rust/src/librustc/middle/ty/context.rs
2015-11-04 20:38:03 -06:00

985 lines
36 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! type context book-keeping
// FIXME: (@jroesch) @eddyb should remove this when he renames ctxt
#![allow(non_camel_case_types)]
use front::map as ast_map;
use session::Session;
use lint;
use metadata::csearch;
use middle;
use middle::def::DefMap;
use middle::def_id::DefId;
use middle::free_region::FreeRegionMap;
use middle::region::RegionMaps;
use middle::resolve_lifetime;
use middle::stability;
use middle::subst::{self, Subst, Substs};
use middle::traits;
use middle::ty::{self, TraitRef, Ty, TypeAndMut};
use middle::ty::{TyS, TypeVariants};
use middle::ty::{AdtDef, ClosureSubsts, ExistentialBounds, Region};
use middle::ty::{FreevarMap, GenericPredicates};
use middle::ty::{BareFnTy, InferTy, ParamTy, ProjectionTy, TraitTy};
use middle::ty::{TyVar, TyVid, IntVar, IntVid, FloatVar, FloatVid};
use middle::ty::TypeVariants::*;
use util::nodemap::{NodeMap, NodeSet, DefIdMap, DefIdSet};
use util::nodemap::FnvHashMap;
use arena::TypedArena;
use std::borrow::Borrow;
use std::cell::{Cell, RefCell, Ref};
use std::hash::{Hash, Hasher};
use std::rc::Rc;
use syntax::abi;
use syntax::ast::{self, Name, NodeId};
use syntax::attr;
use syntax::parse::token::special_idents;
use rustc_front::hir;
/// Internal storage
pub struct CtxtArenas<'tcx> {
// internings
type_: TypedArena<TyS<'tcx>>,
substs: TypedArena<Substs<'tcx>>,
bare_fn: TypedArena<BareFnTy<'tcx>>,
region: TypedArena<Region>,
stability: TypedArena<attr::Stability>,
// references
trait_defs: TypedArena<ty::TraitDef<'tcx>>,
adt_defs: TypedArena<ty::AdtDefData<'tcx, 'tcx>>,
}
impl<'tcx> CtxtArenas<'tcx> {
pub fn new() -> CtxtArenas<'tcx> {
CtxtArenas {
type_: TypedArena::new(),
substs: TypedArena::new(),
bare_fn: TypedArena::new(),
region: TypedArena::new(),
stability: TypedArena::new(),
trait_defs: TypedArena::new(),
adt_defs: TypedArena::new()
}
}
}
pub struct CommonTypes<'tcx> {
pub bool: Ty<'tcx>,
pub char: Ty<'tcx>,
pub isize: Ty<'tcx>,
pub i8: Ty<'tcx>,
pub i16: Ty<'tcx>,
pub i32: Ty<'tcx>,
pub i64: Ty<'tcx>,
pub usize: Ty<'tcx>,
pub u8: Ty<'tcx>,
pub u16: Ty<'tcx>,
pub u32: Ty<'tcx>,
pub u64: Ty<'tcx>,
pub f32: Ty<'tcx>,
pub f64: Ty<'tcx>,
pub err: Ty<'tcx>,
}
pub struct Tables<'tcx> {
/// Stores the types for various nodes in the AST. Note that this table
/// is not guaranteed to be populated until after typeck. See
/// typeck::check::fn_ctxt for details.
pub node_types: NodeMap<Ty<'tcx>>,
/// Stores the type parameters which were substituted to obtain the type
/// of this node. This only applies to nodes that refer to entities
/// parameterized by type parameters, such as generic fns, types, or
/// other items.
pub item_substs: NodeMap<ty::ItemSubsts<'tcx>>,
pub adjustments: NodeMap<ty::adjustment::AutoAdjustment<'tcx>>,
pub method_map: ty::MethodMap<'tcx>,
/// Borrows
pub upvar_capture_map: ty::UpvarCaptureMap,
/// Records the type of each closure. The def ID is the ID of the
/// expression defining the closure.
pub closure_tys: DefIdMap<ty::ClosureTy<'tcx>>,
/// Records the type of each closure. The def ID is the ID of the
/// expression defining the closure.
pub closure_kinds: DefIdMap<ty::ClosureKind>,
/// For each fn, records the "liberated" types of its arguments
/// and return type. Liberated means that all bound regions
/// (including late-bound regions) are replaced with free
/// equivalents. This table is not used in trans (since regions
/// are erased there) and hence is not serialized to metadata.
pub liberated_fn_sigs: NodeMap<ty::FnSig<'tcx>>,
}
impl<'tcx> Tables<'tcx> {
pub fn empty() -> Tables<'tcx> {
Tables {
node_types: FnvHashMap(),
item_substs: NodeMap(),
adjustments: NodeMap(),
method_map: FnvHashMap(),
upvar_capture_map: FnvHashMap(),
closure_tys: DefIdMap(),
closure_kinds: DefIdMap(),
liberated_fn_sigs: NodeMap(),
}
}
pub fn closure_kind(this: &RefCell<Self>,
tcx: &ty::ctxt<'tcx>,
def_id: DefId)
-> ty::ClosureKind {
// If this is a local def-id, it should be inserted into the
// tables by typeck; else, it will be retreived from
// the external crate metadata.
if let Some(&kind) = this.borrow().closure_kinds.get(&def_id) {
return kind;
}
let kind = csearch::closure_kind(tcx, def_id);
this.borrow_mut().closure_kinds.insert(def_id, kind);
kind
}
pub fn closure_type(this: &RefCell<Self>,
tcx: &ty::ctxt<'tcx>,
def_id: DefId,
substs: &ClosureSubsts<'tcx>)
-> ty::ClosureTy<'tcx>
{
// If this is a local def-id, it should be inserted into the
// tables by typeck; else, it will be retreived from
// the external crate metadata.
if let Some(ty) = this.borrow().closure_tys.get(&def_id) {
return ty.subst(tcx, &substs.func_substs);
}
let ty = csearch::closure_ty(tcx, def_id);
this.borrow_mut().closure_tys.insert(def_id, ty.clone());
ty.subst(tcx, &substs.func_substs)
}
}
impl<'tcx> CommonTypes<'tcx> {
fn new(arena: &'tcx TypedArena<TyS<'tcx>>,
interner: &RefCell<FnvHashMap<InternedTy<'tcx>, Ty<'tcx>>>)
-> CommonTypes<'tcx>
{
let mk = |sty| ctxt::intern_ty(arena, interner, sty);
CommonTypes {
bool: mk(TyBool),
char: mk(TyChar),
err: mk(TyError),
isize: mk(TyInt(ast::TyIs)),
i8: mk(TyInt(ast::TyI8)),
i16: mk(TyInt(ast::TyI16)),
i32: mk(TyInt(ast::TyI32)),
i64: mk(TyInt(ast::TyI64)),
usize: mk(TyUint(ast::TyUs)),
u8: mk(TyUint(ast::TyU8)),
u16: mk(TyUint(ast::TyU16)),
u32: mk(TyUint(ast::TyU32)),
u64: mk(TyUint(ast::TyU64)),
f32: mk(TyFloat(ast::TyF32)),
f64: mk(TyFloat(ast::TyF64)),
}
}
}
/// The data structure to keep track of all the information that typechecker
/// generates so that so that it can be reused and doesn't have to be redone
/// later on.
pub struct ctxt<'tcx> {
/// The arenas that types etc are allocated from.
arenas: &'tcx CtxtArenas<'tcx>,
/// Specifically use a speedy hash algorithm for this hash map, it's used
/// quite often.
// FIXME(eddyb) use a FnvHashSet<InternedTy<'tcx>> when equivalent keys can
// queried from a HashSet.
interner: RefCell<FnvHashMap<InternedTy<'tcx>, Ty<'tcx>>>,
// FIXME as above, use a hashset if equivalent elements can be queried.
substs_interner: RefCell<FnvHashMap<&'tcx Substs<'tcx>, &'tcx Substs<'tcx>>>,
bare_fn_interner: RefCell<FnvHashMap<&'tcx BareFnTy<'tcx>, &'tcx BareFnTy<'tcx>>>,
region_interner: RefCell<FnvHashMap<&'tcx Region, &'tcx Region>>,
stability_interner: RefCell<FnvHashMap<&'tcx attr::Stability, &'tcx attr::Stability>>,
/// Common types, pre-interned for your convenience.
pub types: CommonTypes<'tcx>,
pub sess: &'tcx Session,
pub def_map: RefCell<DefMap>,
pub named_region_map: resolve_lifetime::NamedRegionMap,
pub region_maps: RegionMaps,
// For each fn declared in the local crate, type check stores the
// free-region relationships that were deduced from its where
// clauses and parameter types. These are then read-again by
// borrowck. (They are not used during trans, and hence are not
// serialized or needed for cross-crate fns.)
free_region_maps: RefCell<NodeMap<FreeRegionMap>>,
// FIXME: jroesch make this a refcell
pub tables: RefCell<Tables<'tcx>>,
/// Maps from a trait item to the trait item "descriptor"
pub impl_or_trait_items: RefCell<DefIdMap<ty::ImplOrTraitItem<'tcx>>>,
/// Maps from a trait def-id to a list of the def-ids of its trait items
pub trait_item_def_ids: RefCell<DefIdMap<Rc<Vec<ty::ImplOrTraitItemId>>>>,
/// A cache for the trait_items() routine
pub trait_items_cache: RefCell<DefIdMap<Rc<Vec<ty::ImplOrTraitItem<'tcx>>>>>,
pub impl_trait_refs: RefCell<DefIdMap<Option<TraitRef<'tcx>>>>,
pub trait_defs: RefCell<DefIdMap<&'tcx ty::TraitDef<'tcx>>>,
pub adt_defs: RefCell<DefIdMap<ty::AdtDefMaster<'tcx>>>,
/// Maps from the def-id of an item (trait/struct/enum/fn) to its
/// associated predicates.
pub predicates: RefCell<DefIdMap<GenericPredicates<'tcx>>>,
/// Maps from the def-id of a trait to the list of
/// super-predicates. This is a subset of the full list of
/// predicates. We store these in a separate map because we must
/// evaluate them even during type conversion, often before the
/// full predicates are available (note that supertraits have
/// additional acyclicity requirements).
pub super_predicates: RefCell<DefIdMap<GenericPredicates<'tcx>>>,
pub map: ast_map::Map<'tcx>,
pub freevars: RefCell<FreevarMap>,
pub tcache: RefCell<DefIdMap<ty::TypeScheme<'tcx>>>,
pub rcache: RefCell<FnvHashMap<ty::CReaderCacheKey, Ty<'tcx>>>,
pub tc_cache: RefCell<FnvHashMap<Ty<'tcx>, ty::contents::TypeContents>>,
pub ast_ty_to_ty_cache: RefCell<NodeMap<Ty<'tcx>>>,
pub ty_param_defs: RefCell<NodeMap<ty::TypeParameterDef<'tcx>>>,
pub normalized_cache: RefCell<FnvHashMap<Ty<'tcx>, Ty<'tcx>>>,
pub lang_items: middle::lang_items::LanguageItems,
/// Maps from def-id of a type or region parameter to its
/// (inferred) variance.
pub item_variance_map: RefCell<DefIdMap<Rc<ty::ItemVariances>>>,
/// True if the variance has been computed yet; false otherwise.
pub variance_computed: Cell<bool>,
/// Maps a DefId of a type to a list of its inherent impls.
/// Contains implementations of methods that are inherent to a type.
/// Methods in these implementations don't need to be exported.
pub inherent_impls: RefCell<DefIdMap<Rc<Vec<DefId>>>>,
/// Maps a DefId of an impl to a list of its items.
/// Note that this contains all of the impls that we know about,
/// including ones in other crates. It's not clear that this is the best
/// way to do it.
pub impl_items: RefCell<DefIdMap<Vec<ty::ImplOrTraitItemId>>>,
/// Set of used unsafe nodes (functions or blocks). Unsafe nodes not
/// present in this set can be warned about.
pub used_unsafe: RefCell<NodeSet>,
/// Set of nodes which mark locals as mutable which end up getting used at
/// some point. Local variable definitions not in this set can be warned
/// about.
pub used_mut_nodes: RefCell<NodeSet>,
/// The set of external nominal types whose implementations have been read.
/// This is used for lazy resolution of methods.
pub populated_external_types: RefCell<DefIdSet>,
/// The set of external primitive types whose implementations have been read.
/// FIXME(arielb1): why is this separate from populated_external_types?
pub populated_external_primitive_impls: RefCell<DefIdSet>,
/// These caches are used by const_eval when decoding external constants.
pub extern_const_statics: RefCell<DefIdMap<NodeId>>,
pub extern_const_fns: RefCell<DefIdMap<NodeId>>,
pub node_lint_levels: RefCell<FnvHashMap<(NodeId, lint::LintId),
lint::LevelSource>>,
/// The types that must be asserted to be the same size for `transmute`
/// to be valid. We gather up these restrictions in the intrinsicck pass
/// and check them in trans.
pub transmute_restrictions: RefCell<Vec<ty::TransmuteRestriction<'tcx>>>,
/// Maps any item's def-id to its stability index.
pub stability: RefCell<stability::Index<'tcx>>,
/// Caches the results of trait selection. This cache is used
/// for things that do not have to do with the parameters in scope.
pub selection_cache: traits::SelectionCache<'tcx>,
/// A set of predicates that have been fulfilled *somewhere*.
/// This is used to avoid duplicate work. Predicates are only
/// added to this set when they mention only "global" names
/// (i.e., no type or lifetime parameters).
pub fulfilled_predicates: RefCell<traits::FulfilledPredicates<'tcx>>,
/// Caches the representation hints for struct definitions.
pub repr_hint_cache: RefCell<DefIdMap<Rc<Vec<attr::ReprAttr>>>>,
/// Maps Expr NodeId's to their constant qualification.
pub const_qualif_map: RefCell<NodeMap<middle::check_const::ConstQualif>>,
/// Caches CoerceUnsized kinds for impls on custom types.
pub custom_coerce_unsized_kinds: RefCell<DefIdMap<ty::adjustment::CustomCoerceUnsized>>,
/// Maps a cast expression to its kind. This is keyed on the
/// *from* expression of the cast, not the cast itself.
pub cast_kinds: RefCell<NodeMap<ty::cast::CastKind>>,
/// Maps Fn items to a collection of fragment infos.
///
/// The main goal is to identify data (each of which may be moved
/// or assigned) whose subparts are not moved nor assigned
/// (i.e. their state is *unfragmented*) and corresponding ast
/// nodes where the path to that data is moved or assigned.
///
/// In the long term, unfragmented values will have their
/// destructor entirely driven by a single stack-local drop-flag,
/// and their parents, the collections of the unfragmented values
/// (or more simply, "fragmented values"), are mapped to the
/// corresponding collections of stack-local drop-flags.
///
/// (However, in the short term that is not the case; e.g. some
/// unfragmented paths still need to be zeroed, namely when they
/// reference parent data from an outer scope that was not
/// entirely moved, and therefore that needs to be zeroed so that
/// we do not get double-drop when we hit the end of the parent
/// scope.)
///
/// Also: currently the table solely holds keys for node-ids of
/// unfragmented values (see `FragmentInfo` enum definition), but
/// longer-term we will need to also store mappings from
/// fragmented data to the set of unfragmented pieces that
/// constitute it.
pub fragment_infos: RefCell<DefIdMap<Vec<ty::FragmentInfo>>>,
}
impl<'tcx> ctxt<'tcx> {
pub fn type_parameter_def(&self,
node_id: NodeId)
-> ty::TypeParameterDef<'tcx>
{
self.ty_param_defs.borrow().get(&node_id).unwrap().clone()
}
pub fn node_types(&self) -> Ref<NodeMap<Ty<'tcx>>> {
fn projection<'a, 'tcx>(tables: &'a Tables<'tcx>) -> &'a NodeMap<Ty<'tcx>> {
&tables.node_types
}
Ref::map(self.tables.borrow(), projection)
}
pub fn node_type_insert(&self, id: NodeId, ty: Ty<'tcx>) {
self.tables.borrow_mut().node_types.insert(id, ty);
}
pub fn intern_trait_def(&self, def: ty::TraitDef<'tcx>)
-> &'tcx ty::TraitDef<'tcx> {
let did = def.trait_ref.def_id;
let interned = self.arenas.trait_defs.alloc(def);
self.trait_defs.borrow_mut().insert(did, interned);
interned
}
pub fn alloc_trait_def(&self, def: ty::TraitDef<'tcx>)
-> &'tcx ty::TraitDef<'tcx> {
self.arenas.trait_defs.alloc(def)
}
pub fn intern_adt_def(&self,
did: DefId,
kind: ty::AdtKind,
variants: Vec<ty::VariantDefData<'tcx, 'tcx>>)
-> ty::AdtDefMaster<'tcx> {
let def = ty::AdtDefData::new(self, did, kind, variants);
let interned = self.arenas.adt_defs.alloc(def);
// this will need a transmute when reverse-variance is removed
self.adt_defs.borrow_mut().insert(did, interned);
interned
}
pub fn intern_stability(&self, stab: attr::Stability) -> &'tcx attr::Stability {
if let Some(st) = self.stability_interner.borrow().get(&stab) {
return st;
}
let interned = self.arenas.stability.alloc(stab);
self.stability_interner.borrow_mut().insert(interned, interned);
interned
}
pub fn store_free_region_map(&self, id: NodeId, map: FreeRegionMap) {
self.free_region_maps.borrow_mut()
.insert(id, map);
}
pub fn free_region_map(&self, id: NodeId) -> FreeRegionMap {
self.free_region_maps.borrow()[&id].clone()
}
pub fn lift<T: ?Sized + Lift<'tcx>>(&self, value: &T) -> Option<T::Lifted> {
value.lift_to_tcx(self)
}
/// Create a type context and call the closure with a `&ty::ctxt` reference
/// to the context. The closure enforces that the type context and any interned
/// value (types, substs, etc.) can only be used while `ty::tls` has a valid
/// reference to the context, to allow formatting values that need it.
pub fn create_and_enter<F, R>(s: &'tcx Session,
arenas: &'tcx CtxtArenas<'tcx>,
def_map: RefCell<DefMap>,
named_region_map: resolve_lifetime::NamedRegionMap,
map: ast_map::Map<'tcx>,
freevars: FreevarMap,
region_maps: RegionMaps,
lang_items: middle::lang_items::LanguageItems,
stability: stability::Index<'tcx>,
f: F) -> R
where F: FnOnce(&ctxt<'tcx>) -> R
{
let interner = RefCell::new(FnvHashMap());
let common_types = CommonTypes::new(&arenas.type_, &interner);
tls::enter(ctxt {
arenas: arenas,
interner: interner,
substs_interner: RefCell::new(FnvHashMap()),
bare_fn_interner: RefCell::new(FnvHashMap()),
region_interner: RefCell::new(FnvHashMap()),
stability_interner: RefCell::new(FnvHashMap()),
types: common_types,
named_region_map: named_region_map,
region_maps: region_maps,
free_region_maps: RefCell::new(FnvHashMap()),
item_variance_map: RefCell::new(DefIdMap()),
variance_computed: Cell::new(false),
sess: s,
def_map: def_map,
tables: RefCell::new(Tables::empty()),
impl_trait_refs: RefCell::new(DefIdMap()),
trait_defs: RefCell::new(DefIdMap()),
adt_defs: RefCell::new(DefIdMap()),
predicates: RefCell::new(DefIdMap()),
super_predicates: RefCell::new(DefIdMap()),
fulfilled_predicates: RefCell::new(traits::FulfilledPredicates::new()),
map: map,
freevars: RefCell::new(freevars),
tcache: RefCell::new(DefIdMap()),
rcache: RefCell::new(FnvHashMap()),
tc_cache: RefCell::new(FnvHashMap()),
ast_ty_to_ty_cache: RefCell::new(NodeMap()),
impl_or_trait_items: RefCell::new(DefIdMap()),
trait_item_def_ids: RefCell::new(DefIdMap()),
trait_items_cache: RefCell::new(DefIdMap()),
ty_param_defs: RefCell::new(NodeMap()),
normalized_cache: RefCell::new(FnvHashMap()),
lang_items: lang_items,
inherent_impls: RefCell::new(DefIdMap()),
impl_items: RefCell::new(DefIdMap()),
used_unsafe: RefCell::new(NodeSet()),
used_mut_nodes: RefCell::new(NodeSet()),
populated_external_types: RefCell::new(DefIdSet()),
populated_external_primitive_impls: RefCell::new(DefIdSet()),
extern_const_statics: RefCell::new(DefIdMap()),
extern_const_fns: RefCell::new(DefIdMap()),
node_lint_levels: RefCell::new(FnvHashMap()),
transmute_restrictions: RefCell::new(Vec::new()),
stability: RefCell::new(stability),
selection_cache: traits::SelectionCache::new(),
repr_hint_cache: RefCell::new(DefIdMap()),
const_qualif_map: RefCell::new(NodeMap()),
custom_coerce_unsized_kinds: RefCell::new(DefIdMap()),
cast_kinds: RefCell::new(NodeMap()),
fragment_infos: RefCell::new(DefIdMap()),
}, f)
}
}
/// A trait implemented for all X<'a> types which can be safely and
/// efficiently converted to X<'tcx> as long as they are part of the
/// provided ty::ctxt<'tcx>.
/// This can be done, for example, for Ty<'tcx> or &'tcx Substs<'tcx>
/// by looking them up in their respective interners.
/// None is returned if the value or one of the components is not part
/// of the provided context.
/// For Ty, None can be returned if either the type interner doesn't
/// contain the TypeVariants key or if the address of the interned
/// pointer differs. The latter case is possible if a primitive type,
/// e.g. `()` or `u8`, was interned in a different context.
pub trait Lift<'tcx> {
type Lifted;
fn lift_to_tcx(&self, tcx: &ctxt<'tcx>) -> Option<Self::Lifted>;
}
impl<'a, 'tcx> Lift<'tcx> for Ty<'a> {
type Lifted = Ty<'tcx>;
fn lift_to_tcx(&self, tcx: &ctxt<'tcx>) -> Option<Ty<'tcx>> {
if let Some(&ty) = tcx.interner.borrow().get(&self.sty) {
if *self as *const _ == ty as *const _ {
return Some(ty);
}
}
None
}
}
impl<'a, 'tcx> Lift<'tcx> for &'a Substs<'a> {
type Lifted = &'tcx Substs<'tcx>;
fn lift_to_tcx(&self, tcx: &ctxt<'tcx>) -> Option<&'tcx Substs<'tcx>> {
if let Some(&substs) = tcx.substs_interner.borrow().get(*self) {
if *self as *const _ == substs as *const _ {
return Some(substs);
}
}
None
}
}
pub mod tls {
use middle::ty;
use std::fmt;
use syntax::codemap;
/// Marker type used for the scoped TLS slot.
/// The type context cannot be used directly because the scoped TLS
/// in libstd doesn't allow types generic over lifetimes.
struct ThreadLocalTyCx;
scoped_thread_local!(static TLS_TCX: ThreadLocalTyCx);
fn span_debug(span: codemap::Span, f: &mut fmt::Formatter) -> fmt::Result {
with(|tcx| {
write!(f, "{}", tcx.sess.codemap().span_to_string(span))
})
}
pub fn enter<'tcx, F: FnOnce(&ty::ctxt<'tcx>) -> R, R>(tcx: ty::ctxt<'tcx>, f: F) -> R {
codemap::SPAN_DEBUG.with(|span_dbg| {
let original_span_debug = span_dbg.get();
span_dbg.set(span_debug);
let tls_ptr = &tcx as *const _ as *const ThreadLocalTyCx;
let result = TLS_TCX.set(unsafe { &*tls_ptr }, || f(&tcx));
span_dbg.set(original_span_debug);
result
})
}
pub fn with<F: FnOnce(&ty::ctxt) -> R, R>(f: F) -> R {
TLS_TCX.with(|tcx| f(unsafe { &*(tcx as *const _ as *const ty::ctxt) }))
}
pub fn with_opt<F: FnOnce(Option<&ty::ctxt>) -> R, R>(f: F) -> R {
if TLS_TCX.is_set() {
with(|v| f(Some(v)))
} else {
f(None)
}
}
}
macro_rules! sty_debug_print {
($ctxt: expr, $($variant: ident),*) => {{
// curious inner module to allow variant names to be used as
// variable names.
#[allow(non_snake_case)]
mod inner {
use middle::ty;
#[derive(Copy, Clone)]
struct DebugStat {
total: usize,
region_infer: usize,
ty_infer: usize,
both_infer: usize,
}
pub fn go(tcx: &ty::ctxt) {
let mut total = DebugStat {
total: 0,
region_infer: 0, ty_infer: 0, both_infer: 0,
};
$(let mut $variant = total;)*
for (_, t) in tcx.interner.borrow().iter() {
let variant = match t.sty {
ty::TyBool | ty::TyChar | ty::TyInt(..) | ty::TyUint(..) |
ty::TyFloat(..) | ty::TyStr => continue,
ty::TyError => /* unimportant */ continue,
$(ty::$variant(..) => &mut $variant,)*
};
let region = t.flags.get().intersects(ty::TypeFlags::HAS_RE_INFER);
let ty = t.flags.get().intersects(ty::TypeFlags::HAS_TY_INFER);
variant.total += 1;
total.total += 1;
if region { total.region_infer += 1; variant.region_infer += 1 }
if ty { total.ty_infer += 1; variant.ty_infer += 1 }
if region && ty { total.both_infer += 1; variant.both_infer += 1 }
}
println!("Ty interner total ty region both");
$(println!(" {:18}: {uses:6} {usespc:4.1}%, \
{ty:4.1}% {region:5.1}% {both:4.1}%",
stringify!($variant),
uses = $variant.total,
usespc = $variant.total as f64 * 100.0 / total.total as f64,
ty = $variant.ty_infer as f64 * 100.0 / total.total as f64,
region = $variant.region_infer as f64 * 100.0 / total.total as f64,
both = $variant.both_infer as f64 * 100.0 / total.total as f64);
)*
println!(" total {uses:6} \
{ty:4.1}% {region:5.1}% {both:4.1}%",
uses = total.total,
ty = total.ty_infer as f64 * 100.0 / total.total as f64,
region = total.region_infer as f64 * 100.0 / total.total as f64,
both = total.both_infer as f64 * 100.0 / total.total as f64)
}
}
inner::go($ctxt)
}}
}
impl<'tcx> ctxt<'tcx> {
pub fn print_debug_stats(&self) {
sty_debug_print!(
self,
TyEnum, TyBox, TyArray, TySlice, TyRawPtr, TyRef, TyBareFn, TyTrait,
TyStruct, TyClosure, TyTuple, TyParam, TyInfer, TyProjection);
println!("Substs interner: #{}", self.substs_interner.borrow().len());
println!("BareFnTy interner: #{}", self.bare_fn_interner.borrow().len());
println!("Region interner: #{}", self.region_interner.borrow().len());
println!("Stability interner: #{}", self.stability_interner.borrow().len());
}
}
/// An entry in the type interner.
pub struct InternedTy<'tcx> {
ty: Ty<'tcx>
}
// NB: An InternedTy compares and hashes as a sty.
impl<'tcx> PartialEq for InternedTy<'tcx> {
fn eq(&self, other: &InternedTy<'tcx>) -> bool {
self.ty.sty == other.ty.sty
}
}
impl<'tcx> Eq for InternedTy<'tcx> {}
impl<'tcx> Hash for InternedTy<'tcx> {
fn hash<H: Hasher>(&self, s: &mut H) {
self.ty.sty.hash(s)
}
}
impl<'tcx> Borrow<TypeVariants<'tcx>> for InternedTy<'tcx> {
fn borrow<'a>(&'a self) -> &'a TypeVariants<'tcx> {
&self.ty.sty
}
}
fn bound_list_is_sorted(bounds: &[ty::PolyProjectionPredicate]) -> bool {
bounds.is_empty() ||
bounds[1..].iter().enumerate().all(
|(index, bound)| bounds[index].sort_key() <= bound.sort_key())
}
impl<'tcx> ctxt<'tcx> {
// Type constructors
pub fn mk_substs(&self, substs: Substs<'tcx>) -> &'tcx Substs<'tcx> {
if let Some(substs) = self.substs_interner.borrow().get(&substs) {
return *substs;
}
let substs = self.arenas.substs.alloc(substs);
self.substs_interner.borrow_mut().insert(substs, substs);
substs
}
/// Create an unsafe fn ty based on a safe fn ty.
pub fn safe_to_unsafe_fn_ty(&self, bare_fn: &BareFnTy<'tcx>) -> Ty<'tcx> {
assert_eq!(bare_fn.unsafety, hir::Unsafety::Normal);
let unsafe_fn_ty_a = self.mk_bare_fn(ty::BareFnTy {
unsafety: hir::Unsafety::Unsafe,
abi: bare_fn.abi,
sig: bare_fn.sig.clone()
});
self.mk_fn(None, unsafe_fn_ty_a)
}
pub fn mk_bare_fn(&self, bare_fn: BareFnTy<'tcx>) -> &'tcx BareFnTy<'tcx> {
if let Some(bare_fn) = self.bare_fn_interner.borrow().get(&bare_fn) {
return *bare_fn;
}
let bare_fn = self.arenas.bare_fn.alloc(bare_fn);
self.bare_fn_interner.borrow_mut().insert(bare_fn, bare_fn);
bare_fn
}
pub fn mk_region(&self, region: Region) -> &'tcx Region {
if let Some(region) = self.region_interner.borrow().get(&region) {
return *region;
}
let region = self.arenas.region.alloc(region);
self.region_interner.borrow_mut().insert(region, region);
region
}
fn intern_ty(type_arena: &'tcx TypedArena<TyS<'tcx>>,
interner: &RefCell<FnvHashMap<InternedTy<'tcx>, Ty<'tcx>>>,
st: TypeVariants<'tcx>)
-> Ty<'tcx> {
let ty: Ty /* don't be &mut TyS */ = {
let mut interner = interner.borrow_mut();
match interner.get(&st) {
Some(ty) => return *ty,
_ => ()
}
let flags = super::flags::FlagComputation::for_sty(&st);
let ty = match () {
() => type_arena.alloc(TyS { sty: st,
flags: Cell::new(flags.flags),
region_depth: flags.depth, }),
};
interner.insert(InternedTy { ty: ty }, ty);
ty
};
debug!("Interned type: {:?} Pointer: {:?}",
ty, ty as *const TyS);
ty
}
// Interns a type/name combination, stores the resulting box in cx.interner,
// and returns the box as cast to an unsafe ptr (see comments for Ty above).
pub fn mk_ty(&self, st: TypeVariants<'tcx>) -> Ty<'tcx> {
ctxt::intern_ty(&self.arenas.type_, &self.interner, st)
}
pub fn mk_mach_int(&self, tm: ast::IntTy) -> Ty<'tcx> {
match tm {
ast::TyIs => self.types.isize,
ast::TyI8 => self.types.i8,
ast::TyI16 => self.types.i16,
ast::TyI32 => self.types.i32,
ast::TyI64 => self.types.i64,
}
}
pub fn mk_mach_uint(&self, tm: ast::UintTy) -> Ty<'tcx> {
match tm {
ast::TyUs => self.types.usize,
ast::TyU8 => self.types.u8,
ast::TyU16 => self.types.u16,
ast::TyU32 => self.types.u32,
ast::TyU64 => self.types.u64,
}
}
pub fn mk_mach_float(&self, tm: ast::FloatTy) -> Ty<'tcx> {
match tm {
ast::TyF32 => self.types.f32,
ast::TyF64 => self.types.f64,
}
}
pub fn mk_str(&self) -> Ty<'tcx> {
self.mk_ty(TyStr)
}
pub fn mk_static_str(&self) -> Ty<'tcx> {
self.mk_imm_ref(self.mk_region(ty::ReStatic), self.mk_str())
}
pub fn mk_enum(&self, def: AdtDef<'tcx>, substs: &'tcx Substs<'tcx>) -> Ty<'tcx> {
// take a copy of substs so that we own the vectors inside
self.mk_ty(TyEnum(def, substs))
}
pub fn mk_box(&self, ty: Ty<'tcx>) -> Ty<'tcx> {
self.mk_ty(TyBox(ty))
}
pub fn mk_ptr(&self, tm: TypeAndMut<'tcx>) -> Ty<'tcx> {
self.mk_ty(TyRawPtr(tm))
}
pub fn mk_ref(&self, r: &'tcx Region, tm: TypeAndMut<'tcx>) -> Ty<'tcx> {
self.mk_ty(TyRef(r, tm))
}
pub fn mk_mut_ref(&self, r: &'tcx Region, ty: Ty<'tcx>) -> Ty<'tcx> {
self.mk_ref(r, TypeAndMut {ty: ty, mutbl: hir::MutMutable})
}
pub fn mk_imm_ref(&self, r: &'tcx Region, ty: Ty<'tcx>) -> Ty<'tcx> {
self.mk_ref(r, TypeAndMut {ty: ty, mutbl: hir::MutImmutable})
}
pub fn mk_mut_ptr(&self, ty: Ty<'tcx>) -> Ty<'tcx> {
self.mk_ptr(TypeAndMut {ty: ty, mutbl: hir::MutMutable})
}
pub fn mk_imm_ptr(&self, ty: Ty<'tcx>) -> Ty<'tcx> {
self.mk_ptr(TypeAndMut {ty: ty, mutbl: hir::MutImmutable})
}
pub fn mk_nil_ptr(&self) -> Ty<'tcx> {
self.mk_imm_ptr(self.mk_nil())
}
pub fn mk_array(&self, ty: Ty<'tcx>, n: usize) -> Ty<'tcx> {
self.mk_ty(TyArray(ty, n))
}
pub fn mk_slice(&self, ty: Ty<'tcx>) -> Ty<'tcx> {
self.mk_ty(TySlice(ty))
}
pub fn mk_tup(&self, ts: Vec<Ty<'tcx>>) -> Ty<'tcx> {
self.mk_ty(TyTuple(ts))
}
pub fn mk_nil(&self) -> Ty<'tcx> {
self.mk_tup(Vec::new())
}
pub fn mk_bool(&self) -> Ty<'tcx> {
self.mk_ty(TyBool)
}
pub fn mk_fn(&self,
opt_def_id: Option<DefId>,
fty: &'tcx BareFnTy<'tcx>) -> Ty<'tcx> {
self.mk_ty(TyBareFn(opt_def_id, fty))
}
pub fn mk_ctor_fn(&self,
def_id: DefId,
input_tys: &[Ty<'tcx>],
output: Ty<'tcx>) -> Ty<'tcx> {
let input_args = input_tys.iter().cloned().collect();
self.mk_fn(Some(def_id), self.mk_bare_fn(BareFnTy {
unsafety: hir::Unsafety::Normal,
abi: abi::Rust,
sig: ty::Binder(ty::FnSig {
inputs: input_args,
output: ty::FnConverging(output),
variadic: false
})
}))
}
pub fn mk_trait(&self,
principal: ty::PolyTraitRef<'tcx>,
bounds: ExistentialBounds<'tcx>)
-> Ty<'tcx>
{
assert!(bound_list_is_sorted(&bounds.projection_bounds));
let inner = box TraitTy {
principal: principal,
bounds: bounds
};
self.mk_ty(TyTrait(inner))
}
pub fn mk_projection(&self,
trait_ref: TraitRef<'tcx>,
item_name: Name)
-> Ty<'tcx> {
// take a copy of substs so that we own the vectors inside
let inner = ProjectionTy { trait_ref: trait_ref, item_name: item_name };
self.mk_ty(TyProjection(inner))
}
pub fn mk_struct(&self, def: AdtDef<'tcx>, substs: &'tcx Substs<'tcx>) -> Ty<'tcx> {
// take a copy of substs so that we own the vectors inside
self.mk_ty(TyStruct(def, substs))
}
pub fn mk_closure(&self,
closure_id: DefId,
substs: &'tcx Substs<'tcx>,
tys: Vec<Ty<'tcx>>)
-> Ty<'tcx> {
self.mk_closure_from_closure_substs(closure_id, Box::new(ClosureSubsts {
func_substs: substs,
upvar_tys: tys
}))
}
pub fn mk_closure_from_closure_substs(&self,
closure_id: DefId,
closure_substs: Box<ClosureSubsts<'tcx>>)
-> Ty<'tcx> {
self.mk_ty(TyClosure(closure_id, closure_substs))
}
pub fn mk_var(&self, v: TyVid) -> Ty<'tcx> {
self.mk_infer(TyVar(v))
}
pub fn mk_int_var(&self, v: IntVid) -> Ty<'tcx> {
self.mk_infer(IntVar(v))
}
pub fn mk_float_var(&self, v: FloatVid) -> Ty<'tcx> {
self.mk_infer(FloatVar(v))
}
pub fn mk_infer(&self, it: InferTy) -> Ty<'tcx> {
self.mk_ty(TyInfer(it))
}
pub fn mk_param(&self,
space: subst::ParamSpace,
index: u32,
name: Name) -> Ty<'tcx> {
self.mk_ty(TyParam(ParamTy { space: space, idx: index, name: name }))
}
pub fn mk_self_type(&self) -> Ty<'tcx> {
self.mk_param(subst::SelfSpace, 0, special_idents::type_self.name)
}
pub fn mk_param_from_def(&self, def: &ty::TypeParameterDef) -> Ty<'tcx> {
self.mk_param(def.space, def.index, def.name)
}
}