rust/src/libcollections/ring_buf.rs
bors 5be210c418 Auto merge of #22058 - Gankro:all-the-impls, r=huonw
Working on just knocking these out for all the collections so that there's something there.
2015-02-15 03:07:59 +00:00

2866 lines
86 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! This crate implements a double-ended queue with `O(1)` amortized inserts and removals from both
//! ends of the container. It also has `O(1)` indexing like a vector. The contained elements are
//! not required to be copyable, and the queue will be sendable if the contained type is sendable.
#![stable(feature = "rust1", since = "1.0.0")]
use core::prelude::*;
use core::cmp::Ordering;
use core::default::Default;
use core::fmt;
use core::iter::{self, repeat, FromIterator, IntoIterator, RandomAccessIterator};
use core::marker;
use core::mem;
use core::num::{Int, UnsignedInt};
use core::ops::{Index, IndexMut};
use core::ptr;
use core::raw::Slice as RawSlice;
use core::hash::{Writer, Hash, Hasher};
use core::cmp;
use alloc::heap;
static INITIAL_CAPACITY: usize = 7; // 2^3 - 1
static MINIMUM_CAPACITY: usize = 1; // 2 - 1
/// `RingBuf` is a circular buffer, which can be used as a double-ended queue efficiently.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct RingBuf<T> {
// tail and head are pointers into the buffer. Tail always points
// to the first element that could be read, Head always points
// to where data should be written.
// If tail == head the buffer is empty. The length of the ringbuf
// is defined as the distance between the two.
tail: usize,
head: usize,
cap: usize,
ptr: *mut T
}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Send> Send for RingBuf<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Sync> Sync for RingBuf<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone> Clone for RingBuf<T> {
fn clone(&self) -> RingBuf<T> {
self.iter().cloned().collect()
}
}
#[unsafe_destructor]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Drop for RingBuf<T> {
fn drop(&mut self) {
self.clear();
unsafe {
if mem::size_of::<T>() != 0 {
heap::deallocate(self.ptr as *mut u8,
self.cap * mem::size_of::<T>(),
mem::min_align_of::<T>())
}
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Default for RingBuf<T> {
#[inline]
fn default() -> RingBuf<T> { RingBuf::new() }
}
impl<T> RingBuf<T> {
/// Turn ptr into a slice
#[inline]
unsafe fn buffer_as_slice(&self) -> &[T] {
mem::transmute(RawSlice { data: self.ptr, len: self.cap })
}
/// Turn ptr into a mut slice
#[inline]
unsafe fn buffer_as_mut_slice(&mut self) -> &mut [T] {
mem::transmute(RawSlice { data: self.ptr, len: self.cap })
}
/// Moves an element out of the buffer
#[inline]
unsafe fn buffer_read(&mut self, off: usize) -> T {
ptr::read(self.ptr.offset(off as isize))
}
/// Writes an element into the buffer, moving it.
#[inline]
unsafe fn buffer_write(&mut self, off: usize, t: T) {
ptr::write(self.ptr.offset(off as isize), t);
}
/// Returns true iff the buffer is at capacity
#[inline]
fn is_full(&self) -> bool { self.cap - self.len() == 1 }
/// Returns the index in the underlying buffer for a given logical element index.
#[inline]
fn wrap_index(&self, idx: usize) -> usize { wrap_index(idx, self.cap) }
/// Copies a contiguous block of memory len long from src to dst
#[inline]
unsafe fn copy(&self, dst: usize, src: usize, len: usize) {
debug_assert!(dst + len <= self.cap, "dst={} src={} len={} cap={}", dst, src, len,
self.cap);
debug_assert!(src + len <= self.cap, "dst={} src={} len={} cap={}", dst, src, len,
self.cap);
ptr::copy_memory(
self.ptr.offset(dst as isize),
self.ptr.offset(src as isize),
len);
}
/// Copies a contiguous block of memory len long from src to dst
#[inline]
unsafe fn copy_nonoverlapping(&self, dst: usize, src: usize, len: usize) {
debug_assert!(dst + len <= self.cap, "dst={} src={} len={} cap={}", dst, src, len,
self.cap);
debug_assert!(src + len <= self.cap, "dst={} src={} len={} cap={}", dst, src, len,
self.cap);
ptr::copy_nonoverlapping_memory(
self.ptr.offset(dst as isize),
self.ptr.offset(src as isize),
len);
}
}
impl<T> RingBuf<T> {
/// Creates an empty `RingBuf`.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new() -> RingBuf<T> {
RingBuf::with_capacity(INITIAL_CAPACITY)
}
/// Creates an empty `RingBuf` with space for at least `n` elements.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn with_capacity(n: usize) -> RingBuf<T> {
// +1 since the ringbuffer always leaves one space empty
let cap = cmp::max(n + 1, MINIMUM_CAPACITY + 1).next_power_of_two();
assert!(cap > n, "capacity overflow");
let size = cap.checked_mul(mem::size_of::<T>())
.expect("capacity overflow");
let ptr = if mem::size_of::<T>() != 0 {
unsafe {
let ptr = heap::allocate(size, mem::min_align_of::<T>()) as *mut T;;
if ptr.is_null() { ::alloc::oom() }
ptr
}
} else {
heap::EMPTY as *mut T
};
RingBuf {
tail: 0,
head: 0,
cap: cap,
ptr: ptr
}
}
/// Retrieves an element in the `RingBuf` by index.
///
/// # Examples
///
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push_back(3);
/// buf.push_back(4);
/// buf.push_back(5);
/// assert_eq!(buf.get(1).unwrap(), &4);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn get(&self, i: usize) -> Option<&T> {
if i < self.len() {
let idx = self.wrap_index(self.tail + i);
unsafe { Some(&*self.ptr.offset(idx as isize)) }
} else {
None
}
}
/// Retrieves an element in the `RingBuf` mutably by index.
///
/// # Examples
///
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push_back(3);
/// buf.push_back(4);
/// buf.push_back(5);
/// match buf.get_mut(1) {
/// None => {}
/// Some(elem) => {
/// *elem = 7;
/// }
/// }
///
/// assert_eq!(buf[1], 7);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn get_mut(&mut self, i: usize) -> Option<&mut T> {
if i < self.len() {
let idx = self.wrap_index(self.tail + i);
unsafe { Some(&mut *self.ptr.offset(idx as isize)) }
} else {
None
}
}
/// Swaps elements at indices `i` and `j`.
///
/// `i` and `j` may be equal.
///
/// Fails if there is no element with either index.
///
/// # Examples
///
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push_back(3);
/// buf.push_back(4);
/// buf.push_back(5);
/// buf.swap(0, 2);
/// assert_eq!(buf[0], 5);
/// assert_eq!(buf[2], 3);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn swap(&mut self, i: usize, j: usize) {
assert!(i < self.len());
assert!(j < self.len());
let ri = self.wrap_index(self.tail + i);
let rj = self.wrap_index(self.tail + j);
unsafe {
ptr::swap(self.ptr.offset(ri as isize), self.ptr.offset(rj as isize))
}
}
/// Returns the number of elements the `RingBuf` can hold without
/// reallocating.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let buf: RingBuf<i32> = RingBuf::with_capacity(10);
/// assert!(buf.capacity() >= 10);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn capacity(&self) -> usize { self.cap - 1 }
/// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
/// given `RingBuf`. Does nothing if the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it requests. Therefore
/// capacity can not be relied upon to be precisely minimal. Prefer `reserve` if future
/// insertions are expected.
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut buf: RingBuf<i32> = vec![1].into_iter().collect();
/// buf.reserve_exact(10);
/// assert!(buf.capacity() >= 11);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn reserve_exact(&mut self, additional: usize) {
self.reserve(additional);
}
/// Reserves capacity for at least `additional` more elements to be inserted in the given
/// `Ringbuf`. The collection may reserve more space to avoid frequent reallocations.
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut buf: RingBuf<i32> = vec![1].into_iter().collect();
/// buf.reserve(10);
/// assert!(buf.capacity() >= 11);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn reserve(&mut self, additional: usize) {
let new_len = self.len() + additional;
assert!(new_len + 1 > self.len(), "capacity overflow");
if new_len > self.capacity() {
let count = (new_len + 1).next_power_of_two();
assert!(count >= new_len + 1);
if mem::size_of::<T>() != 0 {
let old = self.cap * mem::size_of::<T>();
let new = count.checked_mul(mem::size_of::<T>())
.expect("capacity overflow");
unsafe {
self.ptr = heap::reallocate(self.ptr as *mut u8,
old,
new,
mem::min_align_of::<T>()) as *mut T;
if self.ptr.is_null() { ::alloc::oom() }
}
}
// Move the shortest contiguous section of the ring buffer
// T H
// [o o o o o o o . ]
// T H
// A [o o o o o o o . . . . . . . . . ]
// H T
// [o o . o o o o o ]
// T H
// B [. . . o o o o o o o . . . . . . ]
// H T
// [o o o o o . o o ]
// H T
// C [o o o o o . . . . . . . . . o o ]
let oldcap = self.cap;
self.cap = count;
if self.tail <= self.head { // A
// Nop
} else if self.head < oldcap - self.tail { // B
unsafe {
self.copy_nonoverlapping(oldcap, 0, self.head);
}
self.head += oldcap;
debug_assert!(self.head > self.tail);
} else { // C
let new_tail = count - (oldcap - self.tail);
unsafe {
self.copy_nonoverlapping(new_tail, self.tail, oldcap - self.tail);
}
self.tail = new_tail;
debug_assert!(self.head < self.tail);
}
debug_assert!(self.head < self.cap);
debug_assert!(self.tail < self.cap);
debug_assert!(self.cap.count_ones() == 1);
}
}
/// Shrinks the capacity of the ringbuf as much as possible.
///
/// It will drop down as close as possible to the length but the allocator may still inform the
/// ringbuf that there is space for a few more elements.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::with_capacity(15);
/// buf.extend(0..4);
/// assert_eq!(buf.capacity(), 15);
/// buf.shrink_to_fit();
/// assert!(buf.capacity() >= 4);
/// ```
pub fn shrink_to_fit(&mut self) {
// +1 since the ringbuffer always leaves one space empty
// len + 1 can't overflow for an existing, well-formed ringbuf.
let target_cap = cmp::max(self.len() + 1, MINIMUM_CAPACITY + 1).next_power_of_two();
if target_cap < self.cap {
// There are three cases of interest:
// All elements are out of desired bounds
// Elements are contiguous, and head is out of desired bounds
// Elements are discontiguous, and tail is out of desired bounds
//
// At all other times, element positions are unaffected.
//
// Indicates that elements at the head should be moved.
let head_outside = self.head == 0 || self.head >= target_cap;
// Move elements from out of desired bounds (positions after target_cap)
if self.tail >= target_cap && head_outside {
// T H
// [. . . . . . . . o o o o o o o . ]
// T H
// [o o o o o o o . ]
unsafe {
self.copy_nonoverlapping(0, self.tail, self.len());
}
self.head = self.len();
self.tail = 0;
} else if self.tail != 0 && self.tail < target_cap && head_outside {
// T H
// [. . . o o o o o o o . . . . . . ]
// H T
// [o o . o o o o o ]
let len = self.wrap_index(self.head - target_cap);
unsafe {
self.copy_nonoverlapping(0, target_cap, len);
}
self.head = len;
debug_assert!(self.head < self.tail);
} else if self.tail >= target_cap {
// H T
// [o o o o o . . . . . . . . . o o ]
// H T
// [o o o o o . o o ]
debug_assert!(self.wrap_index(self.head - 1) < target_cap);
let len = self.cap - self.tail;
let new_tail = target_cap - len;
unsafe {
self.copy_nonoverlapping(new_tail, self.tail, len);
}
self.tail = new_tail;
debug_assert!(self.head < self.tail);
}
if mem::size_of::<T>() != 0 {
let old = self.cap * mem::size_of::<T>();
let new_size = target_cap * mem::size_of::<T>();
unsafe {
self.ptr = heap::reallocate(self.ptr as *mut u8,
old,
new_size,
mem::min_align_of::<T>()) as *mut T;
if self.ptr.is_null() { ::alloc::oom() }
}
}
self.cap = target_cap;
debug_assert!(self.head < self.cap);
debug_assert!(self.tail < self.cap);
debug_assert!(self.cap.count_ones() == 1);
}
}
/// Shorten a ringbuf, dropping excess elements from the back.
///
/// If `len` is greater than the ringbuf's current length, this has no
/// effect.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push_back(5);
/// buf.push_back(10);
/// buf.push_back(15);
/// buf.truncate(1);
/// assert_eq!(buf.len(), 1);
/// assert_eq!(Some(&5), buf.get(0));
/// ```
#[unstable(feature = "collections",
reason = "matches collection reform specification; waiting on panic semantics")]
pub fn truncate(&mut self, len: usize) {
for _ in len..self.len() {
self.pop_back();
}
}
/// Returns a front-to-back iterator.
///
/// # Examples
///
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push_back(5);
/// buf.push_back(3);
/// buf.push_back(4);
/// let b: &[_] = &[&5, &3, &4];
/// assert_eq!(buf.iter().collect::<Vec<&i32>>().as_slice(), b);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter(&self) -> Iter<T> {
Iter {
tail: self.tail,
head: self.head,
ring: unsafe { self.buffer_as_slice() }
}
}
/// Returns a front-to-back iterator that returns mutable references.
///
/// # Examples
///
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push_back(5);
/// buf.push_back(3);
/// buf.push_back(4);
/// for num in buf.iter_mut() {
/// *num = *num - 2;
/// }
/// let b: &[_] = &[&mut 3, &mut 1, &mut 2];
/// assert_eq!(&buf.iter_mut().collect::<Vec<&mut i32>>()[], b);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter_mut(&mut self) -> IterMut<T> {
IterMut {
tail: self.tail,
head: self.head,
cap: self.cap,
ptr: self.ptr,
marker: marker::ContravariantLifetime,
}
}
/// Consumes the list into an iterator yielding elements by value.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn into_iter(self) -> IntoIter<T> {
IntoIter {
inner: self,
}
}
/// Returns a pair of slices which contain, in order, the contents of the
/// `RingBuf`.
#[inline]
#[unstable(feature = "collections",
reason = "matches collection reform specification, waiting for dust to settle")]
pub fn as_slices(&self) -> (&[T], &[T]) {
unsafe {
let contiguous = self.is_contiguous();
let buf = self.buffer_as_slice();
if contiguous {
let (empty, buf) = buf.split_at(0);
(&buf[self.tail..self.head], empty)
} else {
let (mid, right) = buf.split_at(self.tail);
let (left, _) = mid.split_at(self.head);
(right, left)
}
}
}
/// Returns a pair of slices which contain, in order, the contents of the
/// `RingBuf`.
#[inline]
#[unstable(feature = "collections",
reason = "matches collection reform specification, waiting for dust to settle")]
pub fn as_mut_slices(&mut self) -> (&mut [T], &mut [T]) {
unsafe {
let contiguous = self.is_contiguous();
let head = self.head;
let tail = self.tail;
let buf = self.buffer_as_mut_slice();
if contiguous {
let (empty, buf) = buf.split_at_mut(0);
(&mut buf[tail .. head], empty)
} else {
let (mid, right) = buf.split_at_mut(tail);
let (left, _) = mid.split_at_mut(head);
(right, left)
}
}
}
/// Returns the number of elements in the `RingBuf`.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut v = RingBuf::new();
/// assert_eq!(v.len(), 0);
/// v.push_back(1);
/// assert_eq!(v.len(), 1);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn len(&self) -> usize { count(self.tail, self.head, self.cap) }
/// Returns true if the buffer contains no elements
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut v = RingBuf::new();
/// assert!(v.is_empty());
/// v.push_front(1);
/// assert!(!v.is_empty());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn is_empty(&self) -> bool { self.len() == 0 }
/// Creates a draining iterator that clears the `RingBuf` and iterates over
/// the removed items from start to end.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut v = RingBuf::new();
/// v.push_back(1);
/// assert_eq!(v.drain().next(), Some(1));
/// assert!(v.is_empty());
/// ```
#[inline]
#[unstable(feature = "collections",
reason = "matches collection reform specification, waiting for dust to settle")]
pub fn drain(&mut self) -> Drain<T> {
Drain {
inner: self,
}
}
/// Clears the buffer, removing all values.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut v = RingBuf::new();
/// v.push_back(1);
/// v.clear();
/// assert!(v.is_empty());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn clear(&mut self) {
self.drain();
}
/// Provides a reference to the front element, or `None` if the sequence is
/// empty.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut d = RingBuf::new();
/// assert_eq!(d.front(), None);
///
/// d.push_back(1);
/// d.push_back(2);
/// assert_eq!(d.front(), Some(&1));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn front(&self) -> Option<&T> {
if !self.is_empty() { Some(&self[0]) } else { None }
}
/// Provides a mutable reference to the front element, or `None` if the
/// sequence is empty.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut d = RingBuf::new();
/// assert_eq!(d.front_mut(), None);
///
/// d.push_back(1);
/// d.push_back(2);
/// match d.front_mut() {
/// Some(x) => *x = 9,
/// None => (),
/// }
/// assert_eq!(d.front(), Some(&9));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn front_mut(&mut self) -> Option<&mut T> {
if !self.is_empty() { Some(&mut self[0]) } else { None }
}
/// Provides a reference to the back element, or `None` if the sequence is
/// empty.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut d = RingBuf::new();
/// assert_eq!(d.back(), None);
///
/// d.push_back(1);
/// d.push_back(2);
/// assert_eq!(d.back(), Some(&2));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn back(&self) -> Option<&T> {
if !self.is_empty() { Some(&self[self.len() - 1]) } else { None }
}
/// Provides a mutable reference to the back element, or `None` if the
/// sequence is empty.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut d = RingBuf::new();
/// assert_eq!(d.back(), None);
///
/// d.push_back(1);
/// d.push_back(2);
/// match d.back_mut() {
/// Some(x) => *x = 9,
/// None => (),
/// }
/// assert_eq!(d.back(), Some(&9));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn back_mut(&mut self) -> Option<&mut T> {
let len = self.len();
if !self.is_empty() { Some(&mut self[len - 1]) } else { None }
}
/// Removes the first element and returns it, or `None` if the sequence is
/// empty.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut d = RingBuf::new();
/// d.push_back(1);
/// d.push_back(2);
///
/// assert_eq!(d.pop_front(), Some(1));
/// assert_eq!(d.pop_front(), Some(2));
/// assert_eq!(d.pop_front(), None);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn pop_front(&mut self) -> Option<T> {
if self.is_empty() {
None
} else {
let tail = self.tail;
self.tail = self.wrap_index(self.tail + 1);
unsafe { Some(self.buffer_read(tail)) }
}
}
/// Inserts an element first in the sequence.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut d = RingBuf::new();
/// d.push_front(1);
/// d.push_front(2);
/// assert_eq!(d.front(), Some(&2));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn push_front(&mut self, t: T) {
if self.is_full() {
self.reserve(1);
debug_assert!(!self.is_full());
}
self.tail = self.wrap_index(self.tail - 1);
let tail = self.tail;
unsafe { self.buffer_write(tail, t); }
}
/// Appends an element to the back of a buffer
///
/// # Examples
///
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push_back(1);
/// buf.push_back(3);
/// assert_eq!(3, *buf.back().unwrap());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn push_back(&mut self, t: T) {
if self.is_full() {
self.reserve(1);
debug_assert!(!self.is_full());
}
let head = self.head;
self.head = self.wrap_index(self.head + 1);
unsafe { self.buffer_write(head, t) }
}
/// Removes the last element from a buffer and returns it, or `None` if
/// it is empty.
///
/// # Examples
///
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// assert_eq!(buf.pop_back(), None);
/// buf.push_back(1);
/// buf.push_back(3);
/// assert_eq!(buf.pop_back(), Some(3));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn pop_back(&mut self) -> Option<T> {
if self.is_empty() {
None
} else {
self.head = self.wrap_index(self.head - 1);
let head = self.head;
unsafe { Some(self.buffer_read(head)) }
}
}
#[inline]
fn is_contiguous(&self) -> bool {
self.tail <= self.head
}
/// Removes an element from anywhere in the ringbuf and returns it, replacing it with the last
/// element.
///
/// This does not preserve ordering, but is O(1).
///
/// Returns `None` if `index` is out of bounds.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// assert_eq!(buf.swap_back_remove(0), None);
/// buf.push_back(5);
/// buf.push_back(99);
/// buf.push_back(15);
/// buf.push_back(20);
/// buf.push_back(10);
/// assert_eq!(buf.swap_back_remove(1), Some(99));
/// ```
#[unstable(feature = "collections",
reason = "the naming of this function may be altered")]
pub fn swap_back_remove(&mut self, index: usize) -> Option<T> {
let length = self.len();
if length > 0 && index < length - 1 {
self.swap(index, length - 1);
} else if index >= length {
return None;
}
self.pop_back()
}
/// Removes an element from anywhere in the ringbuf and returns it, replacing it with the first
/// element.
///
/// This does not preserve ordering, but is O(1).
///
/// Returns `None` if `index` is out of bounds.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// assert_eq!(buf.swap_front_remove(0), None);
/// buf.push_back(15);
/// buf.push_back(5);
/// buf.push_back(10);
/// buf.push_back(99);
/// buf.push_back(20);
/// assert_eq!(buf.swap_front_remove(3), Some(99));
/// ```
#[unstable(feature = "collections",
reason = "the naming of this function may be altered")]
pub fn swap_front_remove(&mut self, index: usize) -> Option<T> {
let length = self.len();
if length > 0 && index < length && index != 0 {
self.swap(index, 0);
} else if index >= length {
return None;
}
self.pop_front()
}
/// Inserts an element at position `i` within the ringbuf. Whichever
/// end is closer to the insertion point will be moved to make room,
/// and all the affected elements will be moved to new positions.
///
/// # Panics
///
/// Panics if `i` is greater than ringbuf's length
///
/// # Examples
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push_back(10);
/// buf.push_back(12);
/// buf.insert(1,11);
/// assert_eq!(Some(&11), buf.get(1));
/// ```
pub fn insert(&mut self, i: usize, t: T) {
assert!(i <= self.len(), "index out of bounds");
if self.is_full() {
self.reserve(1);
debug_assert!(!self.is_full());
}
// Move the least number of elements in the ring buffer and insert
// the given object
//
// At most len/2 - 1 elements will be moved. O(min(n, n-i))
//
// There are three main cases:
// Elements are contiguous
// - special case when tail is 0
// Elements are discontiguous and the insert is in the tail section
// Elements are discontiguous and the insert is in the head section
//
// For each of those there are two more cases:
// Insert is closer to tail
// Insert is closer to head
//
// Key: H - self.head
// T - self.tail
// o - Valid element
// I - Insertion element
// A - The element that should be after the insertion point
// M - Indicates element was moved
let idx = self.wrap_index(self.tail + i);
let distance_to_tail = i;
let distance_to_head = self.len() - i;
let contiguous = self.is_contiguous();
match (contiguous, distance_to_tail <= distance_to_head, idx >= self.tail) {
(true, true, _) if i == 0 => {
// push_front
//
// T
// I H
// [A o o o o o o . . . . . . . . .]
//
// H T
// [A o o o o o o o . . . . . I]
//
self.tail = self.wrap_index(self.tail - 1);
},
(true, true, _) => unsafe {
// contiguous, insert closer to tail:
//
// T I H
// [. . . o o A o o o o . . . . . .]
//
// T H
// [. . o o I A o o o o . . . . . .]
// M M
//
// contiguous, insert closer to tail and tail is 0:
//
//
// T I H
// [o o A o o o o . . . . . . . . .]
//
// H T
// [o I A o o o o o . . . . . . . o]
// M M
let new_tail = self.wrap_index(self.tail - 1);
self.copy(new_tail, self.tail, 1);
// Already moved the tail, so we only copy `i - 1` elements.
self.copy(self.tail, self.tail + 1, i - 1);
self.tail = new_tail;
},
(true, false, _) => unsafe {
// contiguous, insert closer to head:
//
// T I H
// [. . . o o o o A o o . . . . . .]
//
// T H
// [. . . o o o o I A o o . . . . .]
// M M M
self.copy(idx + 1, idx, self.head - idx);
self.head = self.wrap_index(self.head + 1);
},
(false, true, true) => unsafe {
// discontiguous, insert closer to tail, tail section:
//
// H T I
// [o o o o o o . . . . . o o A o o]
//
// H T
// [o o o o o o . . . . o o I A o o]
// M M
self.copy(self.tail - 1, self.tail, i);
self.tail -= 1;
},
(false, false, true) => unsafe {
// discontiguous, insert closer to head, tail section:
//
// H T I
// [o o . . . . . . . o o o o o A o]
//
// H T
// [o o o . . . . . . o o o o o I A]
// M M M M
// copy elements up to new head
self.copy(1, 0, self.head);
// copy last element into empty spot at bottom of buffer
self.copy(0, self.cap - 1, 1);
// move elements from idx to end forward not including ^ element
self.copy(idx + 1, idx, self.cap - 1 - idx);
self.head += 1;
},
(false, true, false) if idx == 0 => unsafe {
// discontiguous, insert is closer to tail, head section,
// and is at index zero in the internal buffer:
//
// I H T
// [A o o o o o o o o o . . . o o o]
//
// H T
// [A o o o o o o o o o . . o o o I]
// M M M
// copy elements up to new tail
self.copy(self.tail - 1, self.tail, self.cap - self.tail);
// copy last element into empty spot at bottom of buffer
self.copy(self.cap - 1, 0, 1);
self.tail -= 1;
},
(false, true, false) => unsafe {
// discontiguous, insert closer to tail, head section:
//
// I H T
// [o o o A o o o o o o . . . o o o]
//
// H T
// [o o I A o o o o o o . . o o o o]
// M M M M M M
// copy elements up to new tail
self.copy(self.tail - 1, self.tail, self.cap - self.tail);
// copy last element into empty spot at bottom of buffer
self.copy(self.cap - 1, 0, 1);
// move elements from idx-1 to end forward not including ^ element
self.copy(0, 1, idx - 1);
self.tail -= 1;
},
(false, false, false) => unsafe {
// discontiguous, insert closer to head, head section:
//
// I H T
// [o o o o A o o . . . . . . o o o]
//
// H T
// [o o o o I A o o . . . . . o o o]
// M M M
self.copy(idx + 1, idx, self.head - idx);
self.head += 1;
}
}
// tail might've been changed so we need to recalculate
let new_idx = self.wrap_index(self.tail + i);
unsafe {
self.buffer_write(new_idx, t);
}
}
/// Removes and returns the element at position `i` from the ringbuf.
/// Whichever end is closer to the removal point will be moved to make
/// room, and all the affected elements will be moved to new positions.
/// Returns `None` if `i` is out of bounds.
///
/// # Examples
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push_back(5);
/// buf.push_back(10);
/// buf.push_back(12);
/// buf.push_back(15);
/// buf.remove(2);
/// assert_eq!(Some(&15), buf.get(2));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn remove(&mut self, i: usize) -> Option<T> {
if self.is_empty() || self.len() <= i {
return None;
}
// There are three main cases:
// Elements are contiguous
// Elements are discontiguous and the removal is in the tail section
// Elements are discontiguous and the removal is in the head section
// - special case when elements are technically contiguous,
// but self.head = 0
//
// For each of those there are two more cases:
// Insert is closer to tail
// Insert is closer to head
//
// Key: H - self.head
// T - self.tail
// o - Valid element
// x - Element marked for removal
// R - Indicates element that is being removed
// M - Indicates element was moved
let idx = self.wrap_index(self.tail + i);
let elem = unsafe {
Some(self.buffer_read(idx))
};
let distance_to_tail = i;
let distance_to_head = self.len() - i;
let contiguous = self.is_contiguous();
match (contiguous, distance_to_tail <= distance_to_head, idx >= self.tail) {
(true, true, _) => unsafe {
// contiguous, remove closer to tail:
//
// T R H
// [. . . o o x o o o o . . . . . .]
//
// T H
// [. . . . o o o o o o . . . . . .]
// M M
self.copy(self.tail + 1, self.tail, i);
self.tail += 1;
},
(true, false, _) => unsafe {
// contiguous, remove closer to head:
//
// T R H
// [. . . o o o o x o o . . . . . .]
//
// T H
// [. . . o o o o o o . . . . . . .]
// M M
self.copy(idx, idx + 1, self.head - idx - 1);
self.head -= 1;
},
(false, true, true) => unsafe {
// discontiguous, remove closer to tail, tail section:
//
// H T R
// [o o o o o o . . . . . o o x o o]
//
// H T
// [o o o o o o . . . . . . o o o o]
// M M
self.copy(self.tail + 1, self.tail, i);
self.tail = self.wrap_index(self.tail + 1);
},
(false, false, false) => unsafe {
// discontiguous, remove closer to head, head section:
//
// R H T
// [o o o o x o o . . . . . . o o o]
//
// H T
// [o o o o o o . . . . . . . o o o]
// M M
self.copy(idx, idx + 1, self.head - idx - 1);
self.head -= 1;
},
(false, false, true) => unsafe {
// discontiguous, remove closer to head, tail section:
//
// H T R
// [o o o . . . . . . o o o o o x o]
//
// H T
// [o o . . . . . . . o o o o o o o]
// M M M M
//
// or quasi-discontiguous, remove next to head, tail section:
//
// H T R
// [. . . . . . . . . o o o o o x o]
//
// T H
// [. . . . . . . . . o o o o o o .]
// M
// draw in elements in the tail section
self.copy(idx, idx + 1, self.cap - idx - 1);
// Prevents underflow.
if self.head != 0 {
// copy first element into empty spot
self.copy(self.cap - 1, 0, 1);
// move elements in the head section backwards
self.copy(0, 1, self.head - 1);
}
self.head = self.wrap_index(self.head - 1);
},
(false, true, false) => unsafe {
// discontiguous, remove closer to tail, head section:
//
// R H T
// [o o x o o o o o o o . . . o o o]
//
// H T
// [o o o o o o o o o o . . . . o o]
// M M M M M
// draw in elements up to idx
self.copy(1, 0, idx);
// copy last element into empty spot
self.copy(0, self.cap - 1, 1);
// move elements from tail to end forward, excluding the last one
self.copy(self.tail + 1, self.tail, self.cap - self.tail - 1);
self.tail = self.wrap_index(self.tail + 1);
}
}
return elem;
}
/// Splits the collection into two at the given index.
///
/// Returns a newly allocated `Self`. `self` contains elements `[0, at)`,
/// and the returned `Self` contains elements `[at, len)`.
///
/// Note that the capacity of `self` does not change.
///
/// # Panics
///
/// Panics if `at > len`
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut buf: RingBuf<_> = vec![1,2,3].into_iter().collect();
/// let buf2 = buf.split_off(1);
/// // buf = [1], buf2 = [2, 3]
/// assert_eq!(buf.len(), 1);
/// assert_eq!(buf2.len(), 2);
/// ```
#[inline]
#[unstable(feature = "collections",
reason = "new API, waiting for dust to settle")]
pub fn split_off(&mut self, at: usize) -> Self {
let len = self.len();
assert!(at <= len, "`at` out of bounds");
let other_len = len - at;
let mut other = RingBuf::with_capacity(other_len);
unsafe {
let (first_half, second_half) = self.as_slices();
let first_len = first_half.len();
let second_len = second_half.len();
if at < first_len {
// `at` lies in the first half.
let amount_in_first = first_len - at;
ptr::copy_nonoverlapping_memory(other.ptr,
first_half.as_ptr().offset(at as isize),
amount_in_first);
// just take all of the second half.
ptr::copy_nonoverlapping_memory(other.ptr.offset(amount_in_first as isize),
second_half.as_ptr(),
second_len);
} else {
// `at` lies in the second half, need to factor in the elements we skipped
// in the first half.
let offset = at - first_len;
let amount_in_second = second_len - offset;
ptr::copy_nonoverlapping_memory(other.ptr,
second_half.as_ptr().offset(offset as isize),
amount_in_second);
}
}
// Cleanup where the ends of the buffers are
self.head = self.wrap_index(self.head - other_len);
other.head = other.wrap_index(other_len);
other
}
/// Moves all the elements of `other` into `Self`, leaving `other` empty.
///
/// # Panics
///
/// Panics if the new number of elements in self overflows a `usize`.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut buf: RingBuf<_> = vec![1, 2, 3].into_iter().collect();
/// let mut buf2: RingBuf<_> = vec![4, 5, 6].into_iter().collect();
/// buf.append(&mut buf2);
/// assert_eq!(buf.len(), 6);
/// assert_eq!(buf2.len(), 0);
/// ```
#[inline]
#[unstable(feature = "collections",
reason = "new API, waiting for dust to settle")]
pub fn append(&mut self, other: &mut Self) {
// naive impl
self.extend(other.drain());
}
}
impl<T: Clone> RingBuf<T> {
/// Modifies the ringbuf in-place so that `len()` is equal to new_len,
/// either by removing excess elements or by appending copies of a value to the back.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push_back(5);
/// buf.push_back(10);
/// buf.push_back(15);
/// buf.resize(2, 0);
/// buf.resize(6, 20);
/// for (a, b) in [5, 10, 20, 20, 20, 20].iter().zip(buf.iter()) {
/// assert_eq!(a, b);
/// }
/// ```
#[unstable(feature = "collections",
reason = "matches collection reform specification; waiting on panic semantics")]
pub fn resize(&mut self, new_len: usize, value: T) {
let len = self.len();
if new_len > len {
self.extend(repeat(value).take(new_len - len))
} else {
self.truncate(new_len);
}
}
}
/// Returns the index in the underlying buffer for a given logical element index.
#[inline]
fn wrap_index(index: usize, size: usize) -> usize {
// size is always a power of 2
index & (size - 1)
}
/// Calculate the number of elements left to be read in the buffer
#[inline]
fn count(tail: usize, head: usize, size: usize) -> usize {
// size is always a power of 2
(head - tail) & (size - 1)
}
/// `RingBuf` iterator.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Iter<'a, T:'a> {
ring: &'a [T],
tail: usize,
head: usize
}
// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
impl<'a, T> Clone for Iter<'a, T> {
fn clone(&self) -> Iter<'a, T> {
Iter {
ring: self.ring,
tail: self.tail,
head: self.head
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a T;
#[inline]
fn next(&mut self) -> Option<&'a T> {
if self.tail == self.head {
return None;
}
let tail = self.tail;
self.tail = wrap_index(self.tail + 1, self.ring.len());
unsafe { Some(self.ring.get_unchecked(tail)) }
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let len = count(self.tail, self.head, self.ring.len());
(len, Some(len))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a T> {
if self.tail == self.head {
return None;
}
self.head = wrap_index(self.head - 1, self.ring.len());
unsafe { Some(self.ring.get_unchecked(self.head)) }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> ExactSizeIterator for Iter<'a, T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> RandomAccessIterator for Iter<'a, T> {
#[inline]
fn indexable(&self) -> usize {
let (len, _) = self.size_hint();
len
}
#[inline]
fn idx(&mut self, j: usize) -> Option<&'a T> {
if j >= self.indexable() {
None
} else {
let idx = wrap_index(self.tail + j, self.ring.len());
unsafe { Some(self.ring.get_unchecked(idx)) }
}
}
}
// FIXME This was implemented differently from Iter because of a problem
// with returning the mutable reference. I couldn't find a way to
// make the lifetime checker happy so, but there should be a way.
/// `RingBuf` mutable iterator.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct IterMut<'a, T:'a> {
ptr: *mut T,
tail: usize,
head: usize,
cap: usize,
marker: marker::ContravariantLifetime<'a>,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Iterator for IterMut<'a, T> {
type Item = &'a mut T;
#[inline]
fn next(&mut self) -> Option<&'a mut T> {
if self.tail == self.head {
return None;
}
let tail = self.tail;
self.tail = wrap_index(self.tail + 1, self.cap);
unsafe {
Some(&mut *self.ptr.offset(tail as isize))
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let len = count(self.tail, self.head, self.cap);
(len, Some(len))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a mut T> {
if self.tail == self.head {
return None;
}
self.head = wrap_index(self.head - 1, self.cap);
unsafe {
Some(&mut *self.ptr.offset(self.head as isize))
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> ExactSizeIterator for IterMut<'a, T> {}
/// A by-value RingBuf iterator
#[stable(feature = "rust1", since = "1.0.0")]
pub struct IntoIter<T> {
inner: RingBuf<T>,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Iterator for IntoIter<T> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> {
self.inner.pop_front()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.inner.len();
(len, Some(len))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> DoubleEndedIterator for IntoIter<T> {
#[inline]
fn next_back(&mut self) -> Option<T> {
self.inner.pop_back()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ExactSizeIterator for IntoIter<T> {}
/// A draining RingBuf iterator
#[unstable(feature = "collections",
reason = "matches collection reform specification, waiting for dust to settle")]
pub struct Drain<'a, T: 'a> {
inner: &'a mut RingBuf<T>,
}
#[unsafe_destructor]
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: 'a> Drop for Drain<'a, T> {
fn drop(&mut self) {
for _ in self.by_ref() {}
self.inner.head = 0;
self.inner.tail = 0;
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: 'a> Iterator for Drain<'a, T> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> {
self.inner.pop_front()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.inner.len();
(len, Some(len))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: 'a> DoubleEndedIterator for Drain<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<T> {
self.inner.pop_back()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: 'a> ExactSizeIterator for Drain<'a, T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: PartialEq> PartialEq for RingBuf<A> {
fn eq(&self, other: &RingBuf<A>) -> bool {
self.len() == other.len() &&
self.iter().zip(other.iter()).all(|(a, b)| a.eq(b))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Eq> Eq for RingBuf<A> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: PartialOrd> PartialOrd for RingBuf<A> {
fn partial_cmp(&self, other: &RingBuf<A>) -> Option<Ordering> {
iter::order::partial_cmp(self.iter(), other.iter())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Ord> Ord for RingBuf<A> {
#[inline]
fn cmp(&self, other: &RingBuf<A>) -> Ordering {
iter::order::cmp(self.iter(), other.iter())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<S: Writer + Hasher, A: Hash<S>> Hash<S> for RingBuf<A> {
fn hash(&self, state: &mut S) {
self.len().hash(state);
for elt in self {
elt.hash(state);
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> Index<usize> for RingBuf<A> {
type Output = A;
#[inline]
fn index(&self, i: &usize) -> &A {
self.get(*i).expect("Out of bounds access")
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> IndexMut<usize> for RingBuf<A> {
#[inline]
fn index_mut(&mut self, i: &usize) -> &mut A {
self.get_mut(*i).expect("Out of bounds access")
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> FromIterator<A> for RingBuf<A> {
fn from_iter<T: Iterator<Item=A>>(iterator: T) -> RingBuf<A> {
let (lower, _) = iterator.size_hint();
let mut deq = RingBuf::with_capacity(lower);
deq.extend(iterator);
deq
}
}
impl<T> IntoIterator for RingBuf<T> {
type IntoIter = IntoIter<T>;
fn into_iter(self) -> IntoIter<T> {
self.into_iter()
}
}
impl<'a, T> IntoIterator for &'a RingBuf<T> {
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
self.iter()
}
}
impl<'a, T> IntoIterator for &'a mut RingBuf<T> {
type IntoIter = IterMut<'a, T>;
fn into_iter(mut self) -> IterMut<'a, T> {
self.iter_mut()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> Extend<A> for RingBuf<A> {
fn extend<T: Iterator<Item=A>>(&mut self, iterator: T) {
for elt in iterator {
self.push_back(elt);
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug> fmt::Debug for RingBuf<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(write!(f, "RingBuf ["));
for (i, e) in self.iter().enumerate() {
if i != 0 { try!(write!(f, ", ")); }
try!(write!(f, "{:?}", *e));
}
write!(f, "]")
}
}
#[cfg(test)]
mod tests {
use self::Taggy::*;
use self::Taggypar::*;
use prelude::*;
use core::iter;
use std::fmt::Debug;
use std::hash::{self, SipHasher};
use test::Bencher;
use test;
use super::RingBuf;
#[test]
#[allow(deprecated)]
fn test_simple() {
let mut d = RingBuf::new();
assert_eq!(d.len(), 0);
d.push_front(17);
d.push_front(42);
d.push_back(137);
assert_eq!(d.len(), 3);
d.push_back(137);
assert_eq!(d.len(), 4);
assert_eq!(*d.front().unwrap(), 42);
assert_eq!(*d.back().unwrap(), 137);
let mut i = d.pop_front();
assert_eq!(i, Some(42));
i = d.pop_back();
assert_eq!(i, Some(137));
i = d.pop_back();
assert_eq!(i, Some(137));
i = d.pop_back();
assert_eq!(i, Some(17));
assert_eq!(d.len(), 0);
d.push_back(3);
assert_eq!(d.len(), 1);
d.push_front(2);
assert_eq!(d.len(), 2);
d.push_back(4);
assert_eq!(d.len(), 3);
d.push_front(1);
assert_eq!(d.len(), 4);
debug!("{}", d[0]);
debug!("{}", d[1]);
debug!("{}", d[2]);
debug!("{}", d[3]);
assert_eq!(d[0], 1);
assert_eq!(d[1], 2);
assert_eq!(d[2], 3);
assert_eq!(d[3], 4);
}
#[cfg(test)]
fn test_parameterized<T:Clone + PartialEq + Debug>(a: T, b: T, c: T, d: T) {
let mut deq = RingBuf::new();
assert_eq!(deq.len(), 0);
deq.push_front(a.clone());
deq.push_front(b.clone());
deq.push_back(c.clone());
assert_eq!(deq.len(), 3);
deq.push_back(d.clone());
assert_eq!(deq.len(), 4);
assert_eq!((*deq.front().unwrap()).clone(), b.clone());
assert_eq!((*deq.back().unwrap()).clone(), d.clone());
assert_eq!(deq.pop_front().unwrap(), b.clone());
assert_eq!(deq.pop_back().unwrap(), d.clone());
assert_eq!(deq.pop_back().unwrap(), c.clone());
assert_eq!(deq.pop_back().unwrap(), a.clone());
assert_eq!(deq.len(), 0);
deq.push_back(c.clone());
assert_eq!(deq.len(), 1);
deq.push_front(b.clone());
assert_eq!(deq.len(), 2);
deq.push_back(d.clone());
assert_eq!(deq.len(), 3);
deq.push_front(a.clone());
assert_eq!(deq.len(), 4);
assert_eq!(deq[0].clone(), a.clone());
assert_eq!(deq[1].clone(), b.clone());
assert_eq!(deq[2].clone(), c.clone());
assert_eq!(deq[3].clone(), d.clone());
}
#[test]
fn test_push_front_grow() {
let mut deq = RingBuf::new();
for i in 0..66 {
deq.push_front(i);
}
assert_eq!(deq.len(), 66);
for i in 0..66 {
assert_eq!(deq[i], 65 - i);
}
let mut deq = RingBuf::new();
for i in 0..66 {
deq.push_back(i);
}
for i in 0..66 {
assert_eq!(deq[i], i);
}
}
#[test]
fn test_index() {
let mut deq = RingBuf::new();
for i in 1..4 {
deq.push_front(i);
}
assert_eq!(deq[1], 2);
}
#[test]
#[should_fail]
fn test_index_out_of_bounds() {
let mut deq = RingBuf::new();
for i in 1..4 {
deq.push_front(i);
}
deq[3];
}
#[bench]
fn bench_new(b: &mut test::Bencher) {
b.iter(|| {
let ring: RingBuf<i32> = RingBuf::new();
test::black_box(ring);
})
}
#[bench]
fn bench_push_back_100(b: &mut test::Bencher) {
let mut deq = RingBuf::with_capacity(101);
b.iter(|| {
for i in 0..100 {
deq.push_back(i);
}
deq.head = 0;
deq.tail = 0;
})
}
#[bench]
fn bench_push_front_100(b: &mut test::Bencher) {
let mut deq = RingBuf::with_capacity(101);
b.iter(|| {
for i in 0..100 {
deq.push_front(i);
}
deq.head = 0;
deq.tail = 0;
})
}
#[bench]
fn bench_pop_back_100(b: &mut test::Bencher) {
let mut deq= RingBuf::<i32>::with_capacity(101);
b.iter(|| {
deq.head = 100;
deq.tail = 0;
while !deq.is_empty() {
test::black_box(deq.pop_back());
}
})
}
#[bench]
fn bench_pop_front_100(b: &mut test::Bencher) {
let mut deq = RingBuf::<i32>::with_capacity(101);
b.iter(|| {
deq.head = 100;
deq.tail = 0;
while !deq.is_empty() {
test::black_box(deq.pop_front());
}
})
}
#[bench]
fn bench_grow_1025(b: &mut test::Bencher) {
b.iter(|| {
let mut deq = RingBuf::new();
for i in 0..1025 {
deq.push_front(i);
}
test::black_box(deq);
})
}
#[bench]
fn bench_iter_1000(b: &mut test::Bencher) {
let ring: RingBuf<_> = (0..1000).collect();
b.iter(|| {
let mut sum = 0;
for &i in &ring {
sum += i;
}
test::black_box(sum);
})
}
#[bench]
fn bench_mut_iter_1000(b: &mut test::Bencher) {
let mut ring: RingBuf<_> = (0..1000).collect();
b.iter(|| {
let mut sum = 0;
for i in &mut ring {
sum += *i;
}
test::black_box(sum);
})
}
#[derive(Clone, PartialEq, Debug)]
enum Taggy {
One(i32),
Two(i32, i32),
Three(i32, i32, i32),
}
#[derive(Clone, PartialEq, Debug)]
enum Taggypar<T> {
Onepar(i32),
Twopar(i32, i32),
Threepar(i32, i32, i32),
}
#[derive(Clone, PartialEq, Debug)]
struct RecCy {
x: i32,
y: i32,
t: Taggy
}
#[test]
fn test_param_int() {
test_parameterized::<i32>(5, 72, 64, 175);
}
#[test]
fn test_param_taggy() {
test_parameterized::<Taggy>(One(1), Two(1, 2), Three(1, 2, 3), Two(17, 42));
}
#[test]
fn test_param_taggypar() {
test_parameterized::<Taggypar<i32>>(Onepar::<i32>(1),
Twopar::<i32>(1, 2),
Threepar::<i32>(1, 2, 3),
Twopar::<i32>(17, 42));
}
#[test]
fn test_param_reccy() {
let reccy1 = RecCy { x: 1, y: 2, t: One(1) };
let reccy2 = RecCy { x: 345, y: 2, t: Two(1, 2) };
let reccy3 = RecCy { x: 1, y: 777, t: Three(1, 2, 3) };
let reccy4 = RecCy { x: 19, y: 252, t: Two(17, 42) };
test_parameterized::<RecCy>(reccy1, reccy2, reccy3, reccy4);
}
#[test]
fn test_with_capacity() {
let mut d = RingBuf::with_capacity(0);
d.push_back(1);
assert_eq!(d.len(), 1);
let mut d = RingBuf::with_capacity(50);
d.push_back(1);
assert_eq!(d.len(), 1);
}
#[test]
fn test_with_capacity_non_power_two() {
let mut d3 = RingBuf::with_capacity(3);
d3.push_back(1);
// X = None, | = lo
// [|1, X, X]
assert_eq!(d3.pop_front(), Some(1));
// [X, |X, X]
assert_eq!(d3.front(), None);
// [X, |3, X]
d3.push_back(3);
// [X, |3, 6]
d3.push_back(6);
// [X, X, |6]
assert_eq!(d3.pop_front(), Some(3));
// Pushing the lo past half way point to trigger
// the 'B' scenario for growth
// [9, X, |6]
d3.push_back(9);
// [9, 12, |6]
d3.push_back(12);
d3.push_back(15);
// There used to be a bug here about how the
// RingBuf made growth assumptions about the
// underlying Vec which didn't hold and lead
// to corruption.
// (Vec grows to next power of two)
//good- [9, 12, 15, X, X, X, X, |6]
//bug- [15, 12, X, X, X, |6, X, X]
assert_eq!(d3.pop_front(), Some(6));
// Which leads us to the following state which
// would be a failure case.
//bug- [15, 12, X, X, X, X, |X, X]
assert_eq!(d3.front(), Some(&9));
}
#[test]
fn test_reserve_exact() {
let mut d = RingBuf::new();
d.push_back(0);
d.reserve_exact(50);
assert!(d.capacity() >= 51);
}
#[test]
fn test_reserve() {
let mut d = RingBuf::new();
d.push_back(0);
d.reserve(50);
assert!(d.capacity() >= 51);
}
#[test]
fn test_swap() {
let mut d: RingBuf<_> = (0..5).collect();
d.pop_front();
d.swap(0, 3);
assert_eq!(d.iter().cloned().collect::<Vec<_>>(), vec!(4, 2, 3, 1));
}
#[test]
fn test_iter() {
let mut d = RingBuf::new();
assert_eq!(d.iter().next(), None);
assert_eq!(d.iter().size_hint(), (0, Some(0)));
for i in 0..5 {
d.push_back(i);
}
{
let b: &[_] = &[&0,&1,&2,&3,&4];
assert_eq!(d.iter().collect::<Vec<_>>(), b);
}
for i in 6..9 {
d.push_front(i);
}
{
let b: &[_] = &[&8,&7,&6,&0,&1,&2,&3,&4];
assert_eq!(d.iter().collect::<Vec<_>>(), b);
}
let mut it = d.iter();
let mut len = d.len();
loop {
match it.next() {
None => break,
_ => { len -= 1; assert_eq!(it.size_hint(), (len, Some(len))) }
}
}
}
#[test]
fn test_rev_iter() {
let mut d = RingBuf::new();
assert_eq!(d.iter().rev().next(), None);
for i in 0..5 {
d.push_back(i);
}
{
let b: &[_] = &[&4,&3,&2,&1,&0];
assert_eq!(d.iter().rev().collect::<Vec<_>>(), b);
}
for i in 6..9 {
d.push_front(i);
}
let b: &[_] = &[&4,&3,&2,&1,&0,&6,&7,&8];
assert_eq!(d.iter().rev().collect::<Vec<_>>(), b);
}
#[test]
fn test_mut_rev_iter_wrap() {
let mut d = RingBuf::with_capacity(3);
assert!(d.iter_mut().rev().next().is_none());
d.push_back(1);
d.push_back(2);
d.push_back(3);
assert_eq!(d.pop_front(), Some(1));
d.push_back(4);
assert_eq!(d.iter_mut().rev().cloned().collect::<Vec<_>>(),
vec![4, 3, 2]);
}
#[test]
fn test_mut_iter() {
let mut d = RingBuf::new();
assert!(d.iter_mut().next().is_none());
for i in 0..3 {
d.push_front(i);
}
for (i, elt) in d.iter_mut().enumerate() {
assert_eq!(*elt, 2 - i);
*elt = i;
}
{
let mut it = d.iter_mut();
assert_eq!(*it.next().unwrap(), 0);
assert_eq!(*it.next().unwrap(), 1);
assert_eq!(*it.next().unwrap(), 2);
assert!(it.next().is_none());
}
}
#[test]
fn test_mut_rev_iter() {
let mut d = RingBuf::new();
assert!(d.iter_mut().rev().next().is_none());
for i in 0..3 {
d.push_front(i);
}
for (i, elt) in d.iter_mut().rev().enumerate() {
assert_eq!(*elt, i);
*elt = i;
}
{
let mut it = d.iter_mut().rev();
assert_eq!(*it.next().unwrap(), 0);
assert_eq!(*it.next().unwrap(), 1);
assert_eq!(*it.next().unwrap(), 2);
assert!(it.next().is_none());
}
}
#[test]
fn test_into_iter() {
// Empty iter
{
let d: RingBuf<i32> = RingBuf::new();
let mut iter = d.into_iter();
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
assert_eq!(iter.size_hint(), (0, Some(0)));
}
// simple iter
{
let mut d = RingBuf::new();
for i in 0..5 {
d.push_back(i);
}
let b = vec![0,1,2,3,4];
assert_eq!(d.into_iter().collect::<Vec<_>>(), b);
}
// wrapped iter
{
let mut d = RingBuf::new();
for i in 0..5 {
d.push_back(i);
}
for i in 6..9 {
d.push_front(i);
}
let b = vec![8,7,6,0,1,2,3,4];
assert_eq!(d.into_iter().collect::<Vec<_>>(), b);
}
// partially used
{
let mut d = RingBuf::new();
for i in 0..5 {
d.push_back(i);
}
for i in 6..9 {
d.push_front(i);
}
let mut it = d.into_iter();
assert_eq!(it.size_hint(), (8, Some(8)));
assert_eq!(it.next(), Some(8));
assert_eq!(it.size_hint(), (7, Some(7)));
assert_eq!(it.next_back(), Some(4));
assert_eq!(it.size_hint(), (6, Some(6)));
assert_eq!(it.next(), Some(7));
assert_eq!(it.size_hint(), (5, Some(5)));
}
}
#[test]
fn test_drain() {
// Empty iter
{
let mut d: RingBuf<i32> = RingBuf::new();
{
let mut iter = d.drain();
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
assert_eq!(iter.size_hint(), (0, Some(0)));
}
assert!(d.is_empty());
}
// simple iter
{
let mut d = RingBuf::new();
for i in 0..5 {
d.push_back(i);
}
assert_eq!(d.drain().collect::<Vec<_>>(), [0, 1, 2, 3, 4]);
assert!(d.is_empty());
}
// wrapped iter
{
let mut d = RingBuf::new();
for i in 0..5 {
d.push_back(i);
}
for i in 6..9 {
d.push_front(i);
}
assert_eq!(d.drain().collect::<Vec<_>>(), [8,7,6,0,1,2,3,4]);
assert!(d.is_empty());
}
// partially used
{
let mut d: RingBuf<_> = RingBuf::new();
for i in 0..5 {
d.push_back(i);
}
for i in 6..9 {
d.push_front(i);
}
{
let mut it = d.drain();
assert_eq!(it.size_hint(), (8, Some(8)));
assert_eq!(it.next(), Some(8));
assert_eq!(it.size_hint(), (7, Some(7)));
assert_eq!(it.next_back(), Some(4));
assert_eq!(it.size_hint(), (6, Some(6)));
assert_eq!(it.next(), Some(7));
assert_eq!(it.size_hint(), (5, Some(5)));
}
assert!(d.is_empty());
}
}
#[test]
fn test_from_iter() {
use core::iter;
let v = vec!(1,2,3,4,5,6,7);
let deq: RingBuf<_> = v.iter().cloned().collect();
let u: Vec<_> = deq.iter().cloned().collect();
assert_eq!(u, v);
let seq = iter::count(0, 2).take(256);
let deq: RingBuf<_> = seq.collect();
for (i, &x) in deq.iter().enumerate() {
assert_eq!(2*i, x);
}
assert_eq!(deq.len(), 256);
}
#[test]
fn test_clone() {
let mut d = RingBuf::new();
d.push_front(17);
d.push_front(42);
d.push_back(137);
d.push_back(137);
assert_eq!(d.len(), 4);
let mut e = d.clone();
assert_eq!(e.len(), 4);
while !d.is_empty() {
assert_eq!(d.pop_back(), e.pop_back());
}
assert_eq!(d.len(), 0);
assert_eq!(e.len(), 0);
}
#[test]
fn test_eq() {
let mut d = RingBuf::new();
assert!(d == RingBuf::with_capacity(0));
d.push_front(137);
d.push_front(17);
d.push_front(42);
d.push_back(137);
let mut e = RingBuf::with_capacity(0);
e.push_back(42);
e.push_back(17);
e.push_back(137);
e.push_back(137);
assert!(&e == &d);
e.pop_back();
e.push_back(0);
assert!(e != d);
e.clear();
assert!(e == RingBuf::new());
}
#[test]
fn test_hash() {
let mut x = RingBuf::new();
let mut y = RingBuf::new();
x.push_back(1);
x.push_back(2);
x.push_back(3);
y.push_back(0);
y.push_back(1);
y.pop_front();
y.push_back(2);
y.push_back(3);
assert!(hash::hash::<_, SipHasher>(&x) == hash::hash::<_, SipHasher>(&y));
}
#[test]
fn test_ord() {
let x = RingBuf::new();
let mut y = RingBuf::new();
y.push_back(1);
y.push_back(2);
y.push_back(3);
assert!(x < y);
assert!(y > x);
assert!(x <= x);
assert!(x >= x);
}
#[test]
fn test_show() {
let ringbuf: RingBuf<_> = (0..10).collect();
assert_eq!(format!("{:?}", ringbuf), "RingBuf [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]");
let ringbuf: RingBuf<_> = vec!["just", "one", "test", "more"].iter()
.cloned()
.collect();
assert_eq!(format!("{:?}", ringbuf), "RingBuf [\"just\", \"one\", \"test\", \"more\"]");
}
#[test]
fn test_drop() {
static mut drops: i32 = 0;
struct Elem;
impl Drop for Elem {
fn drop(&mut self) {
unsafe { drops += 1; }
}
}
let mut ring = RingBuf::new();
ring.push_back(Elem);
ring.push_front(Elem);
ring.push_back(Elem);
ring.push_front(Elem);
drop(ring);
assert_eq!(unsafe {drops}, 4);
}
#[test]
fn test_drop_with_pop() {
static mut drops: i32 = 0;
struct Elem;
impl Drop for Elem {
fn drop(&mut self) {
unsafe { drops += 1; }
}
}
let mut ring = RingBuf::new();
ring.push_back(Elem);
ring.push_front(Elem);
ring.push_back(Elem);
ring.push_front(Elem);
drop(ring.pop_back());
drop(ring.pop_front());
assert_eq!(unsafe {drops}, 2);
drop(ring);
assert_eq!(unsafe {drops}, 4);
}
#[test]
fn test_drop_clear() {
static mut drops: i32 = 0;
struct Elem;
impl Drop for Elem {
fn drop(&mut self) {
unsafe { drops += 1; }
}
}
let mut ring = RingBuf::new();
ring.push_back(Elem);
ring.push_front(Elem);
ring.push_back(Elem);
ring.push_front(Elem);
ring.clear();
assert_eq!(unsafe {drops}, 4);
drop(ring);
assert_eq!(unsafe {drops}, 4);
}
#[test]
fn test_reserve_grow() {
// test growth path A
// [T o o H] -> [T o o H . . . . ]
let mut ring = RingBuf::with_capacity(4);
for i in 0..3 {
ring.push_back(i);
}
ring.reserve(7);
for i in 0..3 {
assert_eq!(ring.pop_front(), Some(i));
}
// test growth path B
// [H T o o] -> [. T o o H . . . ]
let mut ring = RingBuf::with_capacity(4);
for i in 0..1 {
ring.push_back(i);
assert_eq!(ring.pop_front(), Some(i));
}
for i in 0..3 {
ring.push_back(i);
}
ring.reserve(7);
for i in 0..3 {
assert_eq!(ring.pop_front(), Some(i));
}
// test growth path C
// [o o H T] -> [o o H . . . . T ]
let mut ring = RingBuf::with_capacity(4);
for i in 0..3 {
ring.push_back(i);
assert_eq!(ring.pop_front(), Some(i));
}
for i in 0..3 {
ring.push_back(i);
}
ring.reserve(7);
for i in 0..3 {
assert_eq!(ring.pop_front(), Some(i));
}
}
#[test]
fn test_get() {
let mut ring = RingBuf::new();
ring.push_back(0);
assert_eq!(ring.get(0), Some(&0));
assert_eq!(ring.get(1), None);
ring.push_back(1);
assert_eq!(ring.get(0), Some(&0));
assert_eq!(ring.get(1), Some(&1));
assert_eq!(ring.get(2), None);
ring.push_back(2);
assert_eq!(ring.get(0), Some(&0));
assert_eq!(ring.get(1), Some(&1));
assert_eq!(ring.get(2), Some(&2));
assert_eq!(ring.get(3), None);
assert_eq!(ring.pop_front(), Some(0));
assert_eq!(ring.get(0), Some(&1));
assert_eq!(ring.get(1), Some(&2));
assert_eq!(ring.get(2), None);
assert_eq!(ring.pop_front(), Some(1));
assert_eq!(ring.get(0), Some(&2));
assert_eq!(ring.get(1), None);
assert_eq!(ring.pop_front(), Some(2));
assert_eq!(ring.get(0), None);
assert_eq!(ring.get(1), None);
}
#[test]
fn test_get_mut() {
let mut ring = RingBuf::new();
for i in 0..3 {
ring.push_back(i);
}
match ring.get_mut(1) {
Some(x) => *x = -1,
None => ()
};
assert_eq!(ring.get_mut(0), Some(&mut 0));
assert_eq!(ring.get_mut(1), Some(&mut -1));
assert_eq!(ring.get_mut(2), Some(&mut 2));
assert_eq!(ring.get_mut(3), None);
assert_eq!(ring.pop_front(), Some(0));
assert_eq!(ring.get_mut(0), Some(&mut -1));
assert_eq!(ring.get_mut(1), Some(&mut 2));
assert_eq!(ring.get_mut(2), None);
}
#[test]
fn test_swap_front_back_remove() {
fn test(back: bool) {
// This test checks that every single combination of tail position and length is tested.
// Capacity 15 should be large enough to cover every case.
let mut tester = RingBuf::with_capacity(15);
let usable_cap = tester.capacity();
let final_len = usable_cap / 2;
for len in 0..final_len {
let expected = if back {
(0..len).collect()
} else {
(0..len).rev().collect()
};
for tail_pos in 0..usable_cap {
tester.tail = tail_pos;
tester.head = tail_pos;
if back {
for i in 0..len * 2 {
tester.push_front(i);
}
for i in 0..len {
assert_eq!(tester.swap_back_remove(i), Some(len * 2 - 1 - i));
}
} else {
for i in 0..len * 2 {
tester.push_back(i);
}
for i in 0..len {
let idx = tester.len() - 1 - i;
assert_eq!(tester.swap_front_remove(idx), Some(len * 2 - 1 - i));
}
}
assert!(tester.tail < tester.cap);
assert!(tester.head < tester.cap);
assert_eq!(tester, expected);
}
}
}
test(true);
test(false);
}
#[test]
fn test_insert() {
// This test checks that every single combination of tail position, length, and
// insertion position is tested. Capacity 15 should be large enough to cover every case.
let mut tester = RingBuf::with_capacity(15);
// can't guarantee we got 15, so have to get what we got.
// 15 would be great, but we will definitely get 2^k - 1, for k >= 4, or else
// this test isn't covering what it wants to
let cap = tester.capacity();
// len is the length *after* insertion
for len in 1..cap {
// 0, 1, 2, .., len - 1
let expected = iter::count(0, 1).take(len).collect();
for tail_pos in 0..cap {
for to_insert in 0..len {
tester.tail = tail_pos;
tester.head = tail_pos;
for i in 0..len {
if i != to_insert {
tester.push_back(i);
}
}
tester.insert(to_insert, to_insert);
assert!(tester.tail < tester.cap);
assert!(tester.head < tester.cap);
assert_eq!(tester, expected);
}
}
}
}
#[test]
fn test_remove() {
// This test checks that every single combination of tail position, length, and
// removal position is tested. Capacity 15 should be large enough to cover every case.
let mut tester = RingBuf::with_capacity(15);
// can't guarantee we got 15, so have to get what we got.
// 15 would be great, but we will definitely get 2^k - 1, for k >= 4, or else
// this test isn't covering what it wants to
let cap = tester.capacity();
// len is the length *after* removal
for len in 0..cap - 1 {
// 0, 1, 2, .., len - 1
let expected = iter::count(0, 1).take(len).collect();
for tail_pos in 0..cap {
for to_remove in 0..len + 1 {
tester.tail = tail_pos;
tester.head = tail_pos;
for i in 0..len {
if i == to_remove {
tester.push_back(1234);
}
tester.push_back(i);
}
if to_remove == len {
tester.push_back(1234);
}
tester.remove(to_remove);
assert!(tester.tail < tester.cap);
assert!(tester.head < tester.cap);
assert_eq!(tester, expected);
}
}
}
}
#[test]
fn test_shrink_to_fit() {
// This test checks that every single combination of head and tail position,
// is tested. Capacity 15 should be large enough to cover every case.
let mut tester = RingBuf::with_capacity(15);
// can't guarantee we got 15, so have to get what we got.
// 15 would be great, but we will definitely get 2^k - 1, for k >= 4, or else
// this test isn't covering what it wants to
let cap = tester.capacity();
tester.reserve(63);
let max_cap = tester.capacity();
for len in 0..cap + 1 {
// 0, 1, 2, .., len - 1
let expected = iter::count(0, 1).take(len).collect();
for tail_pos in 0..max_cap + 1 {
tester.tail = tail_pos;
tester.head = tail_pos;
tester.reserve(63);
for i in 0..len {
tester.push_back(i);
}
tester.shrink_to_fit();
assert!(tester.capacity() <= cap);
assert!(tester.tail < tester.cap);
assert!(tester.head < tester.cap);
assert_eq!(tester, expected);
}
}
}
#[test]
fn test_front() {
let mut ring = RingBuf::new();
ring.push_back(10);
ring.push_back(20);
assert_eq!(ring.front(), Some(&10));
ring.pop_front();
assert_eq!(ring.front(), Some(&20));
ring.pop_front();
assert_eq!(ring.front(), None);
}
#[test]
fn test_as_slices() {
let mut ring: RingBuf<i32> = RingBuf::with_capacity(127);
let cap = ring.capacity() as i32;
let first = cap/2;
let last = cap - first;
for i in 0..first {
ring.push_back(i);
let (left, right) = ring.as_slices();
let expected: Vec<_> = (0..i+1).collect();
assert_eq!(left, expected);
assert_eq!(right, []);
}
for j in -last..0 {
ring.push_front(j);
let (left, right) = ring.as_slices();
let expected_left: Vec<_> = (-last..j+1).rev().collect();
let expected_right: Vec<_> = (0..first).collect();
assert_eq!(left, expected_left);
assert_eq!(right, expected_right);
}
assert_eq!(ring.len() as i32, cap);
assert_eq!(ring.capacity() as i32, cap);
}
#[test]
fn test_as_mut_slices() {
let mut ring: RingBuf<i32> = RingBuf::with_capacity(127);
let cap = ring.capacity() as i32;
let first = cap/2;
let last = cap - first;
for i in 0..first {
ring.push_back(i);
let (left, right) = ring.as_mut_slices();
let expected: Vec<_> = (0..i+1).collect();
assert_eq!(left, expected);
assert_eq!(right, []);
}
for j in -last..0 {
ring.push_front(j);
let (left, right) = ring.as_mut_slices();
let expected_left: Vec<_> = (-last..j+1).rev().collect();
let expected_right: Vec<_> = (0..first).collect();
assert_eq!(left, expected_left);
assert_eq!(right, expected_right);
}
assert_eq!(ring.len() as i32, cap);
assert_eq!(ring.capacity() as i32, cap);
}
#[test]
fn test_split_off() {
// This test checks that every single combination of tail position, length, and
// split position is tested. Capacity 15 should be large enough to cover every case.
let mut tester = RingBuf::with_capacity(15);
// can't guarantee we got 15, so have to get what we got.
// 15 would be great, but we will definitely get 2^k - 1, for k >= 4, or else
// this test isn't covering what it wants to
let cap = tester.capacity();
// len is the length *before* splitting
for len in 0..cap {
// index to split at
for at in 0..len + 1 {
// 0, 1, 2, .., at - 1 (may be empty)
let expected_self = iter::count(0, 1).take(at).collect();
// at, at + 1, .., len - 1 (may be empty)
let expected_other = iter::count(at, 1).take(len - at).collect();
for tail_pos in 0..cap {
tester.tail = tail_pos;
tester.head = tail_pos;
for i in 0..len {
tester.push_back(i);
}
let result = tester.split_off(at);
assert!(tester.tail < tester.cap);
assert!(tester.head < tester.cap);
assert!(result.tail < result.cap);
assert!(result.head < result.cap);
assert_eq!(tester, expected_self);
assert_eq!(result, expected_other);
}
}
}
}
#[test]
fn test_append() {
let mut a: RingBuf<_> = vec![1, 2, 3].into_iter().collect();
let mut b: RingBuf<_> = vec![4, 5, 6].into_iter().collect();
// normal append
a.append(&mut b);
assert_eq!(a.iter().cloned().collect(), vec![1, 2, 3, 4, 5, 6]);
assert_eq!(b.iter().cloned().collect(), vec![]);
// append nothing to something
a.append(&mut b);
assert_eq!(a.iter().cloned().collect(), vec![1, 2, 3, 4, 5, 6]);
assert_eq!(b.iter().cloned().collect(), vec![]);
// append something to nothing
b.append(&mut a);
assert_eq!(b.iter().cloned().collect(), vec![1, 2, 3, 4, 5, 6]);
assert_eq!(a.iter().cloned().collect(), vec![]);
}
}