rust/src/librustc/middle/const_eval.rs
2015-03-03 12:10:58 +01:00

681 lines
26 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(non_camel_case_types)]
#![allow(unsigned_negation)]
pub use self::const_val::*;
use metadata::csearch;
use middle::{astencode, def};
use middle::pat_util::def_to_path;
use middle::ty::{self, Ty};
use middle::astconv_util::{ast_ty_to_prim_ty};
use syntax::ast::{self, Expr};
use syntax::codemap::Span;
use syntax::parse::token::InternedString;
use syntax::ptr::P;
use syntax::{ast_map, ast_util, codemap};
use std::borrow::{Cow, IntoCow};
use std::num::wrapping::OverflowingOps;
use std::cmp::Ordering;
use std::collections::hash_map::Entry::Vacant;
use std::{i8, i16, i32, i64};
use std::rc::Rc;
fn lookup_const<'a>(tcx: &'a ty::ctxt, e: &Expr) -> Option<&'a Expr> {
let opt_def = tcx.def_map.borrow().get(&e.id).map(|d| d.full_def());
match opt_def {
Some(def::DefConst(def_id)) => {
lookup_const_by_id(tcx, def_id)
}
Some(def::DefVariant(enum_def, variant_def, _)) => {
lookup_variant_by_id(tcx, enum_def, variant_def)
}
_ => None
}
}
fn lookup_variant_by_id<'a>(tcx: &'a ty::ctxt,
enum_def: ast::DefId,
variant_def: ast::DefId)
-> Option<&'a Expr> {
fn variant_expr<'a>(variants: &'a [P<ast::Variant>], id: ast::NodeId)
-> Option<&'a Expr> {
for variant in variants {
if variant.node.id == id {
return variant.node.disr_expr.as_ref().map(|e| &**e);
}
}
None
}
if ast_util::is_local(enum_def) {
match tcx.map.find(enum_def.node) {
None => None,
Some(ast_map::NodeItem(it)) => match it.node {
ast::ItemEnum(ast::EnumDef { ref variants }, _) => {
variant_expr(&variants[..], variant_def.node)
}
_ => None
},
Some(_) => None
}
} else {
match tcx.extern_const_variants.borrow().get(&variant_def) {
Some(&ast::DUMMY_NODE_ID) => return None,
Some(&expr_id) => {
return Some(tcx.map.expect_expr(expr_id));
}
None => {}
}
let expr_id = match csearch::maybe_get_item_ast(tcx, enum_def,
box |a, b, c, d| astencode::decode_inlined_item(a, b, c, d)) {
csearch::FoundAst::Found(&ast::IIItem(ref item)) => match item.node {
ast::ItemEnum(ast::EnumDef { ref variants }, _) => {
// NOTE this doesn't do the right thing, it compares inlined
// NodeId's to the original variant_def's NodeId, but they
// come from different crates, so they will likely never match.
variant_expr(&variants[..], variant_def.node).map(|e| e.id)
}
_ => None
},
_ => None
};
tcx.extern_const_variants.borrow_mut().insert(variant_def,
expr_id.unwrap_or(ast::DUMMY_NODE_ID));
expr_id.map(|id| tcx.map.expect_expr(id))
}
}
pub fn lookup_const_by_id<'a>(tcx: &'a ty::ctxt, def_id: ast::DefId)
-> Option<&'a Expr> {
if ast_util::is_local(def_id) {
match tcx.map.find(def_id.node) {
None => None,
Some(ast_map::NodeItem(it)) => match it.node {
ast::ItemConst(_, ref const_expr) => {
Some(&**const_expr)
}
_ => None
},
Some(_) => None
}
} else {
match tcx.extern_const_statics.borrow().get(&def_id) {
Some(&ast::DUMMY_NODE_ID) => return None,
Some(&expr_id) => {
return Some(tcx.map.expect_expr(expr_id));
}
None => {}
}
let expr_id = match csearch::maybe_get_item_ast(tcx, def_id,
box |a, b, c, d| astencode::decode_inlined_item(a, b, c, d)) {
csearch::FoundAst::Found(&ast::IIItem(ref item)) => match item.node {
ast::ItemConst(_, ref const_expr) => Some(const_expr.id),
_ => None
},
_ => None
};
tcx.extern_const_statics.borrow_mut().insert(def_id,
expr_id.unwrap_or(ast::DUMMY_NODE_ID));
expr_id.map(|id| tcx.map.expect_expr(id))
}
}
// FIXME (#33): this doesn't handle big integer/float literals correctly
// (nor does the rest of our literal handling).
#[derive(Clone, PartialEq)]
pub enum const_val {
const_float(f64),
const_int(i64),
const_uint(u64),
const_str(InternedString),
const_binary(Rc<Vec<u8> >),
const_bool(bool)
}
pub fn const_expr_to_pat(tcx: &ty::ctxt, expr: &Expr, span: Span) -> P<ast::Pat> {
let pat = match expr.node {
ast::ExprTup(ref exprs) =>
ast::PatTup(exprs.iter().map(|expr| const_expr_to_pat(tcx, &**expr, span)).collect()),
ast::ExprCall(ref callee, ref args) => {
let def = tcx.def_map.borrow()[callee.id];
if let Vacant(entry) = tcx.def_map.borrow_mut().entry(expr.id) {
entry.insert(def);
}
let path = match def.full_def() {
def::DefStruct(def_id) => def_to_path(tcx, def_id),
def::DefVariant(_, variant_did, _) => def_to_path(tcx, variant_did),
_ => unreachable!()
};
let pats = args.iter().map(|expr| const_expr_to_pat(tcx, &**expr, span)).collect();
ast::PatEnum(path, Some(pats))
}
ast::ExprStruct(ref path, ref fields, None) => {
let field_pats = fields.iter().map(|field| codemap::Spanned {
span: codemap::DUMMY_SP,
node: ast::FieldPat {
ident: field.ident.node,
pat: const_expr_to_pat(tcx, &*field.expr, span),
is_shorthand: false,
},
}).collect();
ast::PatStruct(path.clone(), field_pats, false)
}
ast::ExprVec(ref exprs) => {
let pats = exprs.iter().map(|expr| const_expr_to_pat(tcx, &**expr, span)).collect();
ast::PatVec(pats, None, vec![])
}
ast::ExprPath(_, ref path) => {
let opt_def = tcx.def_map.borrow().get(&expr.id).map(|d| d.full_def());
match opt_def {
Some(def::DefStruct(..)) =>
ast::PatStruct(path.clone(), vec![], false),
Some(def::DefVariant(..)) =>
ast::PatEnum(path.clone(), None),
_ => {
match lookup_const(tcx, expr) {
Some(actual) => return const_expr_to_pat(tcx, actual, span),
_ => unreachable!()
}
}
}
}
_ => ast::PatLit(P(expr.clone()))
};
P(ast::Pat { id: expr.id, node: pat, span: span })
}
pub fn eval_const_expr(tcx: &ty::ctxt, e: &Expr) -> const_val {
match eval_const_expr_partial(tcx, e, None) {
Ok(r) => r,
Err(s) => tcx.sess.span_fatal(s.span, s.description().as_slice())
}
}
#[derive(Clone)]
pub struct ConstEvalErr {
pub span: Span,
pub kind: ErrKind,
}
#[derive(Clone)]
pub enum ErrKind {
CannotCast,
CannotCastTo(&'static str),
InvalidOpForBools(ast::BinOp_),
InvalidOpForFloats(ast::BinOp_),
InvalidOpForIntUint(ast::BinOp_),
InvalidOpForUintInt(ast::BinOp_),
NegateOnString,
NegateOnBoolean,
NegateOnBinary,
NotOnFloat,
NotOnString,
NotOnBinary,
AddiWithOverflow(i64, i64),
SubiWithOverflow(i64, i64),
MuliWithOverflow(i64, i64),
AdduWithOverflow(u64, u64),
SubuWithOverflow(u64, u64),
MuluWithOverflow(u64, u64),
DivideByZero,
DivideWithOverflow,
ModuloByZero,
ModuloWithOverflow,
MissingStructField,
NonConstPath,
NonConstStruct,
TupleIndexOutOfBounds,
MiscBinaryOp,
MiscCatchAll,
}
impl ConstEvalErr {
pub fn description(&self) -> Cow<str> {
use self::ErrKind::*;
match self.kind {
CannotCast => "can't cast this type".into_cow(),
CannotCastTo(s) => format!("can't cast this type to {}", s).into_cow(),
InvalidOpForBools(_) => "can't do this op on bools".into_cow(),
InvalidOpForFloats(_) => "can't do this op on floats".into_cow(),
InvalidOpForIntUint(..) => "can't do this op on an int and uint".into_cow(),
InvalidOpForUintInt(..) => "can't do this op on a uint and int".into_cow(),
NegateOnString => "negate on string".into_cow(),
NegateOnBoolean => "negate on boolean".into_cow(),
NegateOnBinary => "negate on binary literal".into_cow(),
NotOnFloat => "not on float or string".into_cow(),
NotOnString => "not on float or string".into_cow(),
NotOnBinary => "not on binary literal".into_cow(),
AddiWithOverflow(..) => "attempted to add with overflow".into_cow(),
SubiWithOverflow(..) => "attempted to sub with overflow".into_cow(),
MuliWithOverflow(..) => "attempted to mul with overflow".into_cow(),
AdduWithOverflow(..) => "attempted to add with overflow".into_cow(),
SubuWithOverflow(..) => "attempted to sub with overflow".into_cow(),
MuluWithOverflow(..) => "attempted to mul with overflow".into_cow(),
DivideByZero => "attempted to divide by zero".into_cow(),
DivideWithOverflow => "attempted to divide with overflow".into_cow(),
ModuloByZero => "attempted remainder with a divisor of zero".into_cow(),
ModuloWithOverflow => "attempted remainder with overflow".into_cow(),
MissingStructField => "nonexistent struct field".into_cow(),
NonConstPath => "non-constant path in constant expr".into_cow(),
NonConstStruct => "non-constant struct in constant expr".into_cow(),
TupleIndexOutOfBounds => "tuple index out of bounds".into_cow(),
MiscBinaryOp => "bad operands for binary".into_cow(),
MiscCatchAll => "unsupported constant expr".into_cow(),
}
}
}
macro_rules! signal {
($e:expr, $ctor:ident) => {
return Err(ConstEvalErr { span: $e.span, kind: ErrKind::$ctor })
};
($e:expr, $ctor:ident($($arg:expr),*)) => {
return Err(ConstEvalErr { span: $e.span, kind: ErrKind::$ctor($($arg),*) })
}
}
fn checked_add_int(e: &Expr, a: i64, b: i64) -> Result<const_val, ConstEvalErr> {
let (ret, oflo) = a.overflowing_add(b);
if !oflo { Ok(const_int(ret)) } else { signal!(e, AddiWithOverflow(a, b)) }
}
fn checked_sub_int(e: &Expr, a: i64, b: i64) -> Result<const_val, ConstEvalErr> {
let (ret, oflo) = a.overflowing_sub(b);
if !oflo { Ok(const_int(ret)) } else { signal!(e, SubiWithOverflow(a, b)) }
}
fn checked_mul_int(e: &Expr, a: i64, b: i64) -> Result<const_val, ConstEvalErr> {
let (ret, oflo) = a.overflowing_mul(b);
if !oflo { Ok(const_int(ret)) } else { signal!(e, MuliWithOverflow(a, b)) }
}
fn checked_add_uint(e: &Expr, a: u64, b: u64) -> Result<const_val, ConstEvalErr> {
let (ret, oflo) = a.overflowing_add(b);
if !oflo { Ok(const_uint(ret)) } else { signal!(e, AdduWithOverflow(a, b)) }
}
fn checked_sub_uint(e: &Expr, a: u64, b: u64) -> Result<const_val, ConstEvalErr> {
let (ret, oflo) = a.overflowing_sub(b);
if !oflo { Ok(const_uint(ret)) } else { signal!(e, SubuWithOverflow(a, b)) }
}
fn checked_mul_uint(e: &Expr, a: u64, b: u64) -> Result<const_val, ConstEvalErr> {
let (ret, oflo) = a.overflowing_mul(b);
if !oflo { Ok(const_uint(ret)) } else { signal!(e, MuluWithOverflow(a, b)) }
}
pub fn eval_const_expr_partial<'tcx>(tcx: &ty::ctxt<'tcx>,
e: &Expr,
ty_hint: Option<Ty<'tcx>>)
-> Result<const_val, ConstEvalErr> {
fn fromb(b: bool) -> const_val { const_int(b as i64) }
let ety = ty_hint.or_else(|| ty::expr_ty_opt(tcx, e));
let result = match e.node {
ast::ExprUnary(ast::UnNeg, ref inner) => {
match try!(eval_const_expr_partial(tcx, &**inner, ety)) {
const_float(f) => const_float(-f),
const_int(i) => const_int(-i),
const_uint(i) => const_uint(-i),
const_str(_) => signal!(e, NegateOnString),
const_bool(_) => signal!(e, NegateOnBoolean),
const_binary(_) => signal!(e, NegateOnBinary),
}
}
ast::ExprUnary(ast::UnNot, ref inner) => {
match try!(eval_const_expr_partial(tcx, &**inner, ety)) {
const_int(i) => const_int(!i),
const_uint(i) => const_uint(!i),
const_bool(b) => const_bool(!b),
const_str(_) => signal!(e, NotOnString),
const_float(_) => signal!(e, NotOnFloat),
const_binary(_) => signal!(e, NotOnBinary),
}
}
ast::ExprBinary(op, ref a, ref b) => {
let b_ty = match op.node {
ast::BiShl | ast::BiShr => Some(tcx.types.uint),
_ => ety
};
match (try!(eval_const_expr_partial(tcx, &**a, ety)),
try!(eval_const_expr_partial(tcx, &**b, b_ty))) {
(const_float(a), const_float(b)) => {
match op.node {
ast::BiAdd => const_float(a + b),
ast::BiSub => const_float(a - b),
ast::BiMul => const_float(a * b),
ast::BiDiv => const_float(a / b),
ast::BiRem => const_float(a % b),
ast::BiEq => fromb(a == b),
ast::BiLt => fromb(a < b),
ast::BiLe => fromb(a <= b),
ast::BiNe => fromb(a != b),
ast::BiGe => fromb(a >= b),
ast::BiGt => fromb(a > b),
_ => signal!(e, InvalidOpForFloats(op.node))
}
}
(const_int(a), const_int(b)) => {
let is_a_min_value = || {
let int_ty = match ty::expr_ty_opt(tcx, e).map(|ty| &ty.sty) {
Some(&ty::ty_int(int_ty)) => int_ty,
_ => return false
};
let int_ty = if let ast::TyIs(_) = int_ty {
tcx.sess.target.int_type
} else {
int_ty
};
match int_ty {
ast::TyI8 => (a as i8) == i8::MIN,
ast::TyI16 => (a as i16) == i16::MIN,
ast::TyI32 => (a as i32) == i32::MIN,
ast::TyI64 => (a as i64) == i64::MIN,
ast::TyIs(_) => unreachable!()
}
};
match op.node {
ast::BiAdd => try!(checked_add_int(e, a, b)),
ast::BiSub => try!(checked_sub_int(e, a, b)),
ast::BiMul => try!(checked_mul_int(e, a, b)),
ast::BiDiv => {
if b == 0 {
signal!(e, DivideByZero);
} else if b == -1 && is_a_min_value() {
signal!(e, DivideWithOverflow);
} else {
const_int(a / b)
}
}
ast::BiRem => {
if b == 0 {
signal!(e, ModuloByZero)
} else if b == -1 && is_a_min_value() {
signal!(e, ModuloWithOverflow)
} else {
const_int(a % b)
}
}
ast::BiAnd | ast::BiBitAnd => const_int(a & b),
ast::BiOr | ast::BiBitOr => const_int(a | b),
ast::BiBitXor => const_int(a ^ b),
ast::BiShl => const_int(a << b as uint),
ast::BiShr => const_int(a >> b as uint),
ast::BiEq => fromb(a == b),
ast::BiLt => fromb(a < b),
ast::BiLe => fromb(a <= b),
ast::BiNe => fromb(a != b),
ast::BiGe => fromb(a >= b),
ast::BiGt => fromb(a > b)
}
}
(const_uint(a), const_uint(b)) => {
match op.node {
ast::BiAdd => try!(checked_add_uint(e, a, b)),
ast::BiSub => try!(checked_sub_uint(e, a, b)),
ast::BiMul => try!(checked_mul_uint(e, a, b)),
ast::BiDiv if b == 0 => signal!(e, DivideByZero),
ast::BiDiv => const_uint(a / b),
ast::BiRem if b == 0 => signal!(e, ModuloByZero),
ast::BiRem => const_uint(a % b),
ast::BiAnd | ast::BiBitAnd => const_uint(a & b),
ast::BiOr | ast::BiBitOr => const_uint(a | b),
ast::BiBitXor => const_uint(a ^ b),
ast::BiShl => const_uint(a << b as uint),
ast::BiShr => const_uint(a >> b as uint),
ast::BiEq => fromb(a == b),
ast::BiLt => fromb(a < b),
ast::BiLe => fromb(a <= b),
ast::BiNe => fromb(a != b),
ast::BiGe => fromb(a >= b),
ast::BiGt => fromb(a > b),
}
}
// shifts can have any integral type as their rhs
(const_int(a), const_uint(b)) => {
match op.node {
ast::BiShl => const_int(a << b as uint),
ast::BiShr => const_int(a >> b as uint),
_ => signal!(e, InvalidOpForIntUint(op.node)),
}
}
(const_uint(a), const_int(b)) => {
match op.node {
ast::BiShl => const_uint(a << b as uint),
ast::BiShr => const_uint(a >> b as uint),
_ => signal!(e, InvalidOpForUintInt(op.node)),
}
}
(const_bool(a), const_bool(b)) => {
const_bool(match op.node {
ast::BiAnd => a && b,
ast::BiOr => a || b,
ast::BiBitXor => a ^ b,
ast::BiBitAnd => a & b,
ast::BiBitOr => a | b,
ast::BiEq => a == b,
ast::BiNe => a != b,
_ => signal!(e, InvalidOpForBools(op.node)),
})
}
_ => signal!(e, MiscBinaryOp),
}
}
ast::ExprCast(ref base, ref target_ty) => {
// This tends to get called w/o the type actually having been
// populated in the ctxt, which was causing things to blow up
// (#5900). Fall back to doing a limited lookup to get past it.
let ety = ety.or_else(|| ast_ty_to_prim_ty(tcx, &**target_ty))
.unwrap_or_else(|| {
tcx.sess.span_fatal(target_ty.span,
"target type not found for const cast")
});
// Prefer known type to noop, but always have a type hint.
let base_hint = ty::expr_ty_opt(tcx, &**base).unwrap_or(ety);
let val = try!(eval_const_expr_partial(tcx, &**base, Some(base_hint)));
match cast_const(val, ety) {
Ok(val) => val,
Err(kind) => return Err(ConstEvalErr { span: e.span, kind: kind }),
}
}
ast::ExprPath(..) => {
let opt_def = tcx.def_map.borrow().get(&e.id).map(|d| d.full_def());
let (const_expr, const_ty) = match opt_def {
Some(def::DefConst(def_id)) => {
if ast_util::is_local(def_id) {
match tcx.map.find(def_id.node) {
Some(ast_map::NodeItem(it)) => match it.node {
ast::ItemConst(ref ty, ref expr) => {
(Some(&**expr), Some(&**ty))
}
_ => (None, None)
},
_ => (None, None)
}
} else {
(lookup_const_by_id(tcx, def_id), None)
}
}
Some(def::DefVariant(enum_def, variant_def, _)) => {
(lookup_variant_by_id(tcx, enum_def, variant_def), None)
}
_ => (None, None)
};
let const_expr = match const_expr {
Some(actual_e) => actual_e,
None => signal!(e, NonConstPath)
};
let ety = ety.or_else(|| const_ty.and_then(|ty| ast_ty_to_prim_ty(tcx, ty)));
try!(eval_const_expr_partial(tcx, const_expr, ety))
}
ast::ExprLit(ref lit) => {
lit_to_const(&**lit, ety)
}
ast::ExprParen(ref e) => try!(eval_const_expr_partial(tcx, &**e, ety)),
ast::ExprBlock(ref block) => {
match block.expr {
Some(ref expr) => try!(eval_const_expr_partial(tcx, &**expr, ety)),
None => const_int(0i64)
}
}
ast::ExprTupField(ref base, index) => {
// Get the base tuple if it is constant
if let Some(&ast::ExprTup(ref fields)) = lookup_const(tcx, &**base).map(|s| &s.node) {
// Check that the given index is within bounds and evaluate its value
if fields.len() > index.node {
return eval_const_expr_partial(tcx, &*fields[index.node], None);
} else {
signal!(e, TupleIndexOutOfBounds);
}
}
signal!(e, NonConstStruct);
}
ast::ExprField(ref base, field_name) => {
// Get the base expression if it is a struct and it is constant
if let Some(&ast::ExprStruct(_, ref fields, _)) = lookup_const(tcx, &**base)
.map(|s| &s.node) {
// Check that the given field exists and evaluate it
if let Some(f) = fields.iter().find(|f|
f.ident.node.as_str() == field_name.node.as_str()) {
return eval_const_expr_partial(tcx, &*f.expr, None);
} else {
signal!(e, MissingStructField);
}
}
signal!(e, NonConstStruct);
}
_ => signal!(e, MiscCatchAll)
};
Ok(result)
}
fn cast_const(val: const_val, ty: Ty) -> Result<const_val, ErrKind> {
macro_rules! define_casts {
($($ty_pat:pat => (
$intermediate_ty:ty,
$const_type:ident,
$target_ty:ty
)),*) => (match ty.sty {
$($ty_pat => {
match val {
const_bool(b) => Ok($const_type(b as $intermediate_ty as $target_ty)),
const_uint(u) => Ok($const_type(u as $intermediate_ty as $target_ty)),
const_int(i) => Ok($const_type(i as $intermediate_ty as $target_ty)),
const_float(f) => Ok($const_type(f as $intermediate_ty as $target_ty)),
_ => Err(ErrKind::CannotCastTo(stringify!($const_type))),
}
},)*
_ => Err(ErrKind::CannotCast),
})
}
define_casts!{
ty::ty_int(ast::TyIs(_)) => (int, const_int, i64),
ty::ty_int(ast::TyI8) => (i8, const_int, i64),
ty::ty_int(ast::TyI16) => (i16, const_int, i64),
ty::ty_int(ast::TyI32) => (i32, const_int, i64),
ty::ty_int(ast::TyI64) => (i64, const_int, i64),
ty::ty_uint(ast::TyUs(_)) => (uint, const_uint, u64),
ty::ty_uint(ast::TyU8) => (u8, const_uint, u64),
ty::ty_uint(ast::TyU16) => (u16, const_uint, u64),
ty::ty_uint(ast::TyU32) => (u32, const_uint, u64),
ty::ty_uint(ast::TyU64) => (u64, const_uint, u64),
ty::ty_float(ast::TyF32) => (f32, const_float, f64),
ty::ty_float(ast::TyF64) => (f64, const_float, f64)
}
}
fn lit_to_const(lit: &ast::Lit, ty_hint: Option<Ty>) -> const_val {
match lit.node {
ast::LitStr(ref s, _) => const_str((*s).clone()),
ast::LitBinary(ref data) => {
const_binary(data.clone())
}
ast::LitByte(n) => const_uint(n as u64),
ast::LitChar(n) => const_uint(n as u64),
ast::LitInt(n, ast::SignedIntLit(_, ast::Plus)) => const_int(n as i64),
ast::LitInt(n, ast::UnsuffixedIntLit(ast::Plus)) => {
match ty_hint.map(|ty| &ty.sty) {
Some(&ty::ty_uint(_)) => const_uint(n),
_ => const_int(n as i64)
}
}
ast::LitInt(n, ast::SignedIntLit(_, ast::Minus)) |
ast::LitInt(n, ast::UnsuffixedIntLit(ast::Minus)) => const_int(-(n as i64)),
ast::LitInt(n, ast::UnsignedIntLit(_)) => const_uint(n),
ast::LitFloat(ref n, _) |
ast::LitFloatUnsuffixed(ref n) => {
const_float(n.parse::<f64>().unwrap() as f64)
}
ast::LitBool(b) => const_bool(b)
}
}
pub fn compare_const_vals(a: &const_val, b: &const_val) -> Option<Ordering> {
Some(match (a, b) {
(&const_int(a), &const_int(b)) => a.cmp(&b),
(&const_uint(a), &const_uint(b)) => a.cmp(&b),
(&const_float(a), &const_float(b)) => {
// This is pretty bad but it is the existing behavior.
if a == b {
Ordering::Equal
} else if a < b {
Ordering::Less
} else {
Ordering::Greater
}
}
(&const_str(ref a), &const_str(ref b)) => a.cmp(b),
(&const_bool(a), &const_bool(b)) => a.cmp(&b),
(&const_binary(ref a), &const_binary(ref b)) => a.cmp(b),
_ => return None
})
}
pub fn compare_lit_exprs<'tcx>(tcx: &ty::ctxt<'tcx>,
a: &Expr,
b: &Expr,
ty_hint: Option<Ty<'tcx>>)
-> Option<Ordering> {
let a = match eval_const_expr_partial(tcx, a, ty_hint) {
Ok(a) => a,
Err(e) => {
tcx.sess.span_err(a.span, e.description().as_slice());
return None;
}
};
let b = match eval_const_expr_partial(tcx, b, ty_hint) {
Ok(b) => b,
Err(e) => {
tcx.sess.span_err(b.span, e.description().as_slice());
return None;
}
};
compare_const_vals(&a, &b)
}