
/// for x in heap.into_iter() {
|
|
/// // x has type i32, not &i32
|
|
/// println!("{}", x);
|
|
/// }
|
|
/// ```
|
|
fn into_iter(self) -> IntoIter<T> {
|
|
IntoIter { iter: self.data.into_iter() }
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a, T> IntoIterator for &'a BinaryHeap<T> where T: Ord {
|
|
type Item = &'a T;
|
|
type IntoIter = Iter<'a, T>;
|
|
|
|
fn into_iter(self) -> Iter<'a, T> {
|
|
self.iter()
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<T: Ord> Extend<T> for BinaryHeap<T> {
|
|
#[inline]
|
|
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
|
|
<Self as SpecExtend<I>>::spec_extend(self, iter);
|
|
}
|
|
}
|
|
|
|
impl<T: Ord, I: IntoIterator<Item = T>> SpecExtend<I> for BinaryHeap<T> {
|
|
default fn spec_extend(&mut self, iter: I) {
|
|
self.extend_desugared(iter.into_iter());
|
|
}
|
|
}
|
|
|
|
impl<T: Ord> SpecExtend<BinaryHeap<T>> for BinaryHeap<T> {
|
|
fn spec_extend(&mut self, ref mut other: BinaryHeap<T>) {
|
|
self.append(other);
|
|
}
|
|
}
|
|
|
|
impl<T: Ord> BinaryHeap<T> {
|
|
fn extend_desugared<I: IntoIterator<Item = T>>(&mut self, iter: I) {
|
|
let iterator = iter.into_iter();
|
|
let (lower, _) = iterator.size_hint();
|
|
|
|
self.reserve(lower);
|
|
|
|
for elem in iterator {
|
|
self.push(elem);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "extend_ref", since = "1.2.0")]
|
|
impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for BinaryHeap<T> {
|
|
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
|
|
self.extend(iter.into_iter().cloned());
|
|
}
|
|
}
|