rust/src/liballoc/arc.rs
Felix S. Klock II 270f0eef73 Add : Box<_> or ::Box<_> type annotations to various places.
This is the kind of change that one is expected to need to make to
accommodate overloaded-`box`.

----

Note that this is not *all* of the changes necessary to accommodate
Issue 22181.  It is merely the subset of those cases where there was
already a let-binding in place that made it easy to add the necesasry
type ascription.

(For unnamed intermediate `Box` values, one must go down a different
route; `Box::new` is the option that maximizes portability, but has
potential inefficiency depending on whether the call is inlined.)

----

There is one place worth note, `run-pass/coerce-match.rs`, where I
used an ugly form of `Box<_>` type ascription where I would have
preferred to use `Box::new` to accommodate overloaded-`box`.  I
deliberately did not use `Box::new` here, because that is already done
in coerce-match-calls.rs.

----

Precursor for overloaded-`box` and placement-`in`; see Issue 22181.
2015-03-03 20:29:01 +01:00

829 lines
24 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![stable(feature = "rust1", since = "1.0.0")]
//! Threadsafe reference-counted boxes (the `Arc<T>` type).
//!
//! The `Arc<T>` type provides shared ownership of an immutable value.
//! Destruction is deterministic, and will occur as soon as the last owner is
//! gone. It is marked as `Send` because it uses atomic reference counting.
//!
//! If you do not need thread-safety, and just need shared ownership, consider
//! the [`Rc<T>` type](../rc/struct.Rc.html). It is the same as `Arc<T>`, but
//! does not use atomics, making it both thread-unsafe as well as significantly
//! faster when updating the reference count.
//!
//! The `downgrade` method can be used to create a non-owning `Weak<T>` pointer
//! to the box. A `Weak<T>` pointer can be upgraded to an `Arc<T>` pointer, but
//! will return `None` if the value has already been dropped.
//!
//! For example, a tree with parent pointers can be represented by putting the
//! nodes behind strong `Arc<T>` pointers, and then storing the parent pointers
//! as `Weak<T>` pointers.
//!
//! # Examples
//!
//! Sharing some immutable data between tasks:
//!
//! ```
//! use std::sync::Arc;
//! use std::thread;
//!
//! let five = Arc::new(5);
//!
//! for _ in 0..10 {
//! let five = five.clone();
//!
//! thread::spawn(move || {
//! println!("{:?}", five);
//! });
//! }
//! ```
//!
//! Sharing mutable data safely between tasks with a `Mutex`:
//!
//! ```
//! use std::sync::{Arc, Mutex};
//! use std::thread;
//!
//! let five = Arc::new(Mutex::new(5));
//!
//! for _ in 0..10 {
//! let five = five.clone();
//!
//! thread::spawn(move || {
//! let mut number = five.lock().unwrap();
//!
//! *number += 1;
//!
//! println!("{}", *number); // prints 6
//! });
//! }
//! ```
use boxed::Box;
use core::prelude::*;
use core::atomic;
use core::atomic::Ordering::{Relaxed, Release, Acquire, SeqCst};
use core::fmt;
use core::cmp::{Ordering};
use core::default::Default;
use core::mem::{min_align_of, size_of};
use core::mem;
use core::nonzero::NonZero;
use core::ops::Deref;
use core::ptr;
use core::hash::{Hash, Hasher};
use heap::deallocate;
/// An atomically reference counted wrapper for shared state.
///
/// # Example
///
/// In this example, a large vector of floats is shared between several tasks.
/// With simple pipes, without `Arc`, a copy would have to be made for each
/// task.
///
/// ```rust
/// use std::sync::Arc;
/// use std::thread;
///
/// fn main() {
/// let numbers: Vec<_> = (0..100u32).map(|i| i as f32).collect();
/// let shared_numbers = Arc::new(numbers);
///
/// for _ in 0..10 {
/// let child_numbers = shared_numbers.clone();
///
/// thread::spawn(move || {
/// let local_numbers = child_numbers.as_slice();
///
/// // Work with the local numbers
/// });
/// }
/// }
/// ```
#[unsafe_no_drop_flag]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Arc<T> {
// FIXME #12808: strange name to try to avoid interfering with
// field accesses of the contained type via Deref
_ptr: NonZero<*mut ArcInner<T>>,
}
unsafe impl<T: Sync + Send> Send for Arc<T> { }
unsafe impl<T: Sync + Send> Sync for Arc<T> { }
/// A weak pointer to an `Arc`.
///
/// Weak pointers will not keep the data inside of the `Arc` alive, and can be used to break cycles
/// between `Arc` pointers.
#[unsafe_no_drop_flag]
#[unstable(feature = "alloc",
reason = "Weak pointers may not belong in this module.")]
pub struct Weak<T> {
// FIXME #12808: strange name to try to avoid interfering with
// field accesses of the contained type via Deref
_ptr: NonZero<*mut ArcInner<T>>,
}
unsafe impl<T: Sync + Send> Send for Weak<T> { }
unsafe impl<T: Sync + Send> Sync for Weak<T> { }
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug> fmt::Debug for Weak<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "(Weak)")
}
}
struct ArcInner<T> {
strong: atomic::AtomicUsize,
weak: atomic::AtomicUsize,
data: T,
}
unsafe impl<T: Sync + Send> Send for ArcInner<T> {}
unsafe impl<T: Sync + Send> Sync for ArcInner<T> {}
impl<T> Arc<T> {
/// Constructs a new `Arc<T>`.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
///
/// let five = Arc::new(5);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new(data: T) -> Arc<T> {
// Start the weak pointer count as 1 which is the weak pointer that's
// held by all the strong pointers (kinda), see std/rc.rs for more info
let x: Box<_> = box ArcInner {
strong: atomic::AtomicUsize::new(1),
weak: atomic::AtomicUsize::new(1),
data: data,
};
Arc { _ptr: unsafe { NonZero::new(mem::transmute(x)) } }
}
/// Downgrades the `Arc<T>` to a `Weak<T>` reference.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
///
/// let five = Arc::new(5);
///
/// let weak_five = five.downgrade();
/// ```
#[unstable(feature = "alloc",
reason = "Weak pointers may not belong in this module.")]
pub fn downgrade(&self) -> Weak<T> {
// See the clone() impl for why this is relaxed
self.inner().weak.fetch_add(1, Relaxed);
Weak { _ptr: self._ptr }
}
}
impl<T> Arc<T> {
#[inline]
fn inner(&self) -> &ArcInner<T> {
// This unsafety is ok because while this arc is alive we're guaranteed
// that the inner pointer is valid. Furthermore, we know that the
// `ArcInner` structure itself is `Sync` because the inner data is
// `Sync` as well, so we're ok loaning out an immutable pointer to these
// contents.
unsafe { &**self._ptr }
}
}
/// Get the number of weak references to this value.
#[inline]
#[unstable(feature = "alloc")]
pub fn weak_count<T>(this: &Arc<T>) -> usize { this.inner().weak.load(SeqCst) - 1 }
/// Get the number of strong references to this value.
#[inline]
#[unstable(feature = "alloc")]
pub fn strong_count<T>(this: &Arc<T>) -> usize { this.inner().strong.load(SeqCst) }
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for Arc<T> {
/// Makes a clone of the `Arc<T>`.
///
/// This increases the strong reference count.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
///
/// let five = Arc::new(5);
///
/// five.clone();
/// ```
#[inline]
fn clone(&self) -> Arc<T> {
// Using a relaxed ordering is alright here, as knowledge of the
// original reference prevents other threads from erroneously deleting
// the object.
//
// As explained in the [Boost documentation][1], Increasing the
// reference counter can always be done with memory_order_relaxed: New
// references to an object can only be formed from an existing
// reference, and passing an existing reference from one thread to
// another must already provide any required synchronization.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
self.inner().strong.fetch_add(1, Relaxed);
Arc { _ptr: self._ptr }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Deref for Arc<T> {
type Target = T;
#[inline]
fn deref(&self) -> &T {
&self.inner().data
}
}
impl<T: Send + Sync + Clone> Arc<T> {
/// Make a mutable reference from the given `Arc<T>`.
///
/// This is also referred to as a copy-on-write operation because the inner data is cloned if
/// the reference count is greater than one.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
///
/// let mut five = Arc::new(5);
///
/// let mut_five = five.make_unique();
/// ```
#[inline]
#[unstable(feature = "alloc")]
pub fn make_unique(&mut self) -> &mut T {
// Note that we hold a strong reference, which also counts as a weak reference, so we only
// clone if there is an additional reference of either kind.
if self.inner().strong.load(SeqCst) != 1 ||
self.inner().weak.load(SeqCst) != 1 {
*self = Arc::new((**self).clone())
}
// This unsafety is ok because we're guaranteed that the pointer returned is the *only*
// pointer that will ever be returned to T. Our reference count is guaranteed to be 1 at
// this point, and we required the Arc itself to be `mut`, so we're returning the only
// possible reference to the inner data.
let inner = unsafe { &mut **self._ptr };
&mut inner.data
}
}
#[unsafe_destructor]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Sync + Send> Drop for Arc<T> {
/// Drops the `Arc<T>`.
///
/// This will decrement the strong reference count. If the strong reference count becomes zero
/// and the only other references are `Weak<T>` ones, `drop`s the inner value.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
///
/// {
/// let five = Arc::new(5);
///
/// // stuff
///
/// drop(five); // explicit drop
/// }
/// {
/// let five = Arc::new(5);
///
/// // stuff
///
/// } // implicit drop
/// ```
fn drop(&mut self) {
// This structure has #[unsafe_no_drop_flag], so this drop glue may run more than once (but
// it is guaranteed to be zeroed after the first if it's run more than once)
let ptr = *self._ptr;
if ptr.is_null() { return }
// Because `fetch_sub` is already atomic, we do not need to synchronize with other threads
// unless we are going to delete the object. This same logic applies to the below
// `fetch_sub` to the `weak` count.
if self.inner().strong.fetch_sub(1, Release) != 1 { return }
// This fence is needed to prevent reordering of use of the data and deletion of the data.
// Because it is marked `Release`, the decreasing of the reference count synchronizes with
// this `Acquire` fence. This means that use of the data happens before decreasing the
// reference count, which happens before this fence, which happens before the deletion of
// the data.
//
// As explained in the [Boost documentation][1],
//
// > It is important to enforce any possible access to the object in one thread (through an
// > existing reference) to *happen before* deleting the object in a different thread. This
// > is achieved by a "release" operation after dropping a reference (any access to the
// > object through this reference must obviously happened before), and an "acquire"
// > operation before deleting the object.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
atomic::fence(Acquire);
// Destroy the data at this time, even though we may not free the box allocation itself
// (there may still be weak pointers lying around).
unsafe { drop(ptr::read(&self.inner().data)); }
if self.inner().weak.fetch_sub(1, Release) == 1 {
atomic::fence(Acquire);
unsafe { deallocate(ptr as *mut u8, size_of::<ArcInner<T>>(),
min_align_of::<ArcInner<T>>()) }
}
}
}
#[unstable(feature = "alloc",
reason = "Weak pointers may not belong in this module.")]
impl<T: Sync + Send> Weak<T> {
/// Upgrades a weak reference to a strong reference.
///
/// Upgrades the `Weak<T>` reference to an `Arc<T>`, if possible.
///
/// Returns `None` if there were no strong references and the data was destroyed.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
///
/// let five = Arc::new(5);
///
/// let weak_five = five.downgrade();
///
/// let strong_five: Option<Arc<_>> = weak_five.upgrade();
/// ```
pub fn upgrade(&self) -> Option<Arc<T>> {
// We use a CAS loop to increment the strong count instead of a fetch_add because once the
// count hits 0 is must never be above 0.
let inner = self.inner();
loop {
let n = inner.strong.load(SeqCst);
if n == 0 { return None }
let old = inner.strong.compare_and_swap(n, n + 1, SeqCst);
if old == n { return Some(Arc { _ptr: self._ptr }) }
}
}
#[inline]
fn inner(&self) -> &ArcInner<T> {
// See comments above for why this is "safe"
unsafe { &**self._ptr }
}
}
#[unstable(feature = "alloc",
reason = "Weak pointers may not belong in this module.")]
impl<T: Sync + Send> Clone for Weak<T> {
/// Makes a clone of the `Weak<T>`.
///
/// This increases the weak reference count.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
///
/// let weak_five = Arc::new(5).downgrade();
///
/// weak_five.clone();
/// ```
#[inline]
fn clone(&self) -> Weak<T> {
// See comments in Arc::clone() for why this is relaxed
self.inner().weak.fetch_add(1, Relaxed);
Weak { _ptr: self._ptr }
}
}
#[unsafe_destructor]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Sync + Send> Drop for Weak<T> {
/// Drops the `Weak<T>`.
///
/// This will decrement the weak reference count.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
///
/// {
/// let five = Arc::new(5);
/// let weak_five = five.downgrade();
///
/// // stuff
///
/// drop(weak_five); // explicit drop
/// }
/// {
/// let five = Arc::new(5);
/// let weak_five = five.downgrade();
///
/// // stuff
///
/// } // implicit drop
/// ```
fn drop(&mut self) {
let ptr = *self._ptr;
// see comments above for why this check is here
if ptr.is_null() { return }
// If we find out that we were the last weak pointer, then its time to deallocate the data
// entirely. See the discussion in Arc::drop() about the memory orderings
if self.inner().weak.fetch_sub(1, Release) == 1 {
atomic::fence(Acquire);
unsafe { deallocate(ptr as *mut u8, size_of::<ArcInner<T>>(),
min_align_of::<ArcInner<T>>()) }
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PartialEq> PartialEq for Arc<T> {
/// Equality for two `Arc<T>`s.
///
/// Two `Arc<T>`s are equal if their inner value are equal.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
///
/// let five = Arc::new(5);
///
/// five == Arc::new(5);
/// ```
fn eq(&self, other: &Arc<T>) -> bool { *(*self) == *(*other) }
/// Inequality for two `Arc<T>`s.
///
/// Two `Arc<T>`s are unequal if their inner value are unequal.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
///
/// let five = Arc::new(5);
///
/// five != Arc::new(5);
/// ```
fn ne(&self, other: &Arc<T>) -> bool { *(*self) != *(*other) }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PartialOrd> PartialOrd for Arc<T> {
/// Partial comparison for two `Arc<T>`s.
///
/// The two are compared by calling `partial_cmp()` on their inner values.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
///
/// let five = Arc::new(5);
///
/// five.partial_cmp(&Arc::new(5));
/// ```
fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering> {
(**self).partial_cmp(&**other)
}
/// Less-than comparison for two `Arc<T>`s.
///
/// The two are compared by calling `<` on their inner values.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
///
/// let five = Arc::new(5);
///
/// five < Arc::new(5);
/// ```
fn lt(&self, other: &Arc<T>) -> bool { *(*self) < *(*other) }
/// 'Less-than or equal to' comparison for two `Arc<T>`s.
///
/// The two are compared by calling `<=` on their inner values.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
///
/// let five = Arc::new(5);
///
/// five <= Arc::new(5);
/// ```
fn le(&self, other: &Arc<T>) -> bool { *(*self) <= *(*other) }
/// Greater-than comparison for two `Arc<T>`s.
///
/// The two are compared by calling `>` on their inner values.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
///
/// let five = Arc::new(5);
///
/// five > Arc::new(5);
/// ```
fn gt(&self, other: &Arc<T>) -> bool { *(*self) > *(*other) }
/// 'Greater-than or equal to' comparison for two `Arc<T>`s.
///
/// The two are compared by calling `>=` on their inner values.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
///
/// let five = Arc::new(5);
///
/// five >= Arc::new(5);
/// ```
fn ge(&self, other: &Arc<T>) -> bool { *(*self) >= *(*other) }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord> Ord for Arc<T> {
fn cmp(&self, other: &Arc<T>) -> Ordering { (**self).cmp(&**other) }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Eq> Eq for Arc<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Display> fmt::Display for Arc<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug> fmt::Debug for Arc<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Default + Sync + Send> Default for Arc<T> {
#[stable(feature = "rust1", since = "1.0.0")]
fn default() -> Arc<T> { Arc::new(Default::default()) }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Hash> Hash for Arc<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
(**self).hash(state)
}
}
#[cfg(test)]
mod tests {
use std::clone::Clone;
use std::sync::mpsc::channel;
use std::mem::drop;
use std::ops::Drop;
use std::option::Option;
use std::option::Option::{Some, None};
use std::sync::atomic;
use std::sync::atomic::Ordering::{Acquire, SeqCst};
use std::thread;
use std::vec::Vec;
use super::{Arc, Weak, weak_count, strong_count};
use std::sync::Mutex;
struct Canary(*mut atomic::AtomicUsize);
impl Drop for Canary
{
fn drop(&mut self) {
unsafe {
match *self {
Canary(c) => {
(*c).fetch_add(1, SeqCst);
}
}
}
}
}
#[test]
fn manually_share_arc() {
let v = vec!(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
let arc_v = Arc::new(v);
let (tx, rx) = channel();
let _t = thread::spawn(move || {
let arc_v: Arc<Vec<i32>> = rx.recv().unwrap();
assert_eq!((*arc_v)[3], 4);
});
tx.send(arc_v.clone()).unwrap();
assert_eq!((*arc_v)[2], 3);
assert_eq!((*arc_v)[4], 5);
}
#[test]
fn test_cowarc_clone_make_unique() {
let mut cow0 = Arc::new(75);
let mut cow1 = cow0.clone();
let mut cow2 = cow1.clone();
assert!(75 == *cow0.make_unique());
assert!(75 == *cow1.make_unique());
assert!(75 == *cow2.make_unique());
*cow0.make_unique() += 1;
*cow1.make_unique() += 2;
*cow2.make_unique() += 3;
assert!(76 == *cow0);
assert!(77 == *cow1);
assert!(78 == *cow2);
// none should point to the same backing memory
assert!(*cow0 != *cow1);
assert!(*cow0 != *cow2);
assert!(*cow1 != *cow2);
}
#[test]
fn test_cowarc_clone_unique2() {
let mut cow0 = Arc::new(75);
let cow1 = cow0.clone();
let cow2 = cow1.clone();
assert!(75 == *cow0);
assert!(75 == *cow1);
assert!(75 == *cow2);
*cow0.make_unique() += 1;
assert!(76 == *cow0);
assert!(75 == *cow1);
assert!(75 == *cow2);
// cow1 and cow2 should share the same contents
// cow0 should have a unique reference
assert!(*cow0 != *cow1);
assert!(*cow0 != *cow2);
assert!(*cow1 == *cow2);
}
#[test]
fn test_cowarc_clone_weak() {
let mut cow0 = Arc::new(75);
let cow1_weak = cow0.downgrade();
assert!(75 == *cow0);
assert!(75 == *cow1_weak.upgrade().unwrap());
*cow0.make_unique() += 1;
assert!(76 == *cow0);
assert!(cow1_weak.upgrade().is_none());
}
#[test]
fn test_live() {
let x = Arc::new(5);
let y = x.downgrade();
assert!(y.upgrade().is_some());
}
#[test]
fn test_dead() {
let x = Arc::new(5);
let y = x.downgrade();
drop(x);
assert!(y.upgrade().is_none());
}
#[test]
fn weak_self_cyclic() {
struct Cycle {
x: Mutex<Option<Weak<Cycle>>>
}
let a = Arc::new(Cycle { x: Mutex::new(None) });
let b = a.clone().downgrade();
*a.x.lock().unwrap() = Some(b);
// hopefully we don't double-free (or leak)...
}
#[test]
fn drop_arc() {
let mut canary = atomic::AtomicUsize::new(0);
let x = Arc::new(Canary(&mut canary as *mut atomic::AtomicUsize));
drop(x);
assert!(canary.load(Acquire) == 1);
}
#[test]
fn drop_arc_weak() {
let mut canary = atomic::AtomicUsize::new(0);
let arc = Arc::new(Canary(&mut canary as *mut atomic::AtomicUsize));
let arc_weak = arc.downgrade();
assert!(canary.load(Acquire) == 0);
drop(arc);
assert!(canary.load(Acquire) == 1);
drop(arc_weak);
}
#[test]
fn test_strong_count() {
let a = Arc::new(0u32);
assert!(strong_count(&a) == 1);
let w = a.downgrade();
assert!(strong_count(&a) == 1);
let b = w.upgrade().expect("");
assert!(strong_count(&b) == 2);
assert!(strong_count(&a) == 2);
drop(w);
drop(a);
assert!(strong_count(&b) == 1);
let c = b.clone();
assert!(strong_count(&b) == 2);
assert!(strong_count(&c) == 2);
}
#[test]
fn test_weak_count() {
let a = Arc::new(0u32);
assert!(strong_count(&a) == 1);
assert!(weak_count(&a) == 0);
let w = a.downgrade();
assert!(strong_count(&a) == 1);
assert!(weak_count(&a) == 1);
let x = w.clone();
assert!(weak_count(&a) == 2);
drop(w);
drop(x);
assert!(strong_count(&a) == 1);
assert!(weak_count(&a) == 0);
let c = a.clone();
assert!(strong_count(&a) == 2);
assert!(weak_count(&a) == 0);
let d = c.downgrade();
assert!(weak_count(&c) == 1);
assert!(strong_count(&c) == 2);
drop(a);
drop(c);
drop(d);
}
#[test]
fn show_arc() {
let a = Arc::new(5u32);
assert_eq!(format!("{:?}", a), "5");
}
// Make sure deriving works with Arc<T>
#[derive(Eq, Ord, PartialEq, PartialOrd, Clone, Debug, Default)]
struct Foo { inner: Arc<i32> }
}