404 lines
16 KiB
Rust
404 lines
16 KiB
Rust
//! See [`PathTransform`].
|
|
|
|
use crate::helpers::mod_path_to_ast;
|
|
use either::Either;
|
|
use hir::{AsAssocItem, HirDisplay, SemanticsScope};
|
|
use rustc_hash::FxHashMap;
|
|
use syntax::{
|
|
ast::{self, make, AstNode},
|
|
ted, SyntaxNode,
|
|
};
|
|
|
|
#[derive(Default)]
|
|
struct AstSubsts {
|
|
types_and_consts: Vec<TypeOrConst>,
|
|
lifetimes: Vec<ast::LifetimeArg>,
|
|
}
|
|
|
|
enum TypeOrConst {
|
|
Either(ast::TypeArg), // indistinguishable type or const param
|
|
Const(ast::ConstArg),
|
|
}
|
|
|
|
type LifetimeName = String;
|
|
type DefaultedParam = Either<hir::TypeParam, hir::ConstParam>;
|
|
|
|
/// `PathTransform` substitutes path in SyntaxNodes in bulk.
|
|
///
|
|
/// This is mostly useful for IDE code generation. If you paste some existing
|
|
/// code into a new context (for example, to add method overrides to an `impl`
|
|
/// block), you generally want to appropriately qualify the names, and sometimes
|
|
/// you might want to substitute generic parameters as well:
|
|
///
|
|
/// ```
|
|
/// mod x {
|
|
/// pub struct A<V>;
|
|
/// pub trait T<U> { fn foo(&self, _: U) -> A<U>; }
|
|
/// }
|
|
///
|
|
/// mod y {
|
|
/// use x::T;
|
|
///
|
|
/// impl T<()> for () {
|
|
/// // If we invoke **Add Missing Members** here, we want to copy-paste `foo`.
|
|
/// // But we want a slightly-modified version of it:
|
|
/// fn foo(&self, _: ()) -> x::A<()> {}
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
pub struct PathTransform<'a> {
|
|
generic_def: Option<hir::GenericDef>,
|
|
substs: AstSubsts,
|
|
target_scope: &'a SemanticsScope<'a>,
|
|
source_scope: &'a SemanticsScope<'a>,
|
|
}
|
|
|
|
impl<'a> PathTransform<'a> {
|
|
pub fn trait_impl(
|
|
target_scope: &'a SemanticsScope<'a>,
|
|
source_scope: &'a SemanticsScope<'a>,
|
|
trait_: hir::Trait,
|
|
impl_: ast::Impl,
|
|
) -> PathTransform<'a> {
|
|
PathTransform {
|
|
source_scope,
|
|
target_scope,
|
|
generic_def: Some(trait_.into()),
|
|
substs: get_syntactic_substs(impl_).unwrap_or_default(),
|
|
}
|
|
}
|
|
|
|
pub fn function_call(
|
|
target_scope: &'a SemanticsScope<'a>,
|
|
source_scope: &'a SemanticsScope<'a>,
|
|
function: hir::Function,
|
|
generic_arg_list: ast::GenericArgList,
|
|
) -> PathTransform<'a> {
|
|
PathTransform {
|
|
source_scope,
|
|
target_scope,
|
|
generic_def: Some(function.into()),
|
|
substs: get_type_args_from_arg_list(generic_arg_list).unwrap_or_default(),
|
|
}
|
|
}
|
|
|
|
pub fn generic_transformation(
|
|
target_scope: &'a SemanticsScope<'a>,
|
|
source_scope: &'a SemanticsScope<'a>,
|
|
) -> PathTransform<'a> {
|
|
PathTransform {
|
|
source_scope,
|
|
target_scope,
|
|
generic_def: None,
|
|
substs: AstSubsts::default(),
|
|
}
|
|
}
|
|
|
|
pub fn apply(&self, syntax: &SyntaxNode) {
|
|
self.build_ctx().apply(syntax)
|
|
}
|
|
|
|
pub fn apply_all<'b>(&self, nodes: impl IntoIterator<Item = &'b SyntaxNode>) {
|
|
let ctx = self.build_ctx();
|
|
for node in nodes {
|
|
ctx.apply(node);
|
|
}
|
|
}
|
|
|
|
fn build_ctx(&self) -> Ctx<'a> {
|
|
let db = self.source_scope.db;
|
|
let target_module = self.target_scope.module();
|
|
let source_module = self.source_scope.module();
|
|
let skip = match self.generic_def {
|
|
// this is a trait impl, so we need to skip the first type parameter (i.e. Self) -- this is a bit hacky
|
|
Some(hir::GenericDef::Trait(_)) => 1,
|
|
_ => 0,
|
|
};
|
|
let mut type_substs: FxHashMap<hir::TypeParam, ast::Type> = Default::default();
|
|
let mut const_substs: FxHashMap<hir::ConstParam, SyntaxNode> = Default::default();
|
|
let mut defaulted_params: Vec<DefaultedParam> = Default::default();
|
|
self.generic_def
|
|
.into_iter()
|
|
.flat_map(|it| it.type_params(db))
|
|
.skip(skip)
|
|
// The actual list of trait type parameters may be longer than the one
|
|
// used in the `impl` block due to trailing default type parameters.
|
|
// For that case we extend the `substs` with an empty iterator so we
|
|
// can still hit those trailing values and check if they actually have
|
|
// a default type. If they do, go for that type from `hir` to `ast` so
|
|
// the resulting change can be applied correctly.
|
|
.zip(self.substs.types_and_consts.iter().map(Some).chain(std::iter::repeat(None)))
|
|
.for_each(|(k, v)| match (k.split(db), v) {
|
|
(Either::Right(k), Some(TypeOrConst::Either(v))) => {
|
|
if let Some(ty) = v.ty() {
|
|
type_substs.insert(k, ty.clone());
|
|
}
|
|
}
|
|
(Either::Right(k), None) => {
|
|
if let Some(default) = k.default(db) {
|
|
if let Some(default) =
|
|
&default.display_source_code(db, source_module.into(), false).ok()
|
|
{
|
|
type_substs.insert(k, make::ty(default).clone_for_update());
|
|
defaulted_params.push(Either::Left(k));
|
|
}
|
|
}
|
|
}
|
|
(Either::Left(k), Some(TypeOrConst::Either(v))) => {
|
|
if let Some(ty) = v.ty() {
|
|
const_substs.insert(k, ty.syntax().clone());
|
|
}
|
|
}
|
|
(Either::Left(k), Some(TypeOrConst::Const(v))) => {
|
|
if let Some(expr) = v.expr() {
|
|
// FIXME: expressions in curly brackets can cause ambiguity after insertion
|
|
// (e.g. `N * 2` -> `{1 + 1} * 2`; it's unclear whether `{1 + 1}`
|
|
// is a standalone statement or a part of another expresson)
|
|
// and sometimes require slight modifications; see
|
|
// https://doc.rust-lang.org/reference/statements.html#expression-statements
|
|
// (default values in curly brackets can cause the same problem)
|
|
const_substs.insert(k, expr.syntax().clone());
|
|
}
|
|
}
|
|
(Either::Left(k), None) => {
|
|
if let Some(default) = k.default(db) {
|
|
if let Some(default) = default.expr() {
|
|
const_substs.insert(k, default.syntax().clone_for_update());
|
|
defaulted_params.push(Either::Right(k));
|
|
}
|
|
}
|
|
}
|
|
_ => (), // ignore mismatching params
|
|
});
|
|
let lifetime_substs: FxHashMap<_, _> = self
|
|
.generic_def
|
|
.into_iter()
|
|
.flat_map(|it| it.lifetime_params(db))
|
|
.zip(self.substs.lifetimes.clone())
|
|
.filter_map(|(k, v)| Some((k.name(db).display(db.upcast()).to_string(), v.lifetime()?)))
|
|
.collect();
|
|
let ctx = Ctx {
|
|
type_substs,
|
|
const_substs,
|
|
lifetime_substs,
|
|
target_module,
|
|
source_scope: self.source_scope,
|
|
};
|
|
ctx.transform_default_values(defaulted_params);
|
|
ctx
|
|
}
|
|
}
|
|
|
|
struct Ctx<'a> {
|
|
type_substs: FxHashMap<hir::TypeParam, ast::Type>,
|
|
const_substs: FxHashMap<hir::ConstParam, SyntaxNode>,
|
|
lifetime_substs: FxHashMap<LifetimeName, ast::Lifetime>,
|
|
target_module: hir::Module,
|
|
source_scope: &'a SemanticsScope<'a>,
|
|
}
|
|
|
|
fn postorder(item: &SyntaxNode) -> impl Iterator<Item = SyntaxNode> {
|
|
item.preorder().filter_map(|event| match event {
|
|
syntax::WalkEvent::Enter(_) => None,
|
|
syntax::WalkEvent::Leave(node) => Some(node),
|
|
})
|
|
}
|
|
|
|
impl Ctx<'_> {
|
|
fn apply(&self, item: &SyntaxNode) {
|
|
// `transform_path` may update a node's parent and that would break the
|
|
// tree traversal. Thus all paths in the tree are collected into a vec
|
|
// so that such operation is safe.
|
|
let paths = postorder(item).filter_map(ast::Path::cast).collect::<Vec<_>>();
|
|
for path in paths {
|
|
self.transform_path(path);
|
|
}
|
|
|
|
postorder(item).filter_map(ast::Lifetime::cast).for_each(|lifetime| {
|
|
if let Some(subst) = self.lifetime_substs.get(&lifetime.syntax().text().to_string()) {
|
|
ted::replace(lifetime.syntax(), subst.clone_subtree().clone_for_update().syntax());
|
|
}
|
|
});
|
|
}
|
|
|
|
fn transform_default_values(&self, defaulted_params: Vec<DefaultedParam>) {
|
|
// By now the default values are simply copied from where they are declared
|
|
// and should be transformed. As any value is allowed to refer to previous
|
|
// generic (both type and const) parameters, they should be all iterated left-to-right.
|
|
for param in defaulted_params {
|
|
let value = match param {
|
|
Either::Left(k) => self.type_substs.get(&k).unwrap().syntax(),
|
|
Either::Right(k) => self.const_substs.get(&k).unwrap(),
|
|
};
|
|
// `transform_path` may update a node's parent and that would break the
|
|
// tree traversal. Thus all paths in the tree are collected into a vec
|
|
// so that such operation is safe.
|
|
let paths = postorder(value).filter_map(ast::Path::cast).collect::<Vec<_>>();
|
|
for path in paths {
|
|
self.transform_path(path);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn transform_path(&self, path: ast::Path) -> Option<()> {
|
|
if path.qualifier().is_some() {
|
|
return None;
|
|
}
|
|
if path.segment().map_or(false, |s| {
|
|
s.param_list().is_some() || (s.self_token().is_some() && path.parent_path().is_none())
|
|
}) {
|
|
// don't try to qualify `Fn(Foo) -> Bar` paths, they are in prelude anyway
|
|
// don't try to qualify sole `self` either, they are usually locals, but are returned as modules due to namespace clashing
|
|
return None;
|
|
}
|
|
|
|
let resolution = self.source_scope.speculative_resolve(&path)?;
|
|
|
|
match resolution {
|
|
hir::PathResolution::TypeParam(tp) => {
|
|
if let Some(subst) = self.type_substs.get(&tp) {
|
|
let parent = path.syntax().parent()?;
|
|
if let Some(parent) = ast::Path::cast(parent.clone()) {
|
|
// Path inside path means that there is an associated
|
|
// type/constant on the type parameter. It is necessary
|
|
// to fully qualify the type with `as Trait`. Even
|
|
// though it might be unnecessary if `subst` is generic
|
|
// type, always fully qualifying the path is safer
|
|
// because of potential clash of associated types from
|
|
// multiple traits
|
|
|
|
let trait_ref = find_trait_for_assoc_item(
|
|
self.source_scope,
|
|
tp,
|
|
parent.segment()?.name_ref()?,
|
|
)
|
|
.and_then(|trait_ref| {
|
|
let found_path = self.target_module.find_use_path(
|
|
self.source_scope.db.upcast(),
|
|
hir::ModuleDef::Trait(trait_ref),
|
|
false,
|
|
)?;
|
|
match make::ty_path(mod_path_to_ast(&found_path)) {
|
|
ast::Type::PathType(path_ty) => Some(path_ty),
|
|
_ => None,
|
|
}
|
|
});
|
|
|
|
let segment = make::path_segment_ty(subst.clone(), trait_ref);
|
|
let qualified = make::path_from_segments(std::iter::once(segment), false);
|
|
ted::replace(path.syntax(), qualified.clone_for_update().syntax());
|
|
} else if let Some(path_ty) = ast::PathType::cast(parent) {
|
|
ted::replace(
|
|
path_ty.syntax(),
|
|
subst.clone_subtree().clone_for_update().syntax(),
|
|
);
|
|
} else {
|
|
ted::replace(
|
|
path.syntax(),
|
|
subst.clone_subtree().clone_for_update().syntax(),
|
|
);
|
|
}
|
|
}
|
|
}
|
|
hir::PathResolution::Def(def) if def.as_assoc_item(self.source_scope.db).is_none() => {
|
|
if let hir::ModuleDef::Trait(_) = def {
|
|
if matches!(path.segment()?.kind()?, ast::PathSegmentKind::Type { .. }) {
|
|
// `speculative_resolve` resolves segments like `<T as
|
|
// Trait>` into `Trait`, but just the trait name should
|
|
// not be used as the replacement of the original
|
|
// segment.
|
|
return None;
|
|
}
|
|
}
|
|
|
|
let found_path =
|
|
self.target_module.find_use_path(self.source_scope.db.upcast(), def, false)?;
|
|
let res = mod_path_to_ast(&found_path).clone_for_update();
|
|
if let Some(args) = path.segment().and_then(|it| it.generic_arg_list()) {
|
|
if let Some(segment) = res.segment() {
|
|
let old = segment.get_or_create_generic_arg_list();
|
|
ted::replace(old.syntax(), args.clone_subtree().syntax().clone_for_update())
|
|
}
|
|
}
|
|
ted::replace(path.syntax(), res.syntax())
|
|
}
|
|
hir::PathResolution::ConstParam(cp) => {
|
|
if let Some(subst) = self.const_substs.get(&cp) {
|
|
ted::replace(path.syntax(), subst.clone_subtree().clone_for_update());
|
|
}
|
|
}
|
|
hir::PathResolution::Local(_)
|
|
| hir::PathResolution::SelfType(_)
|
|
| hir::PathResolution::Def(_)
|
|
| hir::PathResolution::BuiltinAttr(_)
|
|
| hir::PathResolution::ToolModule(_)
|
|
| hir::PathResolution::DeriveHelper(_) => (),
|
|
}
|
|
Some(())
|
|
}
|
|
}
|
|
|
|
// FIXME: It would probably be nicer if we could get this via HIR (i.e. get the
|
|
// trait ref, and then go from the types in the substs back to the syntax).
|
|
fn get_syntactic_substs(impl_def: ast::Impl) -> Option<AstSubsts> {
|
|
let target_trait = impl_def.trait_()?;
|
|
let path_type = match target_trait {
|
|
ast::Type::PathType(path) => path,
|
|
_ => return None,
|
|
};
|
|
let generic_arg_list = path_type.path()?.segment()?.generic_arg_list()?;
|
|
|
|
get_type_args_from_arg_list(generic_arg_list)
|
|
}
|
|
|
|
fn get_type_args_from_arg_list(generic_arg_list: ast::GenericArgList) -> Option<AstSubsts> {
|
|
let mut result = AstSubsts::default();
|
|
generic_arg_list.generic_args().for_each(|generic_arg| match generic_arg {
|
|
// Const params are marked as consts on definition only,
|
|
// being passed to the trait they are indistguishable from type params;
|
|
// anyway, we don't really need to distinguish them here.
|
|
ast::GenericArg::TypeArg(type_arg) => {
|
|
result.types_and_consts.push(TypeOrConst::Either(type_arg))
|
|
}
|
|
// Some const values are recognized correctly.
|
|
ast::GenericArg::ConstArg(const_arg) => {
|
|
result.types_and_consts.push(TypeOrConst::Const(const_arg));
|
|
}
|
|
ast::GenericArg::LifetimeArg(l_arg) => result.lifetimes.push(l_arg),
|
|
_ => (),
|
|
});
|
|
|
|
Some(result)
|
|
}
|
|
|
|
fn find_trait_for_assoc_item(
|
|
scope: &SemanticsScope<'_>,
|
|
type_param: hir::TypeParam,
|
|
assoc_item: ast::NameRef,
|
|
) -> Option<hir::Trait> {
|
|
let db = scope.db;
|
|
let trait_bounds = type_param.trait_bounds(db);
|
|
|
|
let assoc_item_name = assoc_item.text();
|
|
|
|
for trait_ in trait_bounds {
|
|
let names = trait_.items(db).into_iter().filter_map(|item| match item {
|
|
hir::AssocItem::TypeAlias(ta) => Some(ta.name(db)),
|
|
hir::AssocItem::Const(cst) => cst.name(db),
|
|
_ => None,
|
|
});
|
|
|
|
for name in names {
|
|
if assoc_item_name.as_str() == name.as_text()?.as_str() {
|
|
// It is fine to return the first match because in case of
|
|
// multiple possibilities, the exact trait must be disambiguated
|
|
// in the definition of trait being implemented, so this search
|
|
// should not be needed.
|
|
return Some(trait_);
|
|
}
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|