rust/src/librustc/middle/mem_categorization.rs
2014-04-02 11:17:20 -04:00

1329 lines
46 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* # Categorization
*
* The job of the categorization module is to analyze an expression to
* determine what kind of memory is used in evaluating it (for example,
* where dereferences occur and what kind of pointer is dereferenced;
* whether the memory is mutable; etc)
*
* Categorization effectively transforms all of our expressions into
* expressions of the following forms (the actual enum has many more
* possibilities, naturally, but they are all variants of these base
* forms):
*
* E = rvalue // some computed rvalue
* | x // address of a local variable or argument
* | *E // deref of a ptr
* | E.comp // access to an interior component
*
* Imagine a routine ToAddr(Expr) that evaluates an expression and returns an
* address where the result is to be found. If Expr is an lvalue, then this
* is the address of the lvalue. If Expr is an rvalue, this is the address of
* some temporary spot in memory where the result is stored.
*
* Now, cat_expr() classies the expression Expr and the address A=ToAddr(Expr)
* as follows:
*
* - cat: what kind of expression was this? This is a subset of the
* full expression forms which only includes those that we care about
* for the purpose of the analysis.
* - mutbl: mutability of the address A
* - ty: the type of data found at the address A
*
* The resulting categorization tree differs somewhat from the expressions
* themselves. For example, auto-derefs are explicit. Also, an index a[b] is
* decomposed into two operations: a derefence to reach the array data and
* then an index to jump forward to the relevant item.
*
* ## By-reference upvars
*
* One part of the translation which may be non-obvious is that we translate
* closure upvars into the dereference of a borrowed pointer; this more closely
* resembles the runtime translation. So, for example, if we had:
*
* let mut x = 3;
* let y = 5;
* let inc = || x += y;
*
* Then when we categorize `x` (*within* the closure) we would yield a
* result of `*x'`, effectively, where `x'` is a `cat_upvar` reference
* tied to `x`. The type of `x'` will be a borrowed pointer.
*/
#![allow(non_camel_case_types)]
use middle::ty;
use middle::typeck;
use util::ppaux::{ty_to_str, Repr};
use syntax::ast::{MutImmutable, MutMutable};
use syntax::ast;
use syntax::codemap::Span;
use syntax::print::pprust;
use syntax::parse::token;
#[deriving(Eq)]
pub enum categorization {
cat_rvalue(ty::Region), // temporary val, argument is its scope
cat_static_item,
cat_copied_upvar(CopiedUpvar), // upvar copied into @fn or ~fn env
cat_upvar(ty::UpvarId, ty::UpvarBorrow), // by ref upvar from stack closure
cat_local(ast::NodeId), // local variable
cat_arg(ast::NodeId), // formal argument
cat_deref(cmt, uint, PointerKind), // deref of a ptr
cat_interior(cmt, InteriorKind), // something interior: field, tuple, etc
cat_downcast(cmt), // selects a particular enum variant (*1)
cat_discr(cmt, ast::NodeId), // match discriminant (see preserve())
// (*1) downcast is only required if the enum has more than one variant
}
#[deriving(Eq)]
pub struct CopiedUpvar {
pub upvar_id: ast::NodeId,
pub onceness: ast::Onceness,
}
// different kinds of pointers:
#[deriving(Eq, TotalEq, Hash)]
pub enum PointerKind {
OwnedPtr,
GcPtr,
BorrowedPtr(ty::BorrowKind, ty::Region),
UnsafePtr(ast::Mutability),
}
// We use the term "interior" to mean "something reachable from the
// base without a pointer dereference", e.g. a field
#[deriving(Eq, TotalEq, Hash)]
pub enum InteriorKind {
InteriorField(FieldName),
InteriorElement(ElementKind),
}
#[deriving(Eq, TotalEq, Hash)]
pub enum FieldName {
NamedField(ast::Name),
PositionalField(uint)
}
#[deriving(Eq, TotalEq, Hash)]
pub enum ElementKind {
VecElement,
StrElement,
OtherElement,
}
#[deriving(Eq, TotalEq, Hash, Show)]
pub enum MutabilityCategory {
McImmutable, // Immutable.
McDeclared, // Directly declared as mutable.
McInherited, // Inherited from the fact that owner is mutable.
}
// `cmt`: "Category, Mutability, and Type".
//
// a complete categorization of a value indicating where it originated
// and how it is located, as well as the mutability of the memory in
// which the value is stored.
//
// *WARNING* The field `cmt.type` is NOT necessarily the same as the
// result of `node_id_to_type(cmt.id)`. This is because the `id` is
// always the `id` of the node producing the type; in an expression
// like `*x`, the type of this deref node is the deref'd type (`T`),
// but in a pattern like `@x`, the `@x` pattern is again a
// dereference, but its type is the type *before* the dereference
// (`@T`). So use `cmt.type` to find the type of the value in a consistent
// fashion. For more details, see the method `cat_pattern`
#[deriving(Eq)]
pub struct cmt_ {
pub id: ast::NodeId, // id of expr/pat producing this value
pub span: Span, // span of same expr/pat
pub cat: categorization, // categorization of expr
pub mutbl: MutabilityCategory, // mutability of expr as lvalue
pub ty: ty::t // type of the expr (*see WARNING above*)
}
pub type cmt = @cmt_;
// We pun on *T to mean both actual deref of a ptr as well
// as accessing of components:
pub enum deref_kind {
deref_ptr(PointerKind),
deref_interior(InteriorKind),
}
// Categorizes a derefable type. Note that we include vectors and strings as
// derefable (we model an index as the combination of a deref and then a
// pointer adjustment).
pub fn opt_deref_kind(t: ty::t) -> Option<deref_kind> {
match ty::get(t).sty {
ty::ty_uniq(_) |
ty::ty_trait(~ty::TyTrait { store: ty::UniqTraitStore, .. }) |
ty::ty_vec(_, ty::vstore_uniq) |
ty::ty_str(ty::vstore_uniq) |
ty::ty_closure(~ty::ClosureTy {sigil: ast::OwnedSigil, ..}) => {
Some(deref_ptr(OwnedPtr))
}
ty::ty_rptr(r, mt) |
ty::ty_vec(mt, ty::vstore_slice(r)) => {
let kind = ty::BorrowKind::from_mutbl(mt.mutbl);
Some(deref_ptr(BorrowedPtr(kind, r)))
}
ty::ty_trait(~ty::TyTrait { store: ty::RegionTraitStore(r), mutability: m, .. }) => {
let kind = ty::BorrowKind::from_mutbl(m);
Some(deref_ptr(BorrowedPtr(kind, r)))
}
ty::ty_str(ty::vstore_slice(r)) |
ty::ty_closure(~ty::ClosureTy {sigil: ast::BorrowedSigil,
region: r, ..}) => {
Some(deref_ptr(BorrowedPtr(ty::ImmBorrow, r)))
}
ty::ty_box(..) => {
Some(deref_ptr(GcPtr))
}
ty::ty_ptr(ref mt) => {
Some(deref_ptr(UnsafePtr(mt.mutbl)))
}
ty::ty_enum(..) |
ty::ty_struct(..) => { // newtype
Some(deref_interior(InteriorField(PositionalField(0))))
}
ty::ty_vec(_, ty::vstore_fixed(_)) |
ty::ty_str(ty::vstore_fixed(_)) => {
Some(deref_interior(InteriorElement(element_kind(t))))
}
_ => None
}
}
pub fn deref_kind(tcx: &ty::ctxt, t: ty::t) -> deref_kind {
match opt_deref_kind(t) {
Some(k) => k,
None => {
tcx.sess.bug(
format!("deref_cat() invoked on non-derefable type {}",
ty_to_str(tcx, t)));
}
}
}
trait ast_node {
fn id(&self) -> ast::NodeId;
fn span(&self) -> Span;
}
impl ast_node for ast::Expr {
fn id(&self) -> ast::NodeId { self.id }
fn span(&self) -> Span { self.span }
}
impl ast_node for ast::Pat {
fn id(&self) -> ast::NodeId { self.id }
fn span(&self) -> Span { self.span }
}
pub struct MemCategorizationContext<TYPER> {
pub typer: TYPER
}
pub type McResult<T> = Result<T, ()>;
/**
* The `Typer` trait provides the interface for the mem-categorization
* module to the results of the type check. It can be used to query
* the type assigned to an expression node, to inquire after adjustments,
* and so on.
*
* This interface is needed because mem-categorization is used from
* two places: `regionck` and `borrowck`. `regionck` executes before
* type inference is complete, and hence derives types and so on from
* intermediate tables. This also implies that type errors can occur,
* and hence `node_ty()` and friends return a `Result` type -- any
* error will propagate back up through the mem-categorization
* routines.
*
* In the borrow checker, in contrast, type checking is complete and we
* know that no errors have occurred, so we simply consult the tcx and we
* can be sure that only `Ok` results will occur.
*/
pub trait Typer {
fn tcx<'a>(&'a self) -> &'a ty::ctxt;
fn node_ty(&mut self, id: ast::NodeId) -> McResult<ty::t>;
fn node_method_ty(&self, method_call: typeck::MethodCall) -> Option<ty::t>;
fn adjustment(&mut self, node_id: ast::NodeId) -> Option<@ty::AutoAdjustment>;
fn is_method_call(&mut self, id: ast::NodeId) -> bool;
fn temporary_scope(&mut self, rvalue_id: ast::NodeId) -> Option<ast::NodeId>;
fn upvar_borrow(&mut self, upvar_id: ty::UpvarId) -> ty::UpvarBorrow;
}
impl MutabilityCategory {
pub fn from_mutbl(m: ast::Mutability) -> MutabilityCategory {
match m {
MutImmutable => McImmutable,
MutMutable => McDeclared
}
}
pub fn from_borrow_kind(borrow_kind: ty::BorrowKind) -> MutabilityCategory {
match borrow_kind {
ty::ImmBorrow => McImmutable,
ty::UniqueImmBorrow => McImmutable,
ty::MutBorrow => McDeclared,
}
}
pub fn from_pointer_kind(base_mutbl: MutabilityCategory,
ptr: PointerKind) -> MutabilityCategory {
match ptr {
OwnedPtr => {
base_mutbl.inherit()
}
BorrowedPtr(borrow_kind, _) => {
MutabilityCategory::from_borrow_kind(borrow_kind)
}
GcPtr => {
McImmutable
}
UnsafePtr(m) => {
MutabilityCategory::from_mutbl(m)
}
}
}
pub fn inherit(&self) -> MutabilityCategory {
match *self {
McImmutable => McImmutable,
McDeclared => McInherited,
McInherited => McInherited,
}
}
pub fn is_mutable(&self) -> bool {
match *self {
McImmutable => false,
McInherited => true,
McDeclared => true,
}
}
pub fn is_immutable(&self) -> bool {
match *self {
McImmutable => true,
McDeclared | McInherited => false
}
}
pub fn to_user_str(&self) -> &'static str {
match *self {
McDeclared | McInherited => "mutable",
McImmutable => "immutable",
}
}
}
macro_rules! if_ok(
($inp: expr) => (
match $inp {
Ok(v) => { v }
Err(e) => { return Err(e); }
}
)
)
impl<TYPER:Typer> MemCategorizationContext<TYPER> {
fn tcx<'a>(&'a self) -> &'a ty::ctxt {
self.typer.tcx()
}
fn adjustment(&mut self, id: ast::NodeId) -> Option<@ty::AutoAdjustment> {
self.typer.adjustment(id)
}
fn expr_ty(&mut self, expr: &ast::Expr) -> McResult<ty::t> {
self.typer.node_ty(expr.id)
}
fn expr_ty_adjusted(&mut self, expr: &ast::Expr) -> McResult<ty::t> {
let unadjusted_ty = if_ok!(self.expr_ty(expr));
let adjustment = self.adjustment(expr.id);
Ok(ty::adjust_ty(self.tcx(), expr.span, expr.id, unadjusted_ty, adjustment,
|method_call| self.typer.node_method_ty(method_call)))
}
fn node_ty(&mut self, id: ast::NodeId) -> McResult<ty::t> {
self.typer.node_ty(id)
}
fn pat_ty(&mut self, pat: @ast::Pat) -> McResult<ty::t> {
self.typer.node_ty(pat.id)
}
pub fn cat_expr(&mut self, expr: &ast::Expr) -> McResult<cmt> {
match self.adjustment(expr.id) {
None => {
// No adjustments.
self.cat_expr_unadjusted(expr)
}
Some(adjustment) => {
match *adjustment {
ty::AutoObject(..) => {
// Implicity casts a concrete object to trait object
// so just patch up the type
let expr_ty = if_ok!(self.expr_ty_adjusted(expr));
let expr_cmt = if_ok!(self.cat_expr_unadjusted(expr));
Ok(@cmt_ {ty: expr_ty, ..*expr_cmt})
}
ty::AutoAddEnv(..) => {
// Convert a bare fn to a closure by adding NULL env.
// Result is an rvalue.
let expr_ty = if_ok!(self.expr_ty_adjusted(expr));
Ok(self.cat_rvalue_node(expr.id(), expr.span(), expr_ty))
}
ty::AutoDerefRef(
ty::AutoDerefRef {
autoref: Some(_), ..}) => {
// Equivalent to &*expr or something similar.
// Result is an rvalue.
let expr_ty = if_ok!(self.expr_ty_adjusted(expr));
Ok(self.cat_rvalue_node(expr.id(), expr.span(), expr_ty))
}
ty::AutoDerefRef(
ty::AutoDerefRef {
autoref: None, autoderefs: autoderefs}) => {
// Equivalent to *expr or something similar.
self.cat_expr_autoderefd(expr, autoderefs)
}
}
}
}
}
pub fn cat_expr_autoderefd(&mut self, expr: &ast::Expr, autoderefs: uint)
-> McResult<cmt> {
let mut cmt = if_ok!(self.cat_expr_unadjusted(expr));
for deref in range(1u, autoderefs + 1) {
cmt = self.cat_deref(expr, cmt, deref);
}
return Ok(cmt);
}
pub fn cat_expr_unadjusted(&mut self, expr: &ast::Expr) -> McResult<cmt> {
debug!("cat_expr: id={} expr={}", expr.id, expr.repr(self.tcx()));
let expr_ty = if_ok!(self.expr_ty(expr));
match expr.node {
ast::ExprUnary(ast::UnDeref, e_base) => {
let base_cmt = if_ok!(self.cat_expr(e_base));
Ok(self.cat_deref(expr, base_cmt, 0))
}
ast::ExprField(base, f_name, _) => {
let base_cmt = if_ok!(self.cat_expr(base));
Ok(self.cat_field(expr, base_cmt, f_name, expr_ty))
}
ast::ExprIndex(base, _) => {
if self.typer.is_method_call(expr.id) {
return Ok(self.cat_rvalue_node(expr.id(), expr.span(), expr_ty));
}
let base_cmt = if_ok!(self.cat_expr(base));
Ok(self.cat_index(expr, base_cmt, 0))
}
ast::ExprPath(_) => {
let def = self.tcx().def_map.borrow().get_copy(&expr.id);
self.cat_def(expr.id, expr.span, expr_ty, def)
}
ast::ExprParen(e) => self.cat_expr_unadjusted(e),
ast::ExprAddrOf(..) | ast::ExprCall(..) |
ast::ExprAssign(..) | ast::ExprAssignOp(..) |
ast::ExprFnBlock(..) | ast::ExprProc(..) | ast::ExprRet(..) |
ast::ExprUnary(..) |
ast::ExprMethodCall(..) | ast::ExprCast(..) | ast::ExprVstore(..) |
ast::ExprVec(..) | ast::ExprTup(..) | ast::ExprIf(..) |
ast::ExprBinary(..) | ast::ExprWhile(..) |
ast::ExprBlock(..) | ast::ExprLoop(..) | ast::ExprMatch(..) |
ast::ExprLit(..) | ast::ExprBreak(..) | ast::ExprMac(..) |
ast::ExprAgain(..) | ast::ExprStruct(..) | ast::ExprRepeat(..) |
ast::ExprInlineAsm(..) | ast::ExprBox(..) => {
Ok(self.cat_rvalue_node(expr.id(), expr.span(), expr_ty))
}
ast::ExprForLoop(..) => fail!("non-desugared expr_for_loop")
}
}
pub fn cat_def(&mut self,
id: ast::NodeId,
span: Span,
expr_ty: ty::t,
def: ast::Def)
-> McResult<cmt> {
debug!("cat_def: id={} expr={}",
id, expr_ty.repr(self.tcx()));
match def {
ast::DefStruct(..) | ast::DefVariant(..) => {
Ok(self.cat_rvalue_node(id, span, expr_ty))
}
ast::DefFn(..) | ast::DefStaticMethod(..) | ast::DefMod(_) |
ast::DefForeignMod(_) | ast::DefStatic(_, false) |
ast::DefUse(_) | ast::DefTrait(_) | ast::DefTy(_) | ast::DefPrimTy(_) |
ast::DefTyParam(..) | ast::DefTyParamBinder(..) | ast::DefRegion(_) |
ast::DefLabel(_) | ast::DefSelfTy(..) | ast::DefMethod(..) => {
Ok(@cmt_ {
id:id,
span:span,
cat:cat_static_item,
mutbl: McImmutable,
ty:expr_ty
})
}
ast::DefStatic(_, true) => {
Ok(@cmt_ {
id:id,
span:span,
cat:cat_static_item,
mutbl: McDeclared,
ty:expr_ty
})
}
ast::DefArg(vid, binding_mode) => {
// Idea: make this could be rewritten to model by-ref
// stuff as `&const` and `&mut`?
// m: mutability of the argument
let m = match binding_mode {
ast::BindByValue(ast::MutMutable) => McDeclared,
_ => McImmutable
};
Ok(@cmt_ {
id: id,
span: span,
cat: cat_arg(vid),
mutbl: m,
ty:expr_ty
})
}
ast::DefUpvar(var_id, _, fn_node_id, _) => {
let ty = if_ok!(self.node_ty(fn_node_id));
match ty::get(ty).sty {
ty::ty_closure(ref closure_ty) => {
// Decide whether to use implicit reference or by copy/move
// capture for the upvar. This, combined with the onceness,
// determines whether the closure can move out of it.
let var_is_refd = match (closure_ty.sigil, closure_ty.onceness) {
// Many-shot stack closures can never move out.
(ast::BorrowedSigil, ast::Many) => true,
// 1-shot stack closures can move out.
(ast::BorrowedSigil, ast::Once) => false,
// Heap closures always capture by copy/move, and can
// move out if they are once.
(ast::OwnedSigil, _) |
(ast::ManagedSigil, _) => false,
};
if var_is_refd {
self.cat_upvar(id, span, var_id, fn_node_id)
} else {
// FIXME #2152 allow mutation of moved upvars
Ok(@cmt_ {
id:id,
span:span,
cat:cat_copied_upvar(CopiedUpvar {
upvar_id: var_id,
onceness: closure_ty.onceness}),
mutbl:McImmutable,
ty:expr_ty
})
}
}
_ => {
self.tcx().sess.span_bug(
span,
format!("Upvar of non-closure {} - {}",
fn_node_id, ty.repr(self.tcx())));
}
}
}
ast::DefLocal(vid, binding_mode) |
ast::DefBinding(vid, binding_mode) => {
// by-value/by-ref bindings are local variables
let m = match binding_mode {
ast::BindByValue(ast::MutMutable) => McDeclared,
_ => McImmutable
};
Ok(@cmt_ {
id: id,
span: span,
cat: cat_local(vid),
mutbl: m,
ty: expr_ty
})
}
}
}
fn cat_upvar(&mut self,
id: ast::NodeId,
span: Span,
var_id: ast::NodeId,
fn_node_id: ast::NodeId)
-> McResult<cmt> {
/*!
* Upvars through a closure are in fact indirect
* references. That is, when a closure refers to a
* variable from a parent stack frame like `x = 10`,
* that is equivalent to `*x_ = 10` where `x_` is a
* borrowed pointer (`&mut x`) created when the closure
* was created and store in the environment. This
* equivalence is expose in the mem-categorization.
*/
let upvar_id = ty::UpvarId { var_id: var_id,
closure_expr_id: fn_node_id };
let upvar_borrow = self.typer.upvar_borrow(upvar_id);
let var_ty = if_ok!(self.node_ty(var_id));
// We can't actually represent the types of all upvars
// as user-describable types, since upvars support const
// and unique-imm borrows! Therefore, we cheat, and just
// give err type. Nobody should be inspecting this type anyhow.
let upvar_ty = ty::mk_err();
let base_cmt = @cmt_ {
id:id,
span:span,
cat:cat_upvar(upvar_id, upvar_borrow),
mutbl:McImmutable,
ty:upvar_ty,
};
let ptr = BorrowedPtr(upvar_borrow.kind, upvar_borrow.region);
let deref_cmt = @cmt_ {
id:id,
span:span,
cat:cat_deref(base_cmt, 0, ptr),
mutbl:MutabilityCategory::from_borrow_kind(upvar_borrow.kind),
ty:var_ty,
};
Ok(deref_cmt)
}
pub fn cat_rvalue_node(&mut self,
id: ast::NodeId,
span: Span,
expr_ty: ty::t)
-> cmt {
match self.typer.temporary_scope(id) {
Some(scope) => {
self.cat_rvalue(id, span, ty::ReScope(scope), expr_ty)
}
None => {
self.cat_rvalue(id, span, ty::ReStatic, expr_ty)
}
}
}
pub fn cat_rvalue(&mut self,
cmt_id: ast::NodeId,
span: Span,
temp_scope: ty::Region,
expr_ty: ty::t) -> cmt {
@cmt_ {
id:cmt_id,
span:span,
cat:cat_rvalue(temp_scope),
mutbl:McDeclared,
ty:expr_ty
}
}
pub fn cat_field<N:ast_node>(&mut self,
node: &N,
base_cmt: cmt,
f_name: ast::Ident,
f_ty: ty::t)
-> cmt {
@cmt_ {
id: node.id(),
span: node.span(),
cat: cat_interior(base_cmt, InteriorField(NamedField(f_name.name))),
mutbl: base_cmt.mutbl.inherit(),
ty: f_ty
}
}
pub fn cat_deref_fn_or_obj<N:ast_node>(&mut self,
node: &N,
base_cmt: cmt,
deref_cnt: uint)
-> cmt {
// Bit of a hack: the "dereference" of a function pointer like
// `@fn()` is a mere logical concept. We interpret it as
// dereferencing the environment pointer; of course, we don't
// know what type lies at the other end, so we just call it
// `()` (the empty tuple).
let opaque_ty = ty::mk_tup(self.tcx(), Vec::new());
self.cat_deref_common(node, base_cmt, deref_cnt, opaque_ty)
}
fn cat_deref<N:ast_node>(&mut self,
node: &N,
base_cmt: cmt,
deref_cnt: uint)
-> cmt {
let method_call = typeck::MethodCall {
expr_id: node.id(),
autoderef: deref_cnt as u32
};
let method_ty = self.typer.node_method_ty(method_call);
debug!("cat_deref: method_call={:?} method_ty={}",
method_call, method_ty.map(|ty| ty.repr(self.tcx())));
let base_cmt = match method_ty {
Some(method_ty) => {
let ref_ty = ty::ty_fn_ret(method_ty);
self.cat_rvalue_node(node.id(), node.span(), ref_ty)
}
None => base_cmt
};
match ty::deref(base_cmt.ty, true) {
Some(mt) => self.cat_deref_common(node, base_cmt, deref_cnt, mt.ty),
None => {
self.tcx().sess.span_bug(
node.span(),
format!("Explicit deref of non-derefable type: {}",
base_cmt.ty.repr(self.tcx())));
}
}
}
fn cat_deref_common<N:ast_node>(&mut self,
node: &N,
base_cmt: cmt,
deref_cnt: uint,
deref_ty: ty::t)
-> cmt {
let (m, cat) = match deref_kind(self.tcx(), base_cmt.ty) {
deref_ptr(ptr) => {
// for unique ptrs, we inherit mutability from the
// owning reference.
(MutabilityCategory::from_pointer_kind(base_cmt.mutbl, ptr),
cat_deref(base_cmt, deref_cnt, ptr))
}
deref_interior(interior) => {
(base_cmt.mutbl.inherit(), cat_interior(base_cmt, interior))
}
};
@cmt_ {
id: node.id(),
span: node.span(),
cat: cat,
mutbl: m,
ty: deref_ty
}
}
pub fn cat_index<N:ast_node>(&mut self,
elt: &N,
base_cmt: cmt,
derefs: uint)
-> cmt {
//! Creates a cmt for an indexing operation (`[]`); this
//! indexing operation may occurs as part of an
//! AutoBorrowVec, which when converting a `~[]` to an `&[]`
//! effectively takes the address of the 0th element.
//!
//! One subtle aspect of indexing that may not be
//! immediately obvious: for anything other than a fixed-length
//! vector, an operation like `x[y]` actually consists of two
//! disjoint (from the point of view of borrowck) operations.
//! The first is a deref of `x` to create a pointer `p` that points
//! at the first element in the array. The second operation is
//! an index which adds `y*sizeof(T)` to `p` to obtain the
//! pointer to `x[y]`. `cat_index` will produce a resulting
//! cmt containing both this deref and the indexing,
//! presuming that `base_cmt` is not of fixed-length type.
//!
//! In the event that a deref is needed, the "deref count"
//! is taken from the parameter `derefs`. See the comment
//! on the def'n of `root_map_key` in borrowck/mod.rs
//! for more details about deref counts; the summary is
//! that `derefs` should be 0 for an explicit indexing
//! operation and N+1 for an indexing that is part of
//! an auto-adjustment, where N is the number of autoderefs
//! in that adjustment.
//!
//! # Parameters
//! - `elt`: the AST node being indexed
//! - `base_cmt`: the cmt of `elt`
//! - `derefs`: the deref number to be used for
//! the implicit index deref, if any (see above)
let element_ty = match ty::index(base_cmt.ty) {
Some(ref mt) => mt.ty,
None => {
self.tcx().sess.span_bug(
elt.span(),
format!("Explicit index of non-index type `{}`",
base_cmt.ty.repr(self.tcx())));
}
};
return match deref_kind(self.tcx(), base_cmt.ty) {
deref_ptr(ptr) => {
// for unique ptrs, we inherit mutability from the
// owning reference.
let m = MutabilityCategory::from_pointer_kind(base_cmt.mutbl, ptr);
// the deref is explicit in the resulting cmt
let deref_cmt = @cmt_ {
id:elt.id(),
span:elt.span(),
cat:cat_deref(base_cmt, derefs, ptr),
mutbl:m,
ty:element_ty
};
interior(elt, deref_cmt, base_cmt.ty, m.inherit(), element_ty)
}
deref_interior(_) => {
// fixed-length vectors have no deref
let m = base_cmt.mutbl.inherit();
interior(elt, base_cmt, base_cmt.ty, m, element_ty)
}
};
fn interior<N: ast_node>(elt: &N,
of_cmt: cmt,
vec_ty: ty::t,
mutbl: MutabilityCategory,
element_ty: ty::t) -> cmt
{
@cmt_ {
id:elt.id(),
span:elt.span(),
cat:cat_interior(of_cmt, InteriorElement(element_kind(vec_ty))),
mutbl:mutbl,
ty:element_ty
}
}
}
pub fn cat_slice_pattern(&mut self,
vec_cmt: cmt,
slice_pat: @ast::Pat)
-> McResult<(cmt, ast::Mutability, ty::Region)> {
/*!
* Given a pattern P like: `[_, ..Q, _]`, where `vec_cmt` is
* the cmt for `P`, `slice_pat` is the pattern `Q`, returns:
* - a cmt for `Q`
* - the mutability and region of the slice `Q`
*
* These last two bits of info happen to be things that
* borrowck needs.
*/
let slice_ty = if_ok!(self.node_ty(slice_pat.id));
let (slice_mutbl, slice_r) = vec_slice_info(self.tcx(),
slice_pat,
slice_ty);
let cmt_slice = self.cat_index(slice_pat, vec_cmt, 0);
return Ok((cmt_slice, slice_mutbl, slice_r));
fn vec_slice_info(tcx: &ty::ctxt,
pat: @ast::Pat,
slice_ty: ty::t)
-> (ast::Mutability, ty::Region) {
/*!
* In a pattern like [a, b, ..c], normally `c` has slice type,
* but if you have [a, b, ..ref c], then the type of `ref c`
* will be `&&[]`, so to extract the slice details we have
* to recurse through rptrs.
*/
match ty::get(slice_ty).sty {
ty::ty_vec(slice_mt, ty::vstore_slice(slice_r)) => {
(slice_mt.mutbl, slice_r)
}
ty::ty_rptr(_, ref mt) => {
vec_slice_info(tcx, pat, mt.ty)
}
_ => {
tcx.sess.span_bug(
pat.span,
format!("Type of slice pattern is not a slice"));
}
}
}
}
pub fn cat_imm_interior<N:ast_node>(&mut self,
node: &N,
base_cmt: cmt,
interior_ty: ty::t,
interior: InteriorKind)
-> cmt {
@cmt_ {
id: node.id(),
span: node.span(),
cat: cat_interior(base_cmt, interior),
mutbl: base_cmt.mutbl.inherit(),
ty: interior_ty
}
}
pub fn cat_downcast<N:ast_node>(&mut self,
node: &N,
base_cmt: cmt,
downcast_ty: ty::t)
-> cmt {
@cmt_ {
id: node.id(),
span: node.span(),
cat: cat_downcast(base_cmt),
mutbl: base_cmt.mutbl.inherit(),
ty: downcast_ty
}
}
pub fn cat_pattern(&mut self,
cmt: cmt,
pat: @ast::Pat,
op: |&mut MemCategorizationContext<TYPER>,
cmt,
@ast::Pat|)
-> McResult<()> {
// Here, `cmt` is the categorization for the value being
// matched and pat is the pattern it is being matched against.
//
// In general, the way that this works is that we walk down
// the pattern, constructing a cmt that represents the path
// that will be taken to reach the value being matched.
//
// When we encounter named bindings, we take the cmt that has
// been built up and pass it off to guarantee_valid() so that
// we can be sure that the binding will remain valid for the
// duration of the arm.
//
// (*2) There is subtlety concerning the correspondence between
// pattern ids and types as compared to *expression* ids and
// types. This is explained briefly. on the definition of the
// type `cmt`, so go off and read what it says there, then
// come back and I'll dive into a bit more detail here. :) OK,
// back?
//
// In general, the id of the cmt should be the node that
// "produces" the value---patterns aren't executable code
// exactly, but I consider them to "execute" when they match a
// value, and I consider them to produce the value that was
// matched. So if you have something like:
//
// let x = @@3;
// match x {
// @@y { ... }
// }
//
// In this case, the cmt and the relevant ids would be:
//
// CMT Id Type of Id Type of cmt
//
// local(x)->@->@
// ^~~~~~~^ `x` from discr @@int @@int
// ^~~~~~~~~~^ `@@y` pattern node @@int @int
// ^~~~~~~~~~~~~^ `@y` pattern node @int int
//
// You can see that the types of the id and the cmt are in
// sync in the first line, because that id is actually the id
// of an expression. But once we get to pattern ids, the types
// step out of sync again. So you'll see below that we always
// get the type of the *subpattern* and use that.
debug!("cat_pattern: id={} pat={} cmt={}",
pat.id, pprust::pat_to_str(pat),
cmt.repr(self.tcx()));
op(self, cmt, pat);
match pat.node {
ast::PatWild | ast::PatWildMulti => {
// _
}
ast::PatEnum(_, None) => {
// variant(..)
}
ast::PatEnum(_, Some(ref subpats)) => {
match self.tcx().def_map.borrow().find(&pat.id) {
Some(&ast::DefVariant(enum_did, _, _)) => {
// variant(x, y, z)
let downcast_cmt = {
if ty::enum_is_univariant(self.tcx(), enum_did) {
cmt // univariant, no downcast needed
} else {
self.cat_downcast(pat, cmt, cmt.ty)
}
};
for (i, &subpat) in subpats.iter().enumerate() {
let subpat_ty = if_ok!(self.pat_ty(subpat)); // see (*2)
let subcmt =
self.cat_imm_interior(
pat, downcast_cmt, subpat_ty,
InteriorField(PositionalField(i)));
if_ok!(self.cat_pattern(subcmt, subpat, |x,y,z| op(x,y,z)));
}
}
Some(&ast::DefFn(..)) |
Some(&ast::DefStruct(..)) => {
for (i, &subpat) in subpats.iter().enumerate() {
let subpat_ty = if_ok!(self.pat_ty(subpat)); // see (*2)
let cmt_field =
self.cat_imm_interior(
pat, cmt, subpat_ty,
InteriorField(PositionalField(i)));
if_ok!(self.cat_pattern(cmt_field, subpat, |x,y,z| op(x,y,z)));
}
}
Some(&ast::DefStatic(..)) => {
for &subpat in subpats.iter() {
if_ok!(self.cat_pattern(cmt, subpat, |x,y,z| op(x,y,z)));
}
}
_ => {
self.tcx().sess.span_bug(
pat.span,
"enum pattern didn't resolve to enum or struct");
}
}
}
ast::PatIdent(_, _, Some(subpat)) => {
if_ok!(self.cat_pattern(cmt, subpat, op));
}
ast::PatIdent(_, _, None) => {
// nullary variant or identifier: ignore
}
ast::PatStruct(_, ref field_pats, _) => {
// {f1: p1, ..., fN: pN}
for fp in field_pats.iter() {
let field_ty = if_ok!(self.pat_ty(fp.pat)); // see (*2)
let cmt_field = self.cat_field(pat, cmt, fp.ident, field_ty);
if_ok!(self.cat_pattern(cmt_field, fp.pat, |x,y,z| op(x,y,z)));
}
}
ast::PatTup(ref subpats) => {
// (p1, ..., pN)
for (i, &subpat) in subpats.iter().enumerate() {
let subpat_ty = if_ok!(self.pat_ty(subpat)); // see (*2)
let subcmt =
self.cat_imm_interior(
pat, cmt, subpat_ty,
InteriorField(PositionalField(i)));
if_ok!(self.cat_pattern(subcmt, subpat, |x,y,z| op(x,y,z)));
}
}
ast::PatUniq(subpat) | ast::PatRegion(subpat) => {
// @p1, ~p1
let subcmt = self.cat_deref(pat, cmt, 0);
if_ok!(self.cat_pattern(subcmt, subpat, op));
}
ast::PatVec(ref before, slice, ref after) => {
let elt_cmt = self.cat_index(pat, cmt, 0);
for &before_pat in before.iter() {
if_ok!(self.cat_pattern(elt_cmt, before_pat, |x,y,z| op(x,y,z)));
}
for &slice_pat in slice.iter() {
let slice_ty = if_ok!(self.pat_ty(slice_pat));
let slice_cmt = self.cat_rvalue_node(pat.id(), pat.span(), slice_ty);
if_ok!(self.cat_pattern(slice_cmt, slice_pat, |x,y,z| op(x,y,z)));
}
for &after_pat in after.iter() {
if_ok!(self.cat_pattern(elt_cmt, after_pat, |x,y,z| op(x,y,z)));
}
}
ast::PatLit(_) | ast::PatRange(_, _) => {
/*always ok*/
}
}
Ok(())
}
pub fn cmt_to_str(&self, cmt: cmt) -> ~str {
match cmt.cat {
cat_static_item => {
~"static item"
}
cat_copied_upvar(_) => {
~"captured outer variable in a heap closure"
}
cat_rvalue(..) => {
~"non-lvalue"
}
cat_local(_) => {
~"local variable"
}
cat_arg(..) => {
~"argument"
}
cat_deref(base, _, pk) => {
match base.cat {
cat_upvar(..) => {
format!("captured outer variable")
}
_ => {
format!("dereference of `{}`-pointer", ptr_sigil(pk))
}
}
}
cat_interior(_, InteriorField(NamedField(_))) => {
~"field"
}
cat_interior(_, InteriorField(PositionalField(_))) => {
~"anonymous field"
}
cat_interior(_, InteriorElement(VecElement)) => {
~"vec content"
}
cat_interior(_, InteriorElement(StrElement)) => {
~"str content"
}
cat_interior(_, InteriorElement(OtherElement)) => {
~"indexed content"
}
cat_upvar(..) => {
~"captured outer variable"
}
cat_discr(cmt, _) => {
self.cmt_to_str(cmt)
}
cat_downcast(cmt) => {
self.cmt_to_str(cmt)
}
}
}
}
pub enum InteriorSafety {
InteriorUnsafe,
InteriorSafe
}
pub enum AliasableReason {
AliasableManaged,
AliasableBorrowed,
AliasableOther,
AliasableStatic(InteriorSafety),
AliasableStaticMut(InteriorSafety),
}
impl cmt_ {
pub fn guarantor(self) -> cmt {
//! Returns `self` after stripping away any owned pointer derefs or
//! interior content. The return value is basically the `cmt` which
//! determines how long the value in `self` remains live.
match self.cat {
cat_rvalue(..) |
cat_static_item |
cat_copied_upvar(..) |
cat_local(..) |
cat_arg(..) |
cat_deref(_, _, UnsafePtr(..)) |
cat_deref(_, _, GcPtr(..)) |
cat_deref(_, _, BorrowedPtr(..)) |
cat_upvar(..) => {
@self
}
cat_downcast(b) |
cat_discr(b, _) |
cat_interior(b, _) |
cat_deref(b, _, OwnedPtr) => {
b.guarantor()
}
}
}
pub fn freely_aliasable(&self, ctxt: &ty::ctxt) -> Option<AliasableReason> {
/*!
* Returns `Some(_)` if this lvalue represents a freely aliasable
* pointer type.
*/
// Maybe non-obvious: copied upvars can only be considered
// non-aliasable in once closures, since any other kind can be
// aliased and eventually recused.
match self.cat {
cat_deref(b, _, BorrowedPtr(ty::MutBorrow, _)) |
cat_deref(b, _, BorrowedPtr(ty::UniqueImmBorrow, _)) |
cat_downcast(b) |
cat_deref(b, _, OwnedPtr) |
cat_interior(b, _) |
cat_discr(b, _) => {
// Aliasability depends on base cmt
b.freely_aliasable(ctxt)
}
cat_copied_upvar(CopiedUpvar {onceness: ast::Once, ..}) |
cat_rvalue(..) |
cat_local(..) |
cat_upvar(..) |
cat_arg(_) |
cat_deref(_, _, UnsafePtr(..)) => { // yes, it's aliasable, but...
None
}
cat_copied_upvar(CopiedUpvar {onceness: ast::Many, ..}) => {
Some(AliasableOther)
}
cat_static_item(..) => {
let int_safe = if ty::type_interior_is_unsafe(ctxt, self.ty) {
InteriorUnsafe
} else {
InteriorSafe
};
if self.mutbl.is_mutable() {
Some(AliasableStaticMut(int_safe))
} else {
Some(AliasableStatic(int_safe))
}
}
cat_deref(_, _, GcPtr) => {
Some(AliasableManaged)
}
cat_deref(_, _, BorrowedPtr(ty::ImmBorrow, _)) => {
Some(AliasableBorrowed)
}
}
}
}
impl Repr for cmt_ {
fn repr(&self, tcx: &ty::ctxt) -> ~str {
format!("\\{{} id:{} m:{:?} ty:{}\\}",
self.cat.repr(tcx),
self.id,
self.mutbl,
self.ty.repr(tcx))
}
}
impl Repr for categorization {
fn repr(&self, tcx: &ty::ctxt) -> ~str {
match *self {
cat_static_item |
cat_rvalue(..) |
cat_copied_upvar(..) |
cat_local(..) |
cat_upvar(..) |
cat_arg(..) => {
format!("{:?}", *self)
}
cat_deref(cmt, derefs, ptr) => {
format!("{}-{}{}->",
cmt.cat.repr(tcx),
ptr_sigil(ptr),
derefs)
}
cat_interior(cmt, interior) => {
format!("{}.{}",
cmt.cat.repr(tcx),
interior.repr(tcx))
}
cat_downcast(cmt) => {
format!("{}->(enum)", cmt.cat.repr(tcx))
}
cat_discr(cmt, _) => {
cmt.cat.repr(tcx)
}
}
}
}
pub fn ptr_sigil(ptr: PointerKind) -> &'static str {
match ptr {
OwnedPtr => "~",
GcPtr => "@",
BorrowedPtr(ty::ImmBorrow, _) => "&",
BorrowedPtr(ty::MutBorrow, _) => "&mut",
BorrowedPtr(ty::UniqueImmBorrow, _) => "&unique",
UnsafePtr(_) => "*"
}
}
impl Repr for InteriorKind {
fn repr(&self, _tcx: &ty::ctxt) -> ~str {
match *self {
InteriorField(NamedField(fld)) => {
token::get_name(fld).get().to_str()
}
InteriorField(PositionalField(i)) => format!("\\#{:?}", i),
InteriorElement(_) => ~"[]",
}
}
}
fn element_kind(t: ty::t) -> ElementKind {
match ty::get(t).sty {
ty::ty_vec(..) => VecElement,
ty::ty_str(..) => StrElement,
_ => OtherElement
}
}