rust/src/librustc/middle/trans/intrinsic.rs
Daniel Micay b2724727d5 add volatile copy/copy_nonoverlapping/set
This exposes volatile versions of the memset/memmove/memcpy intrinsics.

The volatile parameter must be constant, so this can't simply be a
parameter to our intrinsics.
2014-04-22 20:15:55 -04:00

550 lines
23 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(non_uppercase_pattern_statics)]
use arena::TypedArena;
use lib::llvm::{SequentiallyConsistent, Acquire, Release, Xchg};
use lib::llvm::{ValueRef, Pointer, Array, Struct};
use lib;
use middle::trans::base::*;
use middle::trans::build::*;
use middle::trans::common::*;
use middle::trans::datum::*;
use middle::trans::glue;
use middle::trans::type_of::*;
use middle::trans::type_of;
use middle::trans::machine;
use middle::trans::machine::llsize_of;
use middle::trans::type_::Type;
use middle::ty;
use syntax::ast;
use syntax::ast_map;
use syntax::parse::token;
use util::ppaux::ty_to_str;
pub fn get_simple_intrinsic(ccx: &CrateContext, item: &ast::ForeignItem) -> Option<ValueRef> {
let name = match token::get_ident(item.ident).get() {
"sqrtf32" => "llvm.sqrt.f32",
"sqrtf64" => "llvm.sqrt.f64",
"powif32" => "llvm.powi.f32",
"powif64" => "llvm.powi.f64",
"sinf32" => "llvm.sin.f32",
"sinf64" => "llvm.sin.f64",
"cosf32" => "llvm.cos.f32",
"cosf64" => "llvm.cos.f64",
"powf32" => "llvm.pow.f32",
"powf64" => "llvm.pow.f64",
"expf32" => "llvm.exp.f32",
"expf64" => "llvm.exp.f64",
"exp2f32" => "llvm.exp2.f32",
"exp2f64" => "llvm.exp2.f64",
"logf32" => "llvm.log.f32",
"logf64" => "llvm.log.f64",
"log10f32" => "llvm.log10.f32",
"log10f64" => "llvm.log10.f64",
"log2f32" => "llvm.log2.f32",
"log2f64" => "llvm.log2.f64",
"fmaf32" => "llvm.fma.f32",
"fmaf64" => "llvm.fma.f64",
"fabsf32" => "llvm.fabs.f32",
"fabsf64" => "llvm.fabs.f64",
"copysignf32" => "llvm.copysign.f32",
"copysignf64" => "llvm.copysign.f64",
"floorf32" => "llvm.floor.f32",
"floorf64" => "llvm.floor.f64",
"ceilf32" => "llvm.ceil.f32",
"ceilf64" => "llvm.ceil.f64",
"truncf32" => "llvm.trunc.f32",
"truncf64" => "llvm.trunc.f64",
"rintf32" => "llvm.rint.f32",
"rintf64" => "llvm.rint.f64",
"nearbyintf32" => "llvm.nearbyint.f32",
"nearbyintf64" => "llvm.nearbyint.f64",
"roundf32" => "llvm.round.f32",
"roundf64" => "llvm.round.f64",
"ctpop8" => "llvm.ctpop.i8",
"ctpop16" => "llvm.ctpop.i16",
"ctpop32" => "llvm.ctpop.i32",
"ctpop64" => "llvm.ctpop.i64",
"bswap16" => "llvm.bswap.i16",
"bswap32" => "llvm.bswap.i32",
"bswap64" => "llvm.bswap.i64",
_ => return None
};
Some(ccx.get_intrinsic(&name))
}
pub fn trans_intrinsic(ccx: &CrateContext,
decl: ValueRef,
item: &ast::ForeignItem,
substs: &param_substs,
ref_id: Option<ast::NodeId>) {
debug!("trans_intrinsic(item.ident={})", token::get_ident(item.ident));
fn with_overflow_instrinsic(bcx: &Block, name: &'static str, t: ty::t) {
let first_real_arg = bcx.fcx.arg_pos(0u);
let a = get_param(bcx.fcx.llfn, first_real_arg);
let b = get_param(bcx.fcx.llfn, first_real_arg + 1);
let llfn = bcx.ccx().get_intrinsic(&name);
// convert `i1` to a `bool`, and write to the out parameter
let val = Call(bcx, llfn, [a, b], []);
let result = ExtractValue(bcx, val, 0);
let overflow = ZExt(bcx, ExtractValue(bcx, val, 1), Type::bool(bcx.ccx()));
let ret = C_undef(type_of::type_of(bcx.ccx(), t));
let ret = InsertValue(bcx, ret, result, 0);
let ret = InsertValue(bcx, ret, overflow, 1);
if type_is_immediate(bcx.ccx(), t) {
Ret(bcx, ret);
} else {
let retptr = get_param(bcx.fcx.llfn, bcx.fcx.out_arg_pos());
Store(bcx, ret, retptr);
RetVoid(bcx);
}
}
fn volatile_load_intrinsic(bcx: &Block) {
let first_real_arg = bcx.fcx.arg_pos(0u);
let src = get_param(bcx.fcx.llfn, first_real_arg);
let val = VolatileLoad(bcx, src);
Ret(bcx, val);
}
fn volatile_store_intrinsic(bcx: &Block) {
let first_real_arg = bcx.fcx.arg_pos(0u);
let dst = get_param(bcx.fcx.llfn, first_real_arg);
let val = get_param(bcx.fcx.llfn, first_real_arg + 1);
VolatileStore(bcx, val, dst);
RetVoid(bcx);
}
fn copy_intrinsic(bcx: &Block, allow_overlap: bool, volatile: bool, tp_ty: ty::t) {
let ccx = bcx.ccx();
let lltp_ty = type_of::type_of(ccx, tp_ty);
let align = C_i32(ccx, machine::llalign_of_min(ccx, lltp_ty) as i32);
let size = machine::llsize_of(ccx, lltp_ty);
let int_size = machine::llbitsize_of_real(ccx, ccx.int_type);
let name = if allow_overlap {
if int_size == 32 {
"llvm.memmove.p0i8.p0i8.i32"
} else {
"llvm.memmove.p0i8.p0i8.i64"
}
} else {
if int_size == 32 {
"llvm.memcpy.p0i8.p0i8.i32"
} else {
"llvm.memcpy.p0i8.p0i8.i64"
}
};
let decl = bcx.fcx.llfn;
let first_real_arg = bcx.fcx.arg_pos(0u);
let dst_ptr = PointerCast(bcx, get_param(decl, first_real_arg), Type::i8p(ccx));
let src_ptr = PointerCast(bcx, get_param(decl, first_real_arg + 1), Type::i8p(ccx));
let count = get_param(decl, first_real_arg + 2);
let llfn = ccx.get_intrinsic(&name);
Call(bcx, llfn, [dst_ptr, src_ptr, Mul(bcx, size, count), align, C_i1(ccx, volatile)], []);
RetVoid(bcx);
}
fn memset_intrinsic(bcx: &Block, volatile: bool, tp_ty: ty::t) {
let ccx = bcx.ccx();
let lltp_ty = type_of::type_of(ccx, tp_ty);
let align = C_i32(ccx, machine::llalign_of_min(ccx, lltp_ty) as i32);
let size = machine::llsize_of(ccx, lltp_ty);
let name = if machine::llbitsize_of_real(ccx, ccx.int_type) == 32 {
"llvm.memset.p0i8.i32"
} else {
"llvm.memset.p0i8.i64"
};
let decl = bcx.fcx.llfn;
let first_real_arg = bcx.fcx.arg_pos(0u);
let dst_ptr = PointerCast(bcx, get_param(decl, first_real_arg), Type::i8p(ccx));
let val = get_param(decl, first_real_arg + 1);
let count = get_param(decl, first_real_arg + 2);
let llfn = ccx.get_intrinsic(&name);
Call(bcx, llfn, [dst_ptr, val, Mul(bcx, size, count), align, C_i1(ccx, volatile)], []);
RetVoid(bcx);
}
fn count_zeros_intrinsic(bcx: &Block, name: &'static str) {
let x = get_param(bcx.fcx.llfn, bcx.fcx.arg_pos(0u));
let y = C_i1(bcx.ccx(), false);
let llfn = bcx.ccx().get_intrinsic(&name);
let llcall = Call(bcx, llfn, [x, y], []);
Ret(bcx, llcall);
}
let output_type = ty::ty_fn_ret(ty::node_id_to_type(ccx.tcx(), item.id));
let arena = TypedArena::new();
let fcx = new_fn_ctxt(ccx, decl, item.id, false, output_type,
Some(&*substs), Some(item.span), &arena);
init_function(&fcx, true, output_type);
set_always_inline(fcx.llfn);
let mut bcx = fcx.entry_bcx.borrow().clone().unwrap();
let first_real_arg = fcx.arg_pos(0u);
let name = token::get_ident(item.ident);
// This requires that atomic intrinsics follow a specific naming pattern:
// "atomic_<operation>[_<ordering>], and no ordering means SeqCst
if name.get().starts_with("atomic_") {
let split: Vec<&str> = name.get().split('_').collect();
assert!(split.len() >= 2, "Atomic intrinsic not correct format");
let order = if split.len() == 2 {
lib::llvm::SequentiallyConsistent
} else {
match *split.get(2) {
"relaxed" => lib::llvm::Monotonic,
"acq" => lib::llvm::Acquire,
"rel" => lib::llvm::Release,
"acqrel" => lib::llvm::AcquireRelease,
_ => ccx.sess().fatal("unknown ordering in atomic intrinsic")
}
};
match *split.get(1) {
"cxchg" => {
// See include/llvm/IR/Instructions.h for their implementation
// of this, I assume that it's good enough for us to use for
// now.
let strongest_failure_ordering = match order {
lib::llvm::NotAtomic | lib::llvm::Unordered =>
ccx.sess().fatal("cmpxchg must be atomic"),
lib::llvm::Monotonic | lib::llvm::Release =>
lib::llvm::Monotonic,
lib::llvm::Acquire | lib::llvm::AcquireRelease =>
lib::llvm::Acquire,
lib::llvm::SequentiallyConsistent =>
lib::llvm::SequentiallyConsistent,
};
let old = AtomicCmpXchg(bcx, get_param(decl, first_real_arg),
get_param(decl, first_real_arg + 1u),
get_param(decl, first_real_arg + 2u),
order, strongest_failure_ordering);
Ret(bcx, old);
}
"load" => {
let old = AtomicLoad(bcx, get_param(decl, first_real_arg),
order);
Ret(bcx, old);
}
"store" => {
AtomicStore(bcx, get_param(decl, first_real_arg + 1u),
get_param(decl, first_real_arg),
order);
RetVoid(bcx);
}
"fence" => {
AtomicFence(bcx, order);
RetVoid(bcx);
}
op => {
// These are all AtomicRMW ops
let atom_op = match op {
"xchg" => lib::llvm::Xchg,
"xadd" => lib::llvm::Add,
"xsub" => lib::llvm::Sub,
"and" => lib::llvm::And,
"nand" => lib::llvm::Nand,
"or" => lib::llvm::Or,
"xor" => lib::llvm::Xor,
"max" => lib::llvm::Max,
"min" => lib::llvm::Min,
"umax" => lib::llvm::UMax,
"umin" => lib::llvm::UMin,
_ => ccx.sess().fatal("unknown atomic operation")
};
let old = AtomicRMW(bcx, atom_op, get_param(decl, first_real_arg),
get_param(decl, first_real_arg + 1u),
order);
Ret(bcx, old);
}
}
fcx.cleanup();
return;
}
match name.get() {
"abort" => {
let llfn = bcx.ccx().get_intrinsic(&("llvm.trap"));
Call(bcx, llfn, [], []);
Unreachable(bcx);
}
"breakpoint" => {
let llfn = bcx.ccx().get_intrinsic(&("llvm.debugtrap"));
Call(bcx, llfn, [], []);
RetVoid(bcx);
}
"size_of" => {
let tp_ty = *substs.tys.get(0);
let lltp_ty = type_of::type_of(ccx, tp_ty);
Ret(bcx, C_uint(ccx, machine::llsize_of_real(ccx, lltp_ty) as uint));
}
"move_val_init" => {
// Create a datum reflecting the value being moved.
// Use `appropriate_mode` so that the datum is by ref
// if the value is non-immediate. Note that, with
// intrinsics, there are no argument cleanups to
// concern ourselves with, so we can use an rvalue datum.
let tp_ty = *substs.tys.get(0);
let mode = appropriate_rvalue_mode(ccx, tp_ty);
let src = Datum {val: get_param(decl, first_real_arg + 1u),
ty: tp_ty,
kind: Rvalue(mode)};
bcx = src.store_to(bcx, get_param(decl, first_real_arg));
RetVoid(bcx);
}
"min_align_of" => {
let tp_ty = *substs.tys.get(0);
let lltp_ty = type_of::type_of(ccx, tp_ty);
Ret(bcx, C_uint(ccx, machine::llalign_of_min(ccx, lltp_ty) as uint));
}
"pref_align_of"=> {
let tp_ty = *substs.tys.get(0);
let lltp_ty = type_of::type_of(ccx, tp_ty);
Ret(bcx, C_uint(ccx, machine::llalign_of_pref(ccx, lltp_ty) as uint));
}
"get_tydesc" => {
let tp_ty = *substs.tys.get(0);
let static_ti = get_tydesc(ccx, tp_ty);
glue::lazily_emit_visit_glue(ccx, &*static_ti);
// FIXME (#3730): ideally this shouldn't need a cast,
// but there's a circularity between translating rust types to llvm
// types and having a tydesc type available. So I can't directly access
// the llvm type of intrinsic::TyDesc struct.
let userland_tydesc_ty = type_of::type_of(ccx, output_type);
let td = PointerCast(bcx, static_ti.tydesc, userland_tydesc_ty);
Ret(bcx, td);
}
"type_id" => {
let hash = ty::hash_crate_independent(
ccx.tcx(),
*substs.tys.get(0),
&ccx.link_meta.crate_hash);
// NB: This needs to be kept in lockstep with the TypeId struct in
// libstd/unstable/intrinsics.rs
let val = C_named_struct(type_of::type_of(ccx, output_type),
[C_u64(ccx, hash)]);
match bcx.fcx.llretptr.get() {
Some(ptr) => {
Store(bcx, val, ptr);
RetVoid(bcx);
},
None => Ret(bcx, val)
}
}
"init" => {
let tp_ty = *substs.tys.get(0);
let lltp_ty = type_of::type_of(ccx, tp_ty);
match bcx.fcx.llretptr.get() {
Some(ptr) => { Store(bcx, C_null(lltp_ty), ptr); RetVoid(bcx); }
None if ty::type_is_nil(tp_ty) => RetVoid(bcx),
None => Ret(bcx, C_null(lltp_ty)),
}
}
"uninit" => {
// Do nothing, this is effectively a no-op
let retty = *substs.tys.get(0);
if type_is_immediate(ccx, retty) && !return_type_is_void(ccx, retty) {
unsafe {
Ret(bcx, lib::llvm::llvm::LLVMGetUndef(type_of(ccx, retty).to_ref()));
}
} else {
RetVoid(bcx)
}
}
"forget" => {
RetVoid(bcx);
}
"transmute" => {
let (in_type, out_type) = (*substs.tys.get(0), *substs.tys.get(1));
let llintype = type_of::type_of(ccx, in_type);
let llouttype = type_of::type_of(ccx, out_type);
let in_type_size = machine::llbitsize_of_real(ccx, llintype);
let out_type_size = machine::llbitsize_of_real(ccx, llouttype);
if in_type_size != out_type_size {
let sp = match ccx.tcx.map.get(ref_id.unwrap()) {
ast_map::NodeExpr(e) => e.span,
_ => fail!("transmute has non-expr arg"),
};
ccx.sess().span_fatal(sp,
format!("transmute called on types with different sizes: \
{intype} ({insize, plural, =1{# bit} other{# bits}}) to \
{outtype} ({outsize, plural, =1{# bit} other{# bits}})",
intype = ty_to_str(ccx.tcx(), in_type),
insize = in_type_size as uint,
outtype = ty_to_str(ccx.tcx(), out_type),
outsize = out_type_size as uint));
}
if !return_type_is_void(ccx, out_type) {
let llsrcval = get_param(decl, first_real_arg);
if type_is_immediate(ccx, in_type) {
match fcx.llretptr.get() {
Some(llretptr) => {
Store(bcx, llsrcval, PointerCast(bcx, llretptr, llintype.ptr_to()));
RetVoid(bcx);
}
None => match (llintype.kind(), llouttype.kind()) {
(Pointer, other) | (other, Pointer) if other != Pointer => {
let tmp = Alloca(bcx, llouttype, "");
Store(bcx, llsrcval, PointerCast(bcx, tmp, llintype.ptr_to()));
Ret(bcx, Load(bcx, tmp));
}
(Array, _) | (_, Array) | (Struct, _) | (_, Struct) => {
let tmp = Alloca(bcx, llouttype, "");
Store(bcx, llsrcval, PointerCast(bcx, tmp, llintype.ptr_to()));
Ret(bcx, Load(bcx, tmp));
}
_ => {
let llbitcast = BitCast(bcx, llsrcval, llouttype);
Ret(bcx, llbitcast)
}
}
}
} else if type_is_immediate(ccx, out_type) {
let llsrcptr = PointerCast(bcx, llsrcval, llouttype.ptr_to());
let ll_load = Load(bcx, llsrcptr);
Ret(bcx, ll_load);
} else {
// NB: Do not use a Load and Store here. This causes massive
// code bloat when `transmute` is used on large structural
// types.
let lldestptr = fcx.llretptr.get().unwrap();
let lldestptr = PointerCast(bcx, lldestptr, Type::i8p(ccx));
let llsrcptr = PointerCast(bcx, llsrcval, Type::i8p(ccx));
let llsize = llsize_of(ccx, llintype);
call_memcpy(bcx, lldestptr, llsrcptr, llsize, 1);
RetVoid(bcx);
};
} else {
RetVoid(bcx);
}
}
"needs_drop" => {
let tp_ty = *substs.tys.get(0);
Ret(bcx, C_bool(ccx, ty::type_needs_drop(ccx.tcx(), tp_ty)));
}
"owns_managed" => {
let tp_ty = *substs.tys.get(0);
Ret(bcx, C_bool(ccx, ty::type_contents(ccx.tcx(), tp_ty).owns_managed()));
}
"visit_tydesc" => {
let td = get_param(decl, first_real_arg);
let visitor = get_param(decl, first_real_arg + 1u);
let td = PointerCast(bcx, td, ccx.tydesc_type().ptr_to());
glue::call_visit_glue(bcx, visitor, td, None);
RetVoid(bcx);
}
"offset" => {
let ptr = get_param(decl, first_real_arg);
let offset = get_param(decl, first_real_arg + 1);
let lladdr = InBoundsGEP(bcx, ptr, [offset]);
Ret(bcx, lladdr);
}
"copy_nonoverlapping_memory" => copy_intrinsic(bcx, false, false, *substs.tys.get(0)),
"copy_memory" => copy_intrinsic(bcx, true, false, *substs.tys.get(0)),
"set_memory" => memset_intrinsic(bcx, false, *substs.tys.get(0)),
"volatile_copy_nonoverlapping_memory" =>
copy_intrinsic(bcx, false, true, *substs.tys.get(0)),
"volatile_copy_memory" => copy_intrinsic(bcx, true, true, *substs.tys.get(0)),
"volatile_set_memory" => memset_intrinsic(bcx, true, *substs.tys.get(0)),
"ctlz8" => count_zeros_intrinsic(bcx, "llvm.ctlz.i8"),
"ctlz16" => count_zeros_intrinsic(bcx, "llvm.ctlz.i16"),
"ctlz32" => count_zeros_intrinsic(bcx, "llvm.ctlz.i32"),
"ctlz64" => count_zeros_intrinsic(bcx, "llvm.ctlz.i64"),
"cttz8" => count_zeros_intrinsic(bcx, "llvm.cttz.i8"),
"cttz16" => count_zeros_intrinsic(bcx, "llvm.cttz.i16"),
"cttz32" => count_zeros_intrinsic(bcx, "llvm.cttz.i32"),
"cttz64" => count_zeros_intrinsic(bcx, "llvm.cttz.i64"),
"volatile_load" => volatile_load_intrinsic(bcx),
"volatile_store" => volatile_store_intrinsic(bcx),
"i8_add_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.sadd.with.overflow.i8", output_type),
"i16_add_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.sadd.with.overflow.i16", output_type),
"i32_add_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.sadd.with.overflow.i32", output_type),
"i64_add_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.sadd.with.overflow.i64", output_type),
"u8_add_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.uadd.with.overflow.i8", output_type),
"u16_add_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.uadd.with.overflow.i16", output_type),
"u32_add_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.uadd.with.overflow.i32", output_type),
"u64_add_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.uadd.with.overflow.i64", output_type),
"i8_sub_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.ssub.with.overflow.i8", output_type),
"i16_sub_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.ssub.with.overflow.i16", output_type),
"i32_sub_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.ssub.with.overflow.i32", output_type),
"i64_sub_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.ssub.with.overflow.i64", output_type),
"u8_sub_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.usub.with.overflow.i8", output_type),
"u16_sub_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.usub.with.overflow.i16", output_type),
"u32_sub_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.usub.with.overflow.i32", output_type),
"u64_sub_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.usub.with.overflow.i64", output_type),
"i8_mul_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.smul.with.overflow.i8", output_type),
"i16_mul_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.smul.with.overflow.i16", output_type),
"i32_mul_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.smul.with.overflow.i32", output_type),
"i64_mul_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.smul.with.overflow.i64", output_type),
"u8_mul_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.umul.with.overflow.i8", output_type),
"u16_mul_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.umul.with.overflow.i16", output_type),
"u32_mul_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.umul.with.overflow.i32", output_type),
"u64_mul_with_overflow" =>
with_overflow_instrinsic(bcx, "llvm.umul.with.overflow.i64", output_type),
_ => {
// Could we make this an enum rather than a string? does it get
// checked earlier?
ccx.sess().span_bug(item.span, "unknown intrinsic");
}
}
fcx.cleanup();
}